Innin-

Selective Padding for Polycube-Based Hexahedral Meshing

Pierre Alliez

Inria Sophia Antipolis – Méditerranée Titane project-team: https://team.inria.fr/titane/ pierre.alliez@inria.fr

Innía-

and...Toward (pure-)Hexahedral Meshing

Pierre Alliez

Inria Sophia Antipolis – Méditerranée Titane project-team: https://team.inria.fr/titane/ pierre.alliez@inria.fr

Join Work

Gianmarco Cherchi Riccardo Scateni University of Cagliari

RMTH

Max Lyon David Bommes Aachen University

Outline

- Polycubes & Hex Meshing
- Padding
 - Global
 - Selective
- Toward Pure-Hex Meshing
- Summary & Outlook

nría

Meshes

Surface meshes

Volume meshes

Polycube?

Orthogonal polyhedron of a 3D model

Polycubes

Compactness vs Fidelity

I	Low	large	mapping	distortion
			mapping	

Ínría_

The Bunny Ear Dilemma...

[Tarini et al. 2004]

[Livesu et al. 2013]

(nría_

Why polycubes?

Ínría_

Polycubes – State of the art

https://www.hexalab.net/

Mesh Singularities

Quad-mesh example

regular vertex (val. 4)

singular vertex (val. 5)

singular vertex (val. 3)

singular edge (val. 3)

singular edge (val. 5)

Polycube-based Meshing

 Map volume to polycube space

- Mesh (grid) in polycube space
- Use inverse mapping to bring hex-mesh back to \mathbb{R}^3

Measuring Quality via Scaled Jacobian (SJ)

SJ := min(det(Jacobian))

nnía

- Measures quality of a hexahedron, within [-1,1] :
 - Ideal hexahedron = perfect cube (SJ = 1)
 - Convex hexahedron -> SJ > 0
 - Concave hexahedron -> SJ < 0

Ínría_

Quality

Distortion

Quality Improvement?

Global Padding

- A layer of new hexahedra
- Global operation

Global Padding

(nría_

Global Padding

Increased distortion!

(nría_

SELECTIVE PADDING

(nría_

Selective vs Global Padding

Ínría_

Selective Padding Pipeline

Analyzing Distortion

Find low quality elements

Ínría

Optimization Problem

- **INPUT**: set of faces that require a padding (*HF* set)
- **OUTPUT**: set of faces to pad
 - Low number of new hexahedra
 - Low number of new singularities
 - Preserve topological consistency (structural constraints)

A mathematical model with binary and integer variables

 $\min_{s.t.} E = E_{padding} + \lambda \cdot E_{complexity}$ structural constraints

 $E_{padding} = \sum_{f_i \in F \setminus \mathrm{HF}} x f_i$

NB: simplified formulas. Extended version of formulas in the thesis.

A mathematical model with binary and integer variables

nnia

A mathematical model with binary and integer variables

$$\begin{split} \min E &= E_{padding} + \lambda \cdot E_{complexity} \\ \text{s.t.} \\ \text{structural constraints} \end{split}$$

$$\begin{split} E_{padding} &= \sum_{f_i \in F \setminus HF} xf_i \\ E_{complexity} &= \sum_{e_j \in E^*} te_j + \sum_{v_l \in V^*} tv_l \\ \end{split}$$

NB: simplified formulas. Extended version of formulas in the thesis.

A mathematical model with binary and integer variables

 $\min E = E_{padding} + \lambda \cdot E_{complexity}$ s.t.
structural constraints

$$E_{padding} = \sum_{f_i \in F \setminus \mathrm{HF}} x f_i$$

$$E_{complexity} = \sum_{e_j \in E^*} te_j + \sum_{v_l \in V^*} tv_l$$

λ=trade-off factor

Correct propagation of the new layer

- Counting vertex turns
- Counting edge turns

NB: simplified formulas. Extended version of formulas in the thesis.

Padding constraints

 $\min E_{padding} = \sum_{f_i \in E \setminus HE} \left| xf_i \right|$ A binary variable for each facet: $xf_i = \begin{cases} 1 \text{ if } f_i \text{ need padding} \\ 0 \text{ otherwise} \end{cases}$ Hard constraints for facets in HF $xf_i = 1 \quad \forall f_i \in HF$ A binary variable for each facet $\sum_{f_i \in F(e_j)} xf_i = 2k_i \qquad \forall e_j \in E$ Constraint to avoid topological inconsistencies during the new layer propagation

Complexity constraints

A binary variable for each edge and for each vertex:

 $t_i = \begin{cases} 1 \text{ if there is a turn} \\ 0 \text{ otherwise} \end{cases}$

Edge turn:

 $te_j = |xf_i - xf_k| \quad \forall e_j \in E^*, \quad \overrightarrow{f_i} = \overrightarrow{f_k} \quad and \quad f_i, f_k \in F(e_j)$

Same reasoning for vertex turns

Sheet Insertion

Once we know the set of facets to "pad" to create the padding layer

Padding == facet extrusion

Sheet Insertion

(nría_

Results

Ínría

Results

- Comparable results (usually better)
- More regular inner structure (and less singularities)
- Analysis only on model surface

Limitations

Padding "holes"

object shape object final use object resolution

Selec. Padding (holes) min SJ: 0.63 avg SJ: 0.95 #Hex: 4550	Selec. Padding (NC min SJ: 0.65 avg SJ: 0.95 #Hex: 3770) holes)

(nría_

Free-form Shape

Ínría_

Strengths

Strengths

- Pure hex by construction
- Complexity/distortion tradeoff
 - Automatic parameter selection?
- Padding: increase DOFs
 - Sizing (multi-padding?)
 - Anisotropy
 - Orientation

nría

• Singularities & layout [Kobbelt et al.]

Turns / Singularities

- Hinge (edge) turn
 - Create pair of singularities
 - Or split singularity
- Corner (vertex) turn
 - Create
 - Split

Weaknesses

- Requires polycube as input
- Not all domains can be polycubed
- Limited class of hex mesh topologies
 - Singularities only on boundary
- Padding & embedding non trivial
- Distortion: hard to predict & control

TOWARD PURE-HEX MESHING

Ínría_

Proposal

Parallel Delaunay refinement, with non-local operators

Ínría

Delaunay Refinement

initialize repeat

> pick bad element (size, shape, ...) refine element update Delaunay filtering

until all elements are good

nnía

Delaunay Refinement

initialize repeat

pick bad element
refine element
update restricted Delaunay
}
until all elements are good

nría

Proposal

Initialize

Trivial element/domain Compute mapping

Repeat

nnía

Analyze bad elements (size, shape, orientation) Global solve & insert sheets Update mapping Update restricted elements

until all elements are good

Repeat

Analyze bad elements Scale-space frame field Global solve & insert sheets **Predict/learn** parameters/constraints Update mapping Minimize/bound distortion Interpolant / higher-order Guarantee valid embedding Update restricted elements

Variance-Minimizing Transport Plans for Inter-surface Mapping Mandad, Cohen-Steiner, Kobbelt, A, Desbrun. SIGGRAPH 2017.

Repeat

Analyze bad elements Scale-space frame field Global solve & insert sheets **Predict/learn** parameters/constraints Update mapping Minimize/bound distortion Interpolant / higher-order Guarantee valid embedding Update restricted elements

Feng, A., Busé, Delingette, Desbrun. Curved Optimal Delaunay Triangulation. SIGGRAPH 2018.

Repeat

Analyze bad elements Scale-space frame field Global solve & insert sheets Predict/learn parameters/const Update mapping Minimize/bound distortion Interpolant / higher-order Guarantee valid embedding Update restricted elements

Analyze bad elements

Scale-space frame field

Global solve & insert sheets

Predict/learn parameters/constraints

Update mapping

Minimize/bound distortion

Interpolant / higher-order (h/p dilemma)

Guarantee valid embedding

Symmetry/structure preserving

Update restricted elements

Optimize

Symmetry and Orbit Detection via Lie-Algebra Voting. EUROGRAPHICS Symposium of Geometry Processing, 2016

Tournois, Wormser, A., Desbrun.

 Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation.
 SIGGRAPH 2009.

SUMMARY & OUTLOOK

(nría_

Summary & Outlook

- Selective padding
- Warm-up with sheet-based meshing
- Objectives
 - Pure-hex meshing
 - Non-local refinement & optimization
 - Level-of-detail meshing
 - Optimize / given simulation operator
 - Mesh order/refinement dilemma
 - Seek for good excellent jet fighter student or post-doc

Thank you.

Pierre Alliez

Inria Sophia Antipolis – Méditerranée Titane project-team: https://team.inria.fr/titane/ pierre.alliez@inria.fr

