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Let’s start with some (mostly technical) applications



Denoising









Chapter 11
Three Approaches to Improve Denoising
Results that Do Not Involve Developing

New Denoising Methods

Gabriela Ghimpeteanu, Thomas Batard, Stacey Levine
and Marcelo Bertalmio

“Denoising of photographic images and video”,
M. Bertalmio (Ed.), Springer (2018)



How to Improve your denoising result
without changing your denoising algorithm:

1. Apply denoising algorithm to transform of image, not to image itself




IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

A Decomposition Framework for

Image Denoising Algorithms

Gabriela Ghimpeteanu, Thomas Batard, Marcelo Bertalmio, and Stacey Levine




1. Given a denoising method, it's better to project the noisy image into a moving
frame and to denoise these components, than to denoise the image directly



2. Along contours, the PSNR of the components Is higher than that of the image



3. Reconstruction (denoised componentsﬂdenoised Image) is extremely simple






—p 1y
I_T

2
|V
+ 14+ u
’ ‘| VI|?)
V IVI|?(1 4+ p?|V v V
V1|

—u I, :
V + p?|V \/ ZQ|I|
1
t 1
?)
2 2|V
L
I%2(1 2
l u|VI|

2 3)
|V (
1+ p
%)
|
(1+ p
V1|







eft to right: gray-level image “castle”, ¢ ' +C '
From left to right: gray-level image “castle”, component J!, component J°



1) Process I with some denoising technique F' and call the
output image Ijen.
Compute the components (J*, J2, J?) of I in the mov-
ing frame (3), for some scalar i, with formula (4). Apply
the same denoising technique F' to the components
to obtain the processed components (J3_,J% . J3 ).

Then, apply the inverse frame change matrix field to the
processed components, i.€.

1

I denMF
2

I den M F

3
I den M F

and denote by e, r the third component I3, /5.
SSIM.










Adding noise



Film grain emulation



RETINAL NOISE EMULATION FOR ADDING TEXTURE TO DIGITAL CINEMA

Itziar Zabaleta, Marcelo Bertalmio

Submitted, 2019
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Figure 4. Global DMOS per bit rate. Orange bars are used for
‘clean’ content and blue bars indicate content with retinal grain.




Color mismatch across cameras



HaCohen 2011
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Figure 2.5: A close-up of a camera control unit (left), and Four camera control units as used by a
“racks operator” in an outside broadcast truck (right)

O. Schreer 2014



The Beat



Color matching images with unknown non-linear

encodings

Raquel Gil Rodriguez, Javier Vazquez-Corral, and Marcelo Bertalmio

Submitted, 2018



White Color Tone Color Gamma
Balance Demosaicking Conv. LogC Conv. Corr.

e A I ISRV ISl

Fig. 1: The camera processing pipeline from raw sensor data to a display domain

image. The pipeline starts with the sensor output, followed by the white balance
and the demosaicking. These two steps are mandatory 1n every camera processing.
The color conversions transtorm the linear data to monitor gamma and color space.
In many cameras nonlinear curves (here LogC & tone mapping) additionally adapt
high dynamic range data for standard monitors.

ARRI camera pipeline (T. Seybold)






Iy = fa(My - 1;y)

Ip = fp(Mg - Iin)

S
fa t(Ia) =My -Mg ' fg ' (Ip)

fa~t(Ia)=H- fp~'(Ip)




10008 = (a - A - I;jp)¢ - 109 = (K - Ijin)©,
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Now for some (mostly artistic) applications



Shared limitation of digital cinema and film:
adjustment of color and contrast to emulate perception
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Trying to take digitally acquired images and achieve a traditionally
cinematic look using mere color grading is more problematic than
often recognized, because color grading tools in their current
state are simply too clunky for that kind of crafting. Though color
grading may seem complex given the vast number of buttons,
knobs and switches on the control surface, that is only the user
Interface: the underlying math that the software uses to transform
the image Is too primitive and simple to achieve the type of
transformations I'm talking about here.

“On color science for filmmakers”, Steve Yedlin, ASC



Problem: color perception not solved!



painted paper disks ~nut and washer

......"--. wood disk

color sample

wood dowel




Pw = (w1P1 +waP2+ w3gP3).



500 }, 600

FIGURE 1.5: Color matching functions. Figure from [13].




S 1 P2 + ~P3 ] =5 1 aPq + E]




740

R= Y 7F\)E(\)
D T(A)E(A;
1 =380

740

G= Y g\)EWN)
A

1=380

740
B= ) bM\)EN).
> () E(N

1=380







FIGURE 1.6: CIEXYZ color space. Figure from [24].







FIGURE 1.8: Left: XYZ volume. Top right: after slicing volume with plane
X +Y + Z = 1. Bottom right: after projecting plane onto XY plane.
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National Geographic
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Nhen we put the images side by side,
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The Beat



Methodology

Human vision superiority in Don't improve hardware: work out

many regards due to better ‘ software mimicking neural

processing, not better processes and visual perception,

Sensors. apply to footage shot with regular
cameras.



Goals

Simpler shoots, with more control

Automatic technical grade

Automatic conversion between standard color gamuts
New aesthetic through improved emulation of perception



Tone mapping
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Gamut mapping
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Efficiency in the human visual system



Attneave (1954), Barlow (1961)
Laughlin (1981), Atick (1992)
Van Hatteren (1997), Smimakis et al. (1997), Brenner et al. (2000)



Efficient coding: histogram equalization

Olshausen and Field (2000), adapted from Laughlin (1981)
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Efficient wiring: local contrast enhancement

Photoreceptors Population response profile

Ganglion Cells
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Vision models for adapting the color gamut



Histogram equalization
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Histogram equalization




A variational method for perceptual color and
contrast enhancement (Bertalmio et al. 2007)
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—)+v Yy w(x,y)sgn(l(x) — I(y)) — B(I(x) — Ip(x)).
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National Geographic
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Connection with neuroscience
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Geometric visual hallucinations, Euclidean
symmetry and the functional architecture
of striate cortex

Paul C. Bressloff', Jack D. Cowan’”, Martin Golubitsky?,
Peter J. Thomas® and Matthew C. Wiener’
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Connection with neuroscience

@ & = philtrans.pdf — Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex = i <)) 12:38PM 1%
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corresponds to h\pcnulumn spacing |Hulnl &

el 19746). and so to each location in the visual field
resentation in V1 of that loca-

Cowan equations (Wi
Cowan 1972, 1¢ at takes into account the additional
internal e of freedom arising from orientation
preference:

a

a and p are decay and coupling coeflicients,
t) is an external input, ¢ ', ") 1s the we
Ul connections between neurons at * tuned to ¢ and
neurons at # tuned to ¢, and o{z| is the smooth nonlinear

function
ol = ———
1 + e
for constants v and ¢. Without loss of _rnﬂ' lity we may

. <}
subtract from o[z] a constant equal to [1 + to obtain
the (mathematicallv) important probertv LhaL a0l = 0.

Bressloff et al. (2002)




A cortical-inspired model for

orientation-dependent contrast perception: a
link with Wilson-Cowan equations.

| - - « ) T " . "J}
Marcelo Bertalmio!, Luca Calatroni®, Valentina Franceschi®,
Benedetta Franceschiello®, and Dario Prandi®

SSVM 2019
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IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

Gamut Mapping in Cinematography through

Perceptually-based Contrast Modification

Syed Waqas Zamir, Javier Vazquez-Corral, Marcelo Bertalmio




—)+v Yy w(x,y)sgn(l(x) — I(y)) — B(I(x) — Ip(x)).




— Visible Spectrum
— Gamut of Input Image

— Yisible Spectrum

— Gamut of Input Image
= Reproduced Gamut

— Visible Spectrum
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Works also if applied to ab of Lab (Zamir et al, IEEE-TIP 2017)
and to S of HSV (Zamir et al, CIC 2017)



Vision Models for Wide Color Gamut

Imaging in Cinema

Syed Waqgas Zamir, Javier Vazquez-Corral, and Marcelo Bertalmio

Submitted






Kim, Batard and Bertalmio, Vision Sciences Society
Annual Meeting 2016



Itinai(x) = K x Ip(x) + c
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Helmholtz-Kohlrausch effect



Brightness model by Pridmore (2009)
V' = V(SIS’)®?



(a) (b) (c)

Fig. 5: Comparison of gamut reduction results: (a) input image, (b) reduced-gamut image ignoring the H-K effect, (¢) reduced-gamut
image considering the H-K effect.
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Fig. 14: Comparison between the results of different image metrics and the results from psychophysical evaluation. Metrics

were considered as observers in a pair C[‘.I'I"L"lpal’i."-i on :"_'-:-:perimunt. Each E:-:perin"mnt 1s color coded il‘ldil-’iduall}-’. Color codes are

green for the best result and red for the worst one.




Vision models for percelved contrast



In-camera, Photorealistic Style Transfer for On-set

Automatic Grading

Zabaleta and Bertalmio, SMPTE 2018



PHOTOREALISTIC STYLE TRANSFER

The method proposed:

e It is a substitute of LUTs

e STYLE: Luminance, color palette and contrast

1 2 3

LUMINANCE COLOR CONTRAST
TRANSFER TRANSFER TRANSFER

e Low-complexity method for real-time implementation




PHOTOREALISTIC STYLE TRANSFER

1. LUMINANCE TRANSFER

S1 = [TMg' (TMs(So))]"/ %2

Sg TMS

linear source tone-map
image

r

R— LINEARIZE — R%*2— TM:  — TMR(R*?)

reference tone-map
image




PHOTOREALISTIC STYLE TRANSFER

~ LUMINANCE
TRANSFER — S

Reference image R Source linear image Sg




PHOTOREALISTIC STYLE TRANSFER

LUMINANCE
Sy TRANSFER Si

Reference image R Luminance transfer result S




PHOTOREALISTIC STYLE TRANSFER

2. COLOR TRANSFER

Based on PCA analysis

Reference image R Luminance transfer result S4 Color transfer result S»




PHOTOREALISTIC STYLE TRANSFER

2. COLOR TRANSFER

Formula for color transfer:

S52(x) = M 51 (x)

where M 1s a matrix associated to a linear transformation




PHOTOREALISTIC STYLE TRANSFER

~ LUMINANCE __ COLOR
S, TRANSFER o1 TRANSFER 2

Reference image R Luminance transfer result S




PHOTOREALISTIC STYLE TRANSFER

~ LUMINANCE o COLOR
So TRANSFER —S, TRANSFER —S;

Reference image R Color transfer result S»




PHOTOREALISTIC STYLE TRANSFER

3. LOCAL CONTRAST TRANSFER

e Local contrast =/1—Uu

e Formula for contrast matching:

S3(x) = p(x) + (Sa(x) — p(x))- C;ref
5,

2

where UL is the local mean and ¢ is the standard deviation of local contrast




PHOTOREALISTIC STYLE TRANSFER

S ~ LUMINANCE o COLOR L CONTRAST
0 TRANSFER 1 TRANSFER 2 TRANSFER

.
Faret

I

Reference image R Color transfer result S»




PHOTOREALISTIC STYLE TRANSFER

S ~ LUMINANCE o COLOR L CONTRAST
0 TRANSFER 1 TRANSFER 2 TRANSFER

Reference image R Contrast transfer result S3




Vision Models Fine-Tuned by Cinema Professionals for High

Dynamic Range Imaging in Movies

Submitted



Efficient coding: histogram equalization
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Figure 1: Neural adaptation to mean and variance.
Left: neural response to higher (in green) and lower
(in blue) mean luminance. Right: neural response to
higher (in red) and lower (in blue) luminance vari-
ance. Adapted from [Dunn and Rieke 2006].
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Figure 4: Left: the shape of the brightness perception
nonlinearity is different for values below and above
the background level (from [Nundy and Purves
2002]). Right: the brightness perception curve is
more adequately modeled with two power-laws (lin-
ear coordinates) or an asymmetric sigmoid (log coor-
dinates) (from [Whittle 1992]). This psychophysical
data is consistent with neural data showing ON and
OFF channels having different nonlinearities.
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Figure 6: Observers’ preferences of TM methods ap-
plied to ungraded content.
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Figure 9: Observers’ preferences of TM methods ap-
plied to graded content. The one labeled “TMO” de-
notes our proposed TMO for ungraded content.
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Figure 10: Observers’ preferences of ITM methods
applied to graded content.




On the limitations of Linear+Nonlinear models for vision
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Noise masking of White's illusion exposes

the weakness of current spatial filtering
models of Ilghtness perceptlon

Torsten Betz; Robert Shapley: Felix A. Wichmann: anne Maerten
| <+ Author Affiliations

Journal of Vision October 2015, Vol.15, 1. doi:10.1167/15.14.1
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Figure 2. lllustration of the effect of narrowband noise on White’s illusion. Left: Stimulus is masked with a noise center frequency of 0.58
cpd, Middle: 3 cpd, Right: 9 cpd (assuming a viewing distance of 40 cm). White's effect should be reduced or absent in the middle panel.




The linear receptive field is the foundation of vision models

From Carandini et al. 2005: “At the basis of most current models of neurons in the
early visual system is the concept of linear receptive field. The receptive field is
commonly used to describe the properties of an image that modulates the
responses of a visual neuron. More formally, the concept of a receptive field is
captured in a model that includes a linear filter as its first stage. Filtering involves
multiplying the intensities at each local region of an image (the value of each pixel)
by the values of a filter and summing the weighted image intensities.”



Inherent problems with using a linear RF as the basis of a vision model

The RF of a neuron is characterized by finding the linear filter that provides the
best correlation between visual input (often, white noise) and neuron response.

The problem: model performance degrades quickly if any aspect of the stimulus,

like the spatial frequency or the contrast, is changed, because the resulting RF

depends on the stimulus, due to the fact that the visual system is nonlinear
(see for instance Wandell 1995).




From Olshausen and Field 2005:

“Everyone knows that neurons are nonlinear, but few have acknowledged the
Implications for studying cortical function. Unlike linear systems, where there exist
mathematically tractable textbook methods for system identification, nonlinear
systems cannot be teased apart using some straightforward, structuralist
approach. That is, there is no unique ’'basis set’ with which one can probe the
system to characterize its behavior in general. Nevertheless, the structuralist
approach has formed the bedrock of V1 physiology for the past four decades.
Researchers have probed neurons with spots, edges, gratings, and a variety of
mathematically elegant functions in the hope that the true behavior of neurons can
be explained in terms of some simple function of these components. However, the
evidence that this approach has been successful is lacking. We simply have no

reason to believe that a population of interacting neurons can be reduced in this
way.”



From Carandini et al. 2005:

“In the past few years, a number of laboratories have begun using natural scenes
as stimuli when recording from neurons in the visual pathway. These models can
typically explain between 30 and 40 per cent of the response variance of V1
neurons. It’s sobering to realize that the receptive field component per se, which Is
the bread and butter of the standard model, accounts for so little of the response
variance. Moreover, the way in which these models fail does not leave one
optimistic that the addition of modulatory terms or pointwise nonlinearities will fix
matters.”



From Olshausen 2013:

“The problem is not just that we lack the proper data, but that we don’t even have
the right conceptual framework for thinking about what is happening. The vast
majority of experiments that claim to measure and characterize 'receptive fields’
were conducted assuming a linear systems identification framework. \We are now
discovering that for many V1 neurons these receptive field models perform poorly
In predicting responses to complex, time-varying natural images. My own view IS
that the standard model is not just in need of revision, It is the wrong starting point
and needs to be discarded altogether. What is needed in its place is a model that
embraces the true biophysical complexity and structure of cortical micro-circuits,
especially dendritic nonlinearities.”



Conclusions

Vision models in cinema allow for:

* Simpler shoots, more control

* Automatic technical grade and color gamut conversion
* New artistic tools

Efficient coding theory Is very effective

Cinema professionals may contribute to vision science by
optimizing models
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The objective of this project is to develop image processing algorithms based mainly on vision science
models that address different challenges in moviemaking, from shooting to exhibition.

Given that in terms of sensing capabiliies cameras are in most regards better than human
photoreceptors, the superiority of human vision over camera systems lies in the better processing
which is carried out in the retina, thalamus and visual cortex. Therefore, rather than working on the
hardware, improving lenses and sensors, we resort instead to existing knowledge on visual
neuroscience and models on visual perception to develop software methods mimicking neural
processes in the human visual system, and apply these methods to images captured with a regular
camera. We take the same approach when addressing projection/exhibition, developing vision-based
image processing algorithms that try to overcome the limitations in contrast and color reproduction that
current display systems have. For shooting and post-production we also work on problems such as
noise reduction, HDR generation and color stabilization, using in these cases image processing
methods based on PDEs.

http://ip4ec.upf.edu/
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