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Introduction to Morphing

Image morphing = smooth image transition

=⇒
How do we obtain such a smooth transition?
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Linear Interpolation
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Morphing models

Several possible methods:

feature based morphing: mapping of special features; calculation of
whole deformation by interpolation
(Smythe 1990 in movie ,,Willow”, Wolberg 1998)

flow of diffeomorphisms, large deformation diffeomorphic metric
mapping (LDDMM): each image pixel is transported along a trajectory
determined by a diffeomorphism path
(Dupuis, Grenander & Miller 1998, Trouvé 1995, 1998)

metamorphosis: allows variation of image intensities along pixel
trajectories
(Miller, Trouvé, Younes 2001, 2005)
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Comparison of linear interpolation and metamorphosis
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Comparison of linear interpolation and metamorphosis
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How is a metamorphosis image path defined?

The image path is given as the minimizer of an energy functional.

Notations

Ω ⊂ R2: Image domain (open, bounded, Lipschitz boundary)

T ∈ L2(Ω): Template image

R ∈ L2(Ω): Target image

v ∈ V := L2((0, 1),V ): Velocity field with a reflexive Banach space
V ↪→ C 1

0 (Ω) describing the space regularity of v , e.g. V = H3
0 (Ω)

z ∈ Z := L2((0, 1), L2(Ω)): Source term, modeling intensity change
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Metamorphosis from optimal control perspective

Metamorphosis functional

Let λ1, λ2 > 0 and E1 : L2(Ω)→ R, E2 : V → R be regularizers. The optimal
control formulation of metamorphosis reads

min
(v ,z)∈V×Z

∫ 1

0

λ1E1(z(t, ·)) + λ2E2(v(t, ·))dt + ‖S(v , z)− R‖2
L2(Ω). (1)

The control-to-state operator S : V × Z → L2(Ω) is the solution of

∂f

∂t
+ v∇x f = z (t, x) ∈ [0, 1]× Ω,

f (0, ·) = T ,

evaluated at t = 1.
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Specification of regularizers

Typically, we choose E1 = ‖ · ‖2
L2(Ω).

E2 should be a convex, lower semi-continuous regularizer such that there
exists C > 0 with ‖v‖2

V ≤ CE2(v) for all v ∈ V (coercivity).

Common choices for E2 are:

E2(v) = ‖v‖2
V with a RKHS (Reproducing Kernel Hilbert space) V

E2(v) =
∫

Ω
L[v , v ] + γ|D3v |2 dx , with γ > 0 and

L[v , v ] := tr
(
ε(v)2

)︸ ︷︷ ︸
length change

+ tr (ε(v))2︸ ︷︷ ︸
volume change

, ε(v) :=
1

2

(
∇v +∇vT

)

L models the behaviour of a Newtonian fluid
Smoothness is ensured with the second term
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Alternative models

z = 0 → flow of diffeomorphisms setting

not suitable for T , R with different mass
not suitable for defining a nonlinear structure on L2(Ω)

Hard constraint S(v , z) = R

more common for metamorphosis than for flow of diffeomorphisms

Different constraint

∂f

∂t
+ divx(vf ) = z (t, x) ∈ [0, 1]× Ω,

f (0, ·) = T

Mass preservation if z = 0!
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Remark: Relation to Optimal Transport

z = 0 & hard constraint & different regularizer:

Benamou-Brenier formulation of OT

min
f ,v

∫ 1

0

∫
Ω

f |v |2 dx dt

subject to
∂f

∂t
+ divx(vf ) = 0, f (0, ·) = T , f (1, ·) = R

Convex problem via substitution m = vf

Soft constraint if the images have different intensity
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Euler/Lagrange viewpoint I

Euler formulation

∂f

∂t
+ v∇x f = z (t, x) ∈ [0, 1]× Ω,

f (0, ·) = T ,

Lagrange formulation (Characteristic system)

∂ϕ

∂t
(t, x) = v(t, ϕ(t, x)) (t, x) ∈ [0, 1]× Ω,

ϕ(0, ·) = Id,

I (t, x) = T (x) +

∫ t

0

z(s, ϕ(s, x)) ds (t, x) ∈ [0, 1]× Ω.
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Euler/Lagrange viewpoint II

Relation via f (t, ϕ(t, x)) = I (t, x).
→ regular image paths according to definition by Trouvé & Younes.

Lagrange to Euler: Assuming that everything is smooth, we obtain

z(t, ϕ(t, x)) =
dI (t, x))

dt
=

df (t, ϕ(t, x))

dt

=
∂f (t, ϕ(t, x))

∂t
+ v(t, x)∇x f (t, ϕ(t, x)).

The same holds true in the setting of regular paths (weak solutions!).

The mathematical analysis is simpler in the Lagrange setting.
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Existence of solutions for flow equation

Theorem (Trouvé)

For v ∈ V there exists a global flow ϕv ∈ C 0([0, 1],C 1(Ω,Rn)) which solves

∂ϕv

∂t
(t, x) = v(t, ϕv (t, x)) (t, x) ∈ [0, 1]× Ω,

ϕv (0, ·) = Id.

In particular, ϕv (t, ·) is a homeomorphism for all t ∈ [0, 1]. Further, if

vk ⇀ v∗ in L2((0, 1),V ),

then
ϕvk → ϕv∗ in C 0([0, 1]× Ω)).
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Existence of minimizers

Existence of minimizers depends on the choice of regularizers.

Theorem (Trouvé & Younes)

If E1 and E2 are convex, lower semi-continuous and coercive, then there exists
a minimizer of (1).

The proof applies standard arguments and weak continuity of the
control-to-state operator S(v , z).

Similar arguments can be applied for the alternative models.
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Riemannian structure on space of images
Metamorphosis is used to equip L2(Ω) with a new nonlinear structure:

For (I , z , v) ∈ (L2(Ω))2 × V we define curves γ : [−1, 1]→ L2(Ω) with

γ(t) = I (Id− tv) + tz .

Multiple v , z with same derivative → TIL
2(Ω) := V × L2(Ω)/NI , where

NI := {V × L2(Ω) : v∇x I = z}.

For İ := γ̇(0) = (v , z) ∈ TIL
2(Ω), the Riemannian metric is given by

gI
(
(v , z), (v , z)

)
= min

(ṽ ,z̃)∈(v ,z)+NI

λE1(z̃) + E2(ṽ).

Associated path energy for a regular curve I : [0, 1]→ L2(Ω):

E (I ) =

∫ 1

0

gI (İ , İ )dt =

∫ 1

0

min
(v ,z):İ+v∇x I=z

λE1(z) + E2(v)dt
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Numerical approaches for metamorphosis

Shooting methods (Richardson & Younes 2016)

Gradient descent (or Newton’s method) for reduced functional, in case
of LDDMM see e.g. (Mang & Ruthotto 2017)

Used for implementation in (Lang, N., Öktem & Schönlieb 2018) and
could be also extended to the metamorphosis framework.

Variational time discretization (Berkels, Effland & Rumpf 2015)

Presented now!
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Remarks on numerical solution of metamorphosis

The problem is computationally challenging and hence efficient schemes
are necessary.

Many formulations can be solved in parallel on GPU.

Special care is necessary to avoid numerical diffusion.

Eulerian schemes usually require small step sizes (CFL condition!).

Recent approaches try to incorporate machine learning for better
performance.

A very general question: Discretize vs optimize first?
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Time continuous energy

Recall: Continuous path model

J (I ) = min
v ,z

∫ 1

0

∫
Ω

L[v , v ] + γ|Dmv |2 +
1

δ
z2 dx dt

subject to İ + v∇x I = z

We want to discretize the functional in time:

Discrete geodesic calculus (Rumpf & Wirth 2013)

→ Time discrete geodesic path model (Berkels, Effland & Rumpf 2015)
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Discretizing the energy in time

Time discrete path energy

JK (I) :=
K∑

k=1

min
ϕk∈A

∫
Ω

W (Dϕk) + γ|Dmϕk |2 +
1

δ

(
Ik−1 ◦ ϕ−1

k − Ik
)2

dx

Here, we have a discrete image sequence I := (I0, . . . , IK ) and

W : Rn,n → R+ lower semi-continuous and W (A) = +∞ if detA ≤ 0,
e.g. the linearized elastic potential from before,

A := {ϕ ∈ (Hm(Ω))n : det(Dϕ) > 0 a.e. in Ω, ϕ(x) = x on ∂Ω}.
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Visualization of discrete paths

I0
ϕ−1
1

I1 . . .
Ik−1

ϕ−1
k

Ik . . .
IK−1

ϕ−1
K

IK

The discrete path is a sequence of images I = (I0, . . . , IK ).

Consecutive images are related to each other via the deformations
ϕ := (ϕ1, . . . , ϕK ).

Small differences between deformed and actual images are possible,
modeling the source term z .

Berkels, Effland & Rumpf (2015) have shown existence of time discrete
geodesics and consistency (is explained later) of the model.

This model is suitable for a generalization to manifold-valued
images (our work).
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Examples of manifold-valued images I

InSAR: S1 Art: S2 DT-MRI: SPD(3)

Image credits: Vesuvius: Rocca, Prati,Guarnierri 1997, Camino project

http://cmic.cs.ucl.ac.uk/camino
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Examples of manifold-valued images II

S1: phase space, InSAR (Interferometric synthetic aperture radar
imaging) for volcano, HSV image space

S2: directional data, chromaticity-brightness image space

SPD(n): DT-MRI, covariance matrix information

SO(3), SE(3): tracking, motion analysis, EBSD data (Electron
Backscattered Diffraction)

More details can be found in Bergmann et al., SIAM News, 2017.

Sebastian Neumayer Image Metamorphosis April 3, 2019 28/ 67



Contents

2 Manifold-valued metamorphosis
Manifold-valued images
Hadamard spaces
Manifold-valued time discrete metamorphosis
Minimization and numerical results

Sebastian Neumayer Image Metamorphosis April 3, 2019 29/ 67



Hadamard spaces I
Definition

Hadamard space is complete geodesic metric space (H, d) with

d(x , y) ≤ ‖x̄ − ȳ‖

for comparison triangles ∆p, q, r and ∆p̄, q̄, r̄ .

Comparison triangle:

p̄

x̄

r̄

ȳ

q̄

Euclidean space R2

x̄ = p̄+ s(r̄ − p̄), ȳ = p̄+ s(q̄ − p̄)

p

x

r

y

q

Hadamard manifold

x = γp,r(s), y = γp,q(s)
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Hadamard spaces II

Examples:

Hilbert spaces, BHV tree spaces (Billera, Holmes, Vogtmann)

simply connected, complete, finite dimensional Riemannian manifolds of
non-positive sectional curvature such as hyperbolic spaces or SPD
matrices with affine invariant metric

Important:

Hadamard spaces do not necessarily have a linear structure.

Equivalents for concepts like convexity and weak convergence exist.

Good overview in the book by Bačák (2014).
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Images as elements in nonlinear Lesbegue spaces I

Definition (Measurable functions)

I : Ω→ H is (Lebesgue) measurable if {ω ∈ Ω : I (ω) ∈ B} is a (Lebesgue)
measurable set for all B ∈ B (Borel σ-algebra on H).

Definition (Lp(Ω,H) spaces)

Define Lp(Ω,H) as equivalence classes of measurable functions fulfilling

dp(I (ω), a) <∞ for all a ∈ H,

where

dp(I1(ω), I2(ω)) :=


(∫

Ω
dp(I1(ω), I2(ω)) dω

) 1
p

p ∈ [1,∞),

esssupω∈Ωd(I1(ω), I2(ω)) p =∞.
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Images as elements in nonlinear Lesbegue spaces II

Hadamard manifold-valued images are interpreted as elements of L2(Ω,H):

The space Lp(Ω,H), p ∈ [1,∞], is in general not linear!

Lp(Ω,H), p ∈ [1,∞], is a complete metric space and if p = 2 it is also a
Hadamard space.

C (Ω,H), i.e. the space of continuous maps from Ω to H, is dense in
Lp(Ω,H) if H is locally compact (N., Persch, Steidl 2018).

L2(Ω,H) is well suited for optimization due to the Hadamard space
structure.
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Time discrete model for Hadamard manifolds

Recall: Time discrete energy for I ∈ L2(Ω)K+1

JK (I) :=
K∑

k=1

min
ϕk∈A

∫
Ω

W (Dϕk) + γ|Dmϕk |2 +
1

δ

(
Ik−1 ◦ ϕ−1

k − Ik
)2

dx

How does this generalize to manifold-valued images?

Time discrete energy for L2(Ω,H)K+1

JK (I) :=
K∑

k=1

min
ϕk∈A

∫
Ω

W (Dϕk) + γ|Dmϕk |2 +
1

δ
d(Ik−1 ◦ ϕ−1

k , Ik)2 dx
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Existence of discrete optimal paths

Time discrete ”geodesics”

Curves minimizing the energy JK with fixed initial and end image:

IK := argminI∈L2(Ω,H)K+1 JK (I)

subject to I0 = T , IK = R.

Theorem (Existence of minimizers; N., Persch, Steidl 2018)

Let T ,R ∈ L2(Ω,H) and K ≥ 2. Then, there exists a time discrete geodesic
Î ∈ L2(Ω,H)K+1 with corresponding optimal deformations ϕK ∈ AK .
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Proof Steps

1. For fixed I ∈
(
L2(Ω,H)

)K−1
the problem decouples into K registration

problems:

R(ϕk ; Ik−1, Ik) :=

∫
Ω

W (Dϕk(x)) +γ|Dmϕk(x)|2 dx +d2
2(Ik−1 ◦ϕ−1

k , Ik).

2. For fixed ϕ ∈ AK the problem reduces:

Jϕ(I ) :=
K∑

k=1

d2
2(Ik−1 ◦ ϕ−1

k , Ik) subject to I0 = T , IK = R.

→ unique solution is given by interpolation on geodesics

3. Combine both steps to show the existence of a minimizer for the whole
functional.

References for first part: Modersitzki 2004, 2009
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Consistency: From discrete to continuous paths I

Linear interpolation & sequence ϕK ∈ AK :
→ velocity field vK ∈ L2((0, 1),V )
→ piecewise linear discrete trajectories
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Consistency: From discrete to continuous paths II

Geodesic interpolation & discrete trajectories & sequence of images
IK ∈ L2(Ω)K+1:
→ Extension to IK ∈ L2((0, 1), L2(Ω))

Distance d(IK ,k−1(x), IK ,k ◦ ϕK ,k(x)) & discrete trajectories:
→ ”source” term zK ∈ L2((0, 1), L2(Ω))

Characteristic system is somehow unhandy (explained later) and needs
to be changed!

All tools for consistency are now defined.
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Characteristic system

Recall: Characteristic system (Euclidean)

∂ϕ

∂t
(t, x) = v(t, ϕ(t, x)) (t, x) ∈ [0, 1]× Ω,

ϕ(0, ·) = Id,

I (t, x) = T (x) +

∫ t

0

z(s, ϕ(s, x))dt (t, x) ∈ [0, 1]× Ω.

Generalization to manifolds is not straight forward!
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Modified characteristic system

Modified characteristic system

∂ϕ

∂t
(t, x) = v(t, ϕ(t, x)) (t, x) ∈ [0, 1]× Ω,

ϕ(0, ·) = Id,

d
(
I (t, ϕ(t, ·)), I (s, ϕ(s, ·))

)
≤
∫ s

t

z(r , ϕ(r , ·))dr for all t < s ∈ [0, 1].

”Equivalent” to the previous formulation in the Euclidean setting.

The ”source” term is still in L2(Ω)!

No tangent spaces involved in the last equation.

Continuous paths (IK , vK , zK ) are a solution of the modified
characteristic system.
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Time continuous energy for manifold-valued image paths

Energy functional

J (I ) := min
(v ,z)∈C(I )

∫ 1

0

∫
Ω

L[v , v ] + γ|Dmv |2 +
1

δ
z2 dx dt,

with

C(I ) := {(v , z) ∈ V × Z : (v , z) is a solution of characterstic system} .

The constraint C (I ) is weakly closed.

Standard arguments imply the existence of optimal (v , z).
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Consistency with time discrete metamorphosis model

Theorem (Consistency; Effland, N., & Rumpf 2019)

Let T ,R ∈ L2(Ω) and let W additionally satisfy a consistency condition. For
every K ∈ N let IK ∈ L2(Ω)K+1 be a time discrete geodesic.
Then, a subsequence of (IK )k∈N converges weakly in L2((0, 1)× Ω,H) to a
minimizer I of the continuous path energy J subject to I (0, ·) = T and
I (1, ·) = R as K →∞, and the associated sequence of discrete energies
converges to the continuous path energy.

In particular, this implies that geodesic paths for the time
continuous model exist!
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Implementation Details I

Alternating minimization over I , ϕ. Registration problems are solved
with Quasi-Newton method.

All involved interpolations are for manifold data: Karcher means, parallel
transport ...
→ MVIRT Toolbox by Bergmann & Persch (MATLAB & Julia)

Spatial discretization: Finite differences on staggered grid

(1, 5)

(1, 1)

(7, 5)

(7, 1)

Grid points of G
Grid points of G1

Grid points of G2
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Implementation Details II
Problem is non-convex → multiscale technique:
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Morphing path for artificial SPD(2) images
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Morphing path between a part of the Camino dataset

http://cmic.cs.ucl.ac.uk/camino
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Morphing paths in different color spaces I

RGB color model with R3

Hue-Saturation-Value color model with S1 and R2
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Morphing paths in different color spaces II

Cromaticity-Brightness color model with S2 and R1
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Introduction
Back to gray-valued images!

Given template Given sinogram Unknown target

Only very few angles available!

→ How can we use the given information for reconstruction?
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Framework

K : L2(Ω)→ Y is some (not necessarily linear) observation operator and
Y is the observation space, e.g. the Radon transform.

g ∈ Y is the known observation, e.g. the sinogram.

Unknown target data f ∈ L2(Ω), related to g via

K (f ) = g + nδ,

where nδ denotes unknown noise.

Some prior template information f0 ∈ L2(Ω) about the target data f .

The problem is usually severely ill-posed, especially for sparse data.
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Reconstruction model I

Reconstruction functional

Let λ > 0 and E : L2(Ω)→ R be some regularizer. Our proposed
reconstruction model reads as

min
v∈V

∫ 1

0

λE(v(t, ·))dt + D(K (S(v)), g).

Here, S : V → L2(Ω) denotes the solution at t = 1 of either

∂f

∂t
+ v∇x f = 0 (t, x) ∈ [0, 1]× Ω,

f (0, ·) = f0,

or

∂f

∂t
+ divx(vf ) = 0 (t, x) ∈ [0, 1]× Ω,

f (0, ·) = f0.
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Reconstruction model II

Model with D = `2 proposed by Chen & Öktem (2018).

No source term z , since it creates reconstruction artifacts.

New: D = ”Normalized cross-correlation”
→ enables method to deal with intensity differences

New: We choose E as a Sobolev type regularizer E , e.g.

E(v) :=
1

2

∫
Ω

‖∆v‖2 dx .

Our implementation builds on LagLDDMM (Mang & Ruthotto, 2017)
and the FAIR toolbox, hence very flexible!

Efficient implementation with minimal numerical diffusion is very
important in the reconstruction setting.

FAIR is described in the corresponding book (Modersitzki, 2009).
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Normalized cross-correlation (NCC)

Definition (Variant of NCC)

For some Hilbert space Y and f,g ∈ Y , the normalized cross-correlation
DNCC : Y \ {0} × Y \ {0} → [0, 1] is defined as

DNCC(f, g) = 1− 〈f, g〉2
‖f‖2

Y ‖g‖2
Y

.

DNCC is continuous in each argument

DNCC is invariant to a scaling cf with c ∈ R
DNCC(f, g) = 0 only implies f = cg, with c ∈ R → no real distance

DNCC is differentiable in the first variable with derivative

∂

∂f
DNCC(f, g) = − 2(f>g)g

‖f‖2‖g‖2
+

2(f>g)2f

‖f‖4‖g‖2
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Computation of control-to-state operator

First discretize then optimize + Lagrange formulation

Functions are discretized using finite differences.

Off-grid values are computed with linear interpolation.

ODE for coordinate transform ϕ is solved with RK4 method.

solver can be differentiated efficiently
other methods can be used if efficiently differentiable

Differentiating ODE solver w.r.t. v is related to automatic differentiation.

Continuity equation can be solved with a particle-in-cell method.

Now, we differentiate the control-to-state operator S w.r.t. v for explicit
Euler as ODE solver, works similar for RK4!
→ Quasi-Newton method
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Derivative of S for explicit Euler as ODE solver

I is a linear interpolator for off-grid values. We obtain

∂

∂v
ϕ(tk+1, xc) =

∂

∂v
ϕ(tk , xc) + ∆t

∂

∂v
I(v, tk , ϕ(tk , xc))

+ ∆t
∂

∂ϕ
I(v, tk , ϕ(tk , xc))

∂

∂v
ϕ(tk , xc).

Let ϕ−1 denote the spatial inverse, i.e. the flow backward in time. Then,
the chain rule implies

∂

∂v
S(v) = ∇x f0(ϕ−1(1, xc))

∂

∂v
ϕ−1(1, xc).

∂
∂vϕ

−1(1, xc) is computed in the Euler scheme together with ϕ−1(1, xc)
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Difference between constraints

(a) Template
image.

(b) Unknown
image.

(c) Measured
noisy data.

(d) Transport
equation,

SSIM 0.880.

(e) Continuity
equation,

SSIM 0.922.

Measurements are from five directions with angles equally distributed in
[0, 90] degrees.
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Synthetic data

(a) Template
image.

(b) Unknown
image.

(c) Measured noisy
data.

(d) Reconstruction,
SSIM 0.562.

Measurements are from five directions with angles equally distributed in
[0, 75] degrees. Results are shown for transport equation.

Images are from FAIR toolbox.
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Synthetic data

(a) Template
image.

(b) Unknown
image.

(c) Measured noisy
data.

(d) Reconstruction,
SSIM 0.913.

Measurements are from ten directions with angles equally distributed in
[0, 180] degrees. Results are shown for transport equation.

Images are from FAIR toolbox.
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Real sinogram data from walnut

(a) Template image
(synthetic).

(b) Unknown
image.

(c) Measured
Radon transform

data.

(d) Reconstruction,
SSIM 0.992.

Measurements are from six directions with angles equally distributed in
[0, 180] degrees. Results are shown for transport equation.

The data is taken from K. Hämäläinen et al. (2015).
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Synthetic 3D data

(a) Template
image.

(b) Unknown
image.

(c) Measured noisy
data.

(d) Reconstruction,
SSIM 0.913.

Measurements are from ten directions with angles equally distributed in
[0, 180] degrees. Results are shown for transport equation.

Images are from FAIR toolbox.
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Conclusions

Our Contribution:

Time discrete metamorphosis model for Hadamard manifolds

Generalization of Euclidean model
Existence of time discrete geodesics
Proposed time continuous model
Consistency of time discrete model

Template based solution of inverse problems

based on LDDMM
DNCC as data term → robustness w.r.t. different intensities
extension to 3D & real data
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Questions?
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