e Department of Computer Science, University of Copenhagen

Tree-like shape spaces

Francois Lauze
francois@di.ku.dk

IPAM April 1. 2019



In collaboration with!

. £
Marlene de Bruijne Jens Petersen Pechin Lo

Aasa Feragen

Soren Hauberg ~ Megan Owen Mads Nielsen

i
_;_ = “” Laura Hohwii Mathilde Marie
Asger Dirksen Thomsen Winkler

2/60



Airway shape modeling

Starting point: What does the average human airway tree look

A AN

Wanted:

» A tree-space for geometric trees, where distances are given by
geodesic (shortest path) length.

» Statistics defined using geodesics, analogous to manifold
statistics.
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Airway shape modeling

AAAN

Smoker’s lung (COPD) is caused by inhaling damaging
particles.

v

v

Likely that damage made depends on airway geometry

v

Reversely: COPD changes the airway geometry, e.g. airway
wall thickness.

» ~~ Geometry can help diagnosis/prediction.
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Airway shape modeling

Description of data:

» Topology, branch shape — work with centerline trees
embedded in R3.
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Airway shape modeling

Description of data:

» Somewhat variable topology (combinatorics) in anatomical
tree
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Airway shape modeling

Description of data:

» Substantial amount of noise in segmented trees (missing or
spurious branches), especially in COPD patients,
i.e. inherently incomplete data

» Thus, we need a space for trees with different sizes, topologies
and branch shapes.
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Tree-space paths

We work with Geodesic Metric Spaces

A path in tree-space corresponds to a tree deformation.
A shortest path from A; to A is a geodesic.

DA
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Statistics in metric spaces

» Statistics: Frechet/Ensemble means defined based on
distance alone:

m = argmin Z d*(T, T;).

i=1...n

» Computation: Using geodesics
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Curvature in metric spaces

b z c b c

81

» A CAT(0) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the plane;
that is, d(x, a) < d(x, a).
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Curvature in metric spaces

b z c b c

81

» A CAT(0) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the plane;
that is, d(x, a) < d(x, a).

» A space has non-positive curvature if it is locally CAT(0).
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Curvature in metric spaces

b z ¢ b c

81

» A CAT(0) space is a metric space in which geodesic triangles
are "thinner” than for their comparison triangles in the plane;
that is, d(x, a) < d(%, 3).

» A space has non-positive curvature if it is locally CAT(0).

» (Similarly define curvature bounded by x by using comparison
triangles in hyperbolic space or spheres of curvature «.)
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Curvature in metric spaces

Example

b d c a

Theorem (see e.g. Bridson-Haefliger)

Let (X, d) be a CAT(0) space; then all pairs of points have a
unique geodesic joining them. The same holds locally in CAT (k)
spaces, k # 0. O
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Statistics in metric spaces and the CAT(0) property

Theorem
In CAT(0) spaces:

> Frechet means are unique - m = argmin,cx S~ ; d?(x, x;)!

» centroids are unique 2

3

» Birkhoff shortening converges
4

> circumcenters are unique

Sturm 2003
Billera, Holmes, Vogtmann 2001

AW N

Feragen, Hauberg, Nielsen, Lauze 2011

Bridson-Haefliger 1999
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A space of geometric trees: Intuition

What would a path-connected space of deformable trees look like?

+h-4A

Easy: Trees with same topology in their own "component”

v

v

Harder: How are the components connected?

v

Solution: glue collapsed trees, deforming one topology to another

v

~ Stratified space, self intersections
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A space of geometric trees: Intuition

The tree-space has conical "bubbles”

a
C/;d c ed a )
a a b
b
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d [e
b b
Tree \ Py //Tree 2
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b
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Classical example: Tree edit distance (TED)

v

TED is a classical, algorithmic distance

» Tree-space with TED is a nonlinear metric space

v

dist(T1, T2) is the minimal total cost of changing T into Ty
through three basic operations:

v

Remove edge, add edge, deform edge.
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Classical example: Tree edit distance (TED)

v

TED is a classical, algorithmic distance

» Tree-space with TED is a nonlinear metric space
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through three basic operations:

v

Remove edge, add edge, deform edge.

18/60



Classical example: Tree edit distance (TED)

v

TED is a classical, algorithmic distance

» Tree-space with TED is a nonlinear metric space

v

dist(T1, T2) is the minimal total cost of changing T into Ty
through three basic operations:

v

Remove edge, add edge, deform edge.
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Classical example: Tree edit distance (TED)

» Tree-space with TED is a geodesic space, but almost all
geodesics between pairs of trees are non-unique (infinitely

many)
/i\
N

» Then what is the average of two trees? Many!

11—

» Tree-space with TED has everywhere unbounded curvature.
» TED is not suitable for statistics.
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Classical example: Tree edit distance (TED)

The problems can be "solved” by choosing specific geodesics®.
OBS! Geometric methods can no longer be used for proofs, and
one risks choosing problematic paths.

© Lo I (h)

Figure: Trinh and Kimia compute average shock graphs using TED with
the simplest possible choice of geodesics.

5Trinh, Kimia, CVPR workshops 2010
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Tree representation °

Tree parametrization (.7, x)
» 7 =(V,E,r, <) finite rooted,
ordered/planar binary tree, describing the g &
tree topology (combinatorics)

> x € Poce(RY)", d =3, n=1t landmarks/edge

J\\: 3m6+()7\7—J7 \7\7\>

6Feragen, Lo, de Bruijne, Nielsen, Lauze, 2010
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Tree representation °

We are allowing collapsed edges, which means that
» we can represent higher order vertices

» we can represent trees of different sizes using the same
combinatorial tree .7

L=k Op

(dotted I|ne = collapsed edge = zero/constant attribute)

6Feragen, Lo, de Bruijne, Nielsen, Lauze, 2010
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The space of tree-like preshapes

Let .7 be a finite ordered (planar), rooted binary tree

Definition
Define the space of tree-like pre-shapes as the direct sum

@(Rd)n

ecE

where (R9)" is the edge shape space.

This is just a space of pre-shapes.
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The space of tree-like preshapes

Let .7 be a finite ordered (planar), rooted binary tree
Definition

Define the space of tree-like pre-shapes as the direct sum

@(Rd)n

ecE

where (R9)" is the edge shape space.

This is just a space of pre-shapes.

Remove the ordered tree (vertices) hypothesis to represent non
planar trees.
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From pre-shapes to shapes

Many shapes have more than one representation
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From pre-shapes to shapes

Not all shape deformations can be recovered as natural paths in
the pre-shape space:

&Z%C}
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Shape space definition

» Start with the pre-shape space X = @ .(R9)".

» Define an equivalence ~ by identifying points in X that
represent the same ordered/unordered tree-shape.

a,/ a A
efdf 2 Z b A fed gy

» Space of ordered/unordered tree-like shapes X = X/ ~:
folded vector space.

» Corresponds to identifying, or gluing together, subspaces

{xeX|xe=0ife¢ E1} and {x € X|xe =0if e ¢ E>} in X.
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Shape space definition

T €2
€1/\€2 _
/\ T~ Ty
T €1 quotient
el| A
Tl
e
X &

X
Figure: Space of ordered trees with at most 2 edges

DA
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Some details

v

Preshape x € X = @ (Rd)n, E. ={e € E|x. #0}

Identification: x ~ y € E there exists a bijection

v

¢ Ex—Ey, yp = Xe

v

Equivalence relation. Shape space: X = X/ ~

v

Quotient pseudo-metric: d metric on X,

K
d(x,y) = inf {Z d(xi, yi), x1 € X, yk € ¥, yi ~ Xi+1}

i=1

v

d = || — ||1: Tree-Edit-Distance,

d = || — ||]2: Quotient-Euclidean-Distance,

v
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Geodesics in tree-space

Theorem (Feragen, Lo, de Bruijne, Nielsen, Lauze, 2013)

>

>

>

The quotient pseudometric d is a metric on X.
(X,d) is a geodesic space.

Geodesics are not generally unique, neither for ordered nor
unordered trees

d=QED: for a generic tree T; (of any size), for a generic
second tree T (of any size), there is a unique geodesic
connecting them.

At generic points, the space is locally CAT(0).
Its geodesics are locally unique at generic points.

At non-generic points, the curvature is unbounded.
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Metric and Geodesics

» From the distance
k
d()_(7.)7) = Inf {Z d(Xl'ayl')7X1 S )_<7.yk S _)77_)/1' ~ XI'Jrl}
i=1
» k in formula above: topological transition the geodesics / in
the combinatorics of trees.
» Out of these transitions: straight line segments. So what is
the smallest k7
» When sufficiently unique geodesics can be computed, a lot

more can.
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CAT (0), Geometric triangles

81/\62 T

> quotient
N>

T3

Ty

Comparison triangle
in R?

Figure: Geodesic Triangles in Tree-Shape Space
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Computational Complexity of tree-space geodesics ’

Assume edge attributes have dimension > 1
(for dim =1, S. Provan).

Theorem
Computing QED geodesics between unordered trees is NP
complete.

7(Feragen 2012)
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Mean trees can be computed

8 Leaf vasculature data:

N S G
;\\&\// = A\\R A\.l !/L, A\)\«\/,f/

Figure: A set of vascular trees from ivy leaves form a set of planar

tree-shapes.

Figure: a): The vascular trees are extracted from photos of ivy leaves. b)
The mean vascular tree.

8Feragen, Hauberg, Nielsen, Lauze, 2011
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Mean trees can be computed

8

The mean upper airway tree

Figure: A set of upper airway tree-shapes along with their mean
tree-shape.

8Feragen, Hauberg, Nielsen, Lauze, 2011
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Mean trees can be computed

Figure: A set of upper airway tree-shapes (projected). (Fergen, Lo, de
Bruijne, Nielsen, Lauze 2013)

QED TED

POy

Figure: The QED and TED means (algorithm by Trinh and Kimia).

8Feragen, Hauberg, Nielsen, Lauze, 2011
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Sturm means

Theorem (Existence of means®)

» Means in non-positively curved spaces are unique.

» Means in non-positively curved spaces can be computed using
a random infinite weighted midpoints sequence.

» ~» Computation of mean trees 1°.

9 Sturm 2003

1OFeragen, Hauberg, Nielsen, Lauze 2011; Miller et al 2012
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Sturm means

Theorem (Existence of means®)

» Means in non-positively curved spaces are unique.

» Means in non-positively curved spaces can be computed using

a random infinite weighted midpoints sequence.

» ~» Computation of mean trees 1°.

40 100

.
T5 '1»3

9 Sturm 2003

1OFeragen, Hauberg, Nielsen, Lauze 2011; Miller et al 2012
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Statistics on larger trees: Mean airway !

ll(Feragen, Owen and Feragen Hauberg, Nielsen, Lauze 2011)
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How local are local statistics?

» Restrict to: all representations of certain restricted tree
topologies.

» Example 1: Restrict to the set Xy of trees with N leaves.

=R

» Example 2: Restrict to all topologies occuring in airway trees.
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Dealing with NP - Useful property of airways

The first 6-8 generations of the airway tree are "similar” in different
people.

L7 L8 L9 L10

R7 R8 R9 R10

NB!: Not all present in all people; not all present in all
segmentations.
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Regularize via fixed leaf label sets!3

» Label the "leaves” of your trees; constant leaf label set.

» A Variant of Billera-Holmes-Vogtmann (BHV) trees: gives a
vectorized version of phylogenetic tree-space

» Polynomial time distance algorithms 12

° ABO | CD o

L1+2+3
L3

]
/ — b
R4 L4 .
A D A B
RS
s B¢ ApofBc \ 0 ABC|DO

b

L7 L8 L9 L10 - - - = geodesic A
B C

R7 R8 R9 RI10

Right figure courtesy of Megan Owen.

12Owen, Provan, 2011

13 Feragen et al. 2012
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Geodesic airway branch labeling!*

L7 L8 L9 L10

R7 R8 R9 R10

14Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling!*

ldea:

» Generate suggested leaf label configurations and the
corresponding tree spanning the labels

R8

\Rs )
\R7 \R9 \ruo R7 R9 \R10

» Evaluate configuration in comparison with training data using
geodesic distances between leaf-labeled airway trees
Unlabeled tree The space of leaf-labeled trees

@ Expert-labeled trees
@ Tree with suggested labels

Potential
labelings / l \

14 Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling!*

Idea:
» Many possible label configurations

» Make tractable using a hierarchical labeling scheme

RL  RE » 5

1718 19 L10 17 18 19 L0
R7 RS R9 R10 R7 RB R9 R10 R7 RS R9 R10 R7 RB R9 R10

search 3 search 2 and 2 search 2, 2, 2 search 3 and 2
generations generations and 3 generations  generations

14 Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling!*

» 40 airway trees from 20 subjects with different stages of
COPD, hand labeled by 2 experts in pulmonary medicine.

L7 L8 L9 L10

R7 R8 R9 RI10

» Accuracy (leave-1-subject-out):

Not significantly better (paired T-test), but as good as the

experts

Label Algorithm | Expert
Avg segmental labels 72.7 71.0
Avg all 29 labels 80.5 79.5

14 Feragen et al, MICCAI 2012.

47 /60



Geodesic airway branch labeling!*

As reproducible as a medical expert:

(not significantly better in paired T-test):

Two scans per subject, registered for label transfer. Reproducible
labels / segmental labels on average, out of 20/29:

Segmental | All

Expert 1 14.0 22.8
Expert 2 15.1 23.9
Automatic 15.2 24.0
Out of 20 29

14 Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling!*

Performance not significantly dependent on COPD level

30 F
28

[ [ ]
£ n
S 26 n
a [ ] | |
& 2y U i ]
£ 22y
E | | ]
= ™ n
g ]
16 u
o
o 14
[v]

12

0 1 2 3

COPD stage by GOLD standard (0O=healthy, 3=severe)

Spearman: (p = —0.22, p =0.18)

14 Feragen et al, MICCAI 2012.
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Automatically labeled databases ~~ statistics

Automatic labeling ~~ Danish Lung Cancer Screening Trial
» Database of 8016 airway trees
» 1692 unique subjects

» 732 women and 960 men

Hwo to perform statistics?
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Hypothesis testing and localization of class-dependent
differences!®

» COPD/healthy samples: A= ay,...,an, and B = by,..., by,
» Tools: means and distances
» ~~ Permutation tests for equality of means and variance:
T(A7 B) = d(,U’AnU’B)a
S(A, B) = |[var(A) - var(B)||
» Consistent with clinical findings °
LABEL | P-VALUE mean | P-VALUE variance
full 0.0010 0.0060
RMB 0.0020 0.0939
RUL 0.2298 0.1668
Brint 0.0050 0.1249
RLL 0.0300 0.0959
LMB 0.0859 0.0210
LUL 0.0320 0.0390
L1+2+43 0.0260 0.0410
LLB 0.5524 0.1588

1
5Hoesein et al, 2012
Feragen ,Datar, Xu, Howard, Owen
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Why the step to PCA is so hard

o ABO | CD o

b

- - - = geodesic £
B c

Figure: Courtesy of Megan Owen
» What is a "line"?
» How do you parametrize a "line"?

» How do you optimize over a family of "lines™?
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First PCs 17

» Definition:
» Must go through majority consensus tree
» PCs are "simple lines”

» Computational constraints

7 Nye 2011
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Set statistics!®

» Assume: Dataset X' C T spans 7 well ~ optimize over X
(]X| = 8016)

S = arg. min,r f(x), S = arg. min,cy f(x)

» Example: Frechet mean and set mean

N N

W= arg. minxeTZ d?(x, x;), [ = arg. min ¢y Z d?(x, x;)
i=1 i=1

-o.oz ~/ \<$"r{
o S
-0.2 /I

-0.25 J{PE\ - 02

005
Feragen et al 2013
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Projection onto geodesic segments*’

v

Parametrize geodesic segments + by their endpoints

pr,(x) = arg. min, ¢y d(x, z)?
» Non-positive curvature = unique projection

v

v

Computed with golden ratio search

19 Feragen et al 2013
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Set PCA%

» First PC:

N
PC1 = arg. minxyxlefrz d?(x;, Py, (xi)),

i=1

» Set PC: N
PCl = arg.min, ./ cy Z d?(x;, Pry, (xi)),

i=1

2OFeragen et al, IPMI 2013
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Fisher's LDA — the Euclidean version

» LDA as line maximizing projected class separation

dz(ﬂ(PrL(A)a Alpr.(B))
$2(pre(A)) + &2(pre(B))

Lipa = arg. max;

vs]
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Treespace LDA?!

LDA as geodesic segment maximizing projected class separation

e, (B))
2(pr, (B))

A (ilpr,,,(A),
T, o

YLDA = arg. maXX7X/€7- §2(

2 Feragen et al, IPMI 2013
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Set LDA?

LDA as geodesic segment maximizing projected class separation

d(i(pr,,_, (A). ipr,_,(B))

S X

YLDA = arg. max, ey §2(pr, ,(A))+32(pr, ,(B))

X, X X, X

2223
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Wrap-up

» We have: A tree-space framework for analysis of geometric
trees

» Nice geometric properties for statistical analysis

» Leaf label assignment gives computational advantages at a
modeling cost

» Even in the simpler space of leaf-labeled trees, many
statistical problems remain open.

» For tree-shape spaces, curvature questions linked to
combinatorial complexity: locality of statistics?
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