

Volumetric Challenges in Shape Analysis

Justin Solomon MIT EECS

Shape Analysis: Typical Tasks

Which points on one object correspond to points on another?

Shape Analysis: Typical Tasks

What distinguishes shapes from one another?

Shape Analysis: Typical Tasks

How can we tile a shape with simpler elements?

Desiderata

Efficient

Surfaces have many vertices and triangles

Discriminative

Must be able to distinguish between shapes

Multiscale

Resilient to noise, small changes

Well-justified

Connection to differential geometry

Today's Challenge

Image from: Raviv et al. "Volumetric Heat Kernel Signatures." 3DOR 2010.

Not the same.

What's Different?

Intrinsic structure is incomplete

What's Different?

Interesting geometry still outside

Many Applications

Plan for Today

Geometry processing algorithms tuned for volumes.

Plan for Today

Geometry processing algorithms tuned for volumes.

Starting Point: Spectral Geometry

http://pngimg.com/upload/hammer_PNG3886.png

You can learn a lot about a shape by hitting it (lightly) with a hammer!

 $\Delta f = \lambda f$

Reminder

But calculations on a volume are expensive!

Not the same.

Alternative Proposal

- Advantages of spectral geometry Multiscale, linear algebra, PDE interpretation
- Complete characterization of shape
 Fully encodes geometry, no judgment call about what's relevant for a computational problem

Computed from boundary

For efficiency and consistency

Possible context: Shape Differences

[Rustamov et al. 2013]

 $\langle f,g \rangle_F^M := \langle F_{\phi}[f], F_{\phi}[g] \rangle^{M_0}$

Functional map pulls back products

Continuous Question

[Rustamov et al. 2013]

area-based and conformal inner product matrices,

can you compute lengths and angles?

Discrete Question

Precisely what do shape differences determine on meshes?

> AWARNING SPOILER

ALERT

Edge

lengths.

Extension to Extrinsic Shape

Encodes mean curvature!

PROPOSITION 4. Suppose a mesh M satisfies the criteria in Propositions 1 and 2. Given the topology of M, the area-based and conformal product matrices $A(\mu)$ and $C(\nu; \mu)$ of M, and the area-based and conformal product matrices $A_t(\mu_t)$ and $C(\nu_t; \mu_t)$ of M_t , the geometry of M can (almost always) be reconstructed up to rigid motion.

Boundary Representations?

Surface eigenfunctions:

 $\min_{f} \int_{\partial \Omega} \|\nabla f\|_{2}^{2} dA$ s.t. $\int_{\partial \Omega} |f|^{2} dA = 1$

- Isometry invariant
- Easy to compute

Volume eigenfunctions: $\min_{f} \int_{\Omega} \|\nabla f\|_{2}^{2} dV$ s.t. $\int_{\Omega} |f|^{2} dV = 1$

- Volume dependent
- Requires tet mesh

Wang, Ben-Chen, Polterovich, and Solomon. "Steklov Spectral Geometry for Extrinsic Shape Analysis." ACM Transactions on Graphics (TOG), 2019.

Dirichlet-to-Neumann

Surface data to surface data

Theoretical Results

$$e^{-t\mathcal{S}}(x,x) = \sum_{i=0}^{\infty} e^{-t\lambda_i} \psi_i(x)^2 \sim \sum_{k=0}^{\infty} a_k(x) t^{k-2} + \sum_{\ell=1}^{\infty} b_\ell(x) t^\ell \log t$$

$$a_0(x) \equiv \frac{1}{2\pi}$$

$$a_1(x) = \frac{H(x)}{4\pi}$$

$$a_2(x) = \frac{1}{16\pi} \left(H(x)^2 + \frac{K(x)}{3} \right)$$

Polterovich & Sher: "Heat invariants of the Steklov problem." J. Geometric Analysis 25.2 (2015): 924-950.

(Slightly) New Result

PROPOSITION 3.1. Suppose $\Omega_1, \Omega_2 \subseteq \mathbb{R}^3$ are compact domains with C^{∞} boundaries Γ_1, Γ_2 and Dirichlet-to-Neumann operators S_1 and S_2 , respectively. Let $\alpha : \Omega_1 \to \Omega_2$ be a bijection which is C^{∞} up to the boundary, and let $\tilde{\alpha} : \Gamma_1 \to \Gamma_2$ be the induced mapping between the boundaries. Suppose that the operators S_1 and S_2 coincide up to composition with $\tilde{\alpha}$, i.e. $S_2f = \tilde{\alpha}_*S_1\tilde{\alpha}^*f$, for any $f \in C^{\infty}(\Gamma_2)$, where $\tilde{\alpha}^*f = f \circ \tilde{\alpha}$, $\tilde{\alpha}_*g = g \circ \tilde{\alpha}^{-1}$ denote the pull-backs by $\tilde{\alpha}$ and $\tilde{\alpha}^{-1}$, respectively. Then α is a rigid motion.

Computation

$$u(x) = \int_{\partial\Omega} \left[G(y-x) \frac{\partial u(y)}{\partial \hat{n}} - u(y) \frac{\partial G(y-x)}{\partial \hat{n}} \right] \, dy \; \forall x \in \operatorname{int} \Omega$$

(see paper for details)

Boundary element method (BEM)

Comparison: Eigenfunctions

Steklov

Laplacian

Stability to Cuts

Donut Donut 1 Donut 2

Plan for Today

Geometry processing algorithms tuned for volumes.

Common Pipeline

Sphere tet mesh from http://doc.cgal.org/latest/Mesh_3/index.html

Frame per element on a tet mesh

Idea

Solomon, Vaxman, and Bommes. "Boundary Element Octahedral Fields in Volumes." ACM Transactions on Graphics (TOG) 36.3, 2017

Work from boundary representation

Octahedral Field

https://design.tutsplus.com/

Used to guide meshing

Field-Based Meshing

Nine spherical harmonic coefficients per point

Original idea in [Huang et al. 2011] Visualization from [Ray, Sokolov, and Lévy 2016]

 $f(x, y, z) = x^4 + y^4 + z^4$

BEM Approach

Uses Dirichlet-to-Neumann!

Example Frame Fields

Non-Tight Relaxation

Not rotations of $x^4 + y^4 + z^4$

Uses Dirichlet-to-Neumann!

lssue

$$f(x, y, z) = x^4 + y^4 + z^4$$

{rotations of f(x, y, z)} $\not\cong$ {degree-4 polynomials}

Backtracking

https://design.tutsplus.com/

"Algebraic Representations for Volumetric Frame Fields." Palmer, Bommes, & Solomon.

Octahedral variety

Representation Theory Perspective

Two Optimization Algorithms

MBO

- Diffuse-and-project
- SDP relaxation of projection operator
 - Open problem: Exact recovery?

Riemannian trust region (RTR)

- Gradient descent along constraint manifold
- Closed-form exponential map

But: Both require a tet mesh

Extension: Odeco Frames

 $\sum \lambda_i (v_i^{\dagger} x)^d$ (0,5,2)(1, 3, 3)

Orthogonally-decomposable tensors

Improved Practical Result

MBO+RTR

[Ray et al. 2016]

From Local to Global

What singular structures are possible?

What is the relationship between meshes and fields?

Complete Set: Bounded Degree

Complete local theory; global necessary condition; repair algorithm

Liu, Zhang, Chien, Solomon, and Bommes.

"Singularity-Constrained Octahedral Fields for Hexahedral Meshing." SIGGRAPH 2018.

Realize singular graph as a mesh?

New Pipeline

input tet mesh

octahedral field

corrected singularity graph

singularity graph

singularity-constrained octahedral field

hex mesh (standard)

hex mesh (ours)

Plan for Today

Geometry processing algorithms tuned for volumes.

Compactness as a Proxy?

Example courtesy Mira Bernstein and Assaf Bar-Natan

Maryland district 1

Potentially Intractable Solution

 $I_{\Omega}(t) := \min\{\operatorname{area}(\partial \Sigma) : \Sigma \subseteq \Omega \text{ and } \operatorname{vol}(\Sigma) = t\}$

Isoperimetric profile

Convex Relaxation: TV Profile

$$I_{\Omega}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in L^{1}(\mathbb{R}^{n})} & \mathrm{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega} \end{cases}$$

Theoretical properties:

- Convex function of t
- Minimized at any t for a circle
- (Surprising) optimal f takes
 on at most 3 values: {0, c, 1}

DeFord et al. Total Variation Isoperimetric Profiles. SIAM SIAGA, pending revision.

Examples

In Case You're Wondering

Works in 3D (Why bother? Why not!)

Aside: Only One Small Piece

Current focus:

Sampling in the space of districting plans

Figure 6: The behavior of the single edge flip ensembles is also poor under other measures. Plots (a) and (b) show the number of cut edges found by the single edge flip proposal. Note that the plans immediately proceed to the upper bound and never leaves over the 10,000,000 steps. Figures (c) and (f) show examples of these non-compact plans. Plots (d) and (e) show the mean median scores for these ensembles. Note that each forms a distribution around the starting value and that in these cases the bulk of the distributions are on opposite sides of 0.

Interesting confluence: Extension: 2D Field Design

Fig. 1. The three-cylinder-intersection, and wavey-box meshes respectively. These geometries have maximal curvature directions (Blue lines) that contradict its feature curves (Red lines).

Features vs. curvature directions

New Objective Function

$$VTV[h] = \sup_{\|\phi\|_F \le 1, \phi \in C_c^1} \sum_i \int_{\Omega} h_i \nabla \cdot \phi_i \cong \int_{\Omega} \|\nabla h\|_F$$

$$\bigvee_{\text{Vector of frame coefficients}}$$

$$Vectorial analog of L_1 norm$$

$$(convex)$$

"Spherical Harmonic Frames for Feature-Aligned Cross-Fields." Zhang, Vekhter, Bommes, Vouga, & Solomon; in preparation.

Vectorial total variation

Key Theoretical Property

$$VTV[f] = \sum_{j=1}^{n} \int_{\hat{\Omega}_{j}} \|\nabla f\|_{F} dA + \sum_{k=1}^{s} \int_{\gamma_{k}} \|f^{+} - f^{-}\|_{2} d\ell$$

Intrinsic smoothness Crease alignment

Separates features from smoothness

Application to Quad Meshing

Theme

Processing volumetric data requires unique algorithms & representations.

Volumetric Challenges in Shape Analysis

Questions?