

Department of Computer Science, University of Copenhagen

Tree-like shape spaces

François Lauze francois@di.ku.dk

IPAM April 1. 2019

In collaboration with!

Aasa Feragen

Marlene de Bruijne

Pechin Lo

Søren Hauberg

Megan Owen

Mads Nielsen

Asger Dirksen

Laura Hohwü Thomsen

Mathilde Marie Winkler

Starting point: What does the average human airway tree look like?

Wanted:

- A tree-space for geometric trees, where distances are given by geodesic (shortest path) length.
- Statistics defined using geodesics, analogous to manifold statistics.

- Smoker's lung (COPD) is caused by inhaling damaging particles.
- Likely that damage made depends on airway geometry
- Reversely: COPD changes the airway geometry, e.g. airway wall thickness.
- ► ~→ Geometry can help diagnosis/prediction.

Description of data:

► Topology, branch shape – work with centerline trees embedded in ℝ³.

Description of data:

 Somewhat variable topology (combinatorics) in *anatomical* tree

Description of data:

 Substantial amount of noise in *segmented* trees (missing or spurious branches), especially in COPD patients, *i.e. inherently incomplete data*

Thus, we need a space for trees with different sizes, topologies and branch shapes.

Tree-space paths

We work with Geodesic Metric Spaces

A path in tree-space corresponds to a tree deformation. A shortest path from A_1 to A_2 is a *geodesic*.

Statistics in metric spaces

Statistics: Frechet/Ensemble means defined based on distance alone:

$$m = \operatorname{argmin} \sum_{i=1...n} d^2(T, T_i).$$

Computation: Using geodesics

A CAT(0) space is a metric space in which geodesic triangles are "thinner" than for their comparison triangles in the plane; that is, d(x, a) ≤ d(x̄, ā).

- A CAT(0) space is a metric space in which geodesic triangles are "thinner" than for their comparison triangles in the plane; that is, d(x, a) ≤ d(x̄, ā).
- ► A space has non-positive curvature if it is locally CAT(0).

- A CAT(0) space is a metric space in which geodesic triangles are "thinner" than for their comparison triangles in the plane; that is, d(x, a) ≤ d(x̄, ā).
- ► A space has non-positive curvature if it is locally CAT(0).
- (Similarly define curvature bounded by κ by using comparison triangles in hyperbolic space or spheres of curvature κ.)

Example

Theorem (see e.g. Bridson-Haefliger)

Let (X, d) be a CAT(0) space; then all pairs of points have a unique geodesic joining them. The same holds locally in $CAT(\kappa)$ spaces, $\kappa \neq 0$.

Statistics in metric spaces and the CAT(0) property

Theorem In *CAT(0)* spaces:

- Frechet means are unique $m = \operatorname{argmin}_{x \in X} \sum_{i=1}^{N} d^2(x, x_i)^1$
- centroids are unique ²
- Birkhoff shortening converges ³
- circumcenters are unique ⁴

¹ Sturm 2003 ² Billera, Holmes, Vogtmann 2001 ³ Feragen, Hauberg, Nielsen, Lauze 2011

¹Bridson-Haefliger 1999

A space of geometric trees: Intuition

What would a path-connected space of deformable trees look like?

- Easy: Trees with same topology in their own "component"
- Harder: How are the components connected?
- Solution: glue collapsed trees, deforming one topology to another
- ► ~→ Stratified space, self intersections

A space of geometric trees: Intuition

The tree-space has conical "bubbles"

- TED is a classical, algorithmic distance
- Tree-space with TED is a nonlinear metric space
- ► dist(T₁, T₂) is the minimal total cost of changing T₁ into T₂ through three basic operations:
- Remove edge, add edge, deform edge.

- TED is a classical, algorithmic distance
- Tree-space with TED is a nonlinear metric space
- ► dist(T₁, T₂) is the minimal total cost of changing T₁ into T₂ through three basic operations:
- Remove edge, add edge, deform edge.

- TED is a classical, algorithmic distance
- Tree-space with TED is a nonlinear metric space
- ► dist(T₁, T₂) is the minimal total cost of changing T₁ into T₂ through three basic operations:
- Remove edge, add edge, deform edge.

 Tree-space with TED is a geodesic space, but almost all geodesics between pairs of trees are non-unique (infinitely many)

- Then what is the average of two trees? Many!
- ► Tree-space with TED has everywhere unbounded curvature.
- TED is *not* suitable for statistics.

The problems can be "solved" by choosing specific geodesics⁵. OBS! Geometric methods can no longer be used for proofs, and one risks choosing problematic paths.

Figure: Trinh and Kimia compute average shock graphs using TED with the simplest possible choice of geodesics.

⁵Trinh, Kimia, CVPR workshops 2010

Tree representation ⁶

Tree parametrization (\mathcal{T}, x)

➤ 𝒴 = (V, E, r, <) finite rooted, ordered/planar binary tree, describing the tree topology (combinatorics)

•
$$x \in \bigoplus_{e \in E} (\mathbb{R}^d)^n$$
, $d = 3$, $n = \sharp$ landmarks/edge

$$\underbrace{} = \frac{1}{3\sqrt{4}} \underbrace{}_{6}^{2} + (1, \underline{)}, \underline{)}, \underline{)}$$

⁶Feragen, Lo, de Bruijne, Nielsen, Lauze, 2010

Tree representation ⁶

We are allowing collapsed edges, which means that

- we can represent higher order vertices
- ▶ we can represent trees of different sizes using the same combinatorial tree 𝒴

(dotted line = collapsed edge = zero/constant attribute)

⁶Feragen, Lo, de Bruijne, Nielsen, Lauze, 2010

The space of tree-like preshapes

Let ${\mathscr T}$ be a finite ordered (planar), rooted binary tree

Definition

Define the space of tree-like pre-shapes as the direct sum

where $(\mathbb{R}^d)^n$ is the edge shape space. This is just a space of *pre-shapes*.

The space of tree-like preshapes

Let ${\mathscr T}$ be a finite ordered (planar), rooted binary tree

Definition

Define the space of tree-like pre-shapes as the direct sum

where $(\mathbb{R}^d)^n$ is the edge shape space. This is just a space of *pre-shapes*.

Remove the ordered tree (vertices) hypothesis to represent non planar trees.

From pre-shapes to shapes

Many shapes have more than one representation

From pre-shapes to shapes

Not all shape deformations can be recovered as natural paths in the pre-shape space:

Shape space definition

- Start with the pre-shape space $X = \bigoplus_{e \in E} (\mathbb{R}^d)^n$.
- ▶ Define an equivalence ~ by identifying points in X that represent the same ordered/unordered tree-shape.

- ► Space of ordered/unordered tree-like shapes X̃ = X/ ~: folded vector space.
- Corresponds to identifying, or gluing together, subspaces $\{x \in X | x_e = 0 \text{ if } e \notin E_1\}$ and $\{x \in X | x_e = 0 \text{ if } e \notin E_2\}$ in X.

Shape space definition

Figure: Space of ordered trees with at most 2 edges

Some details

- ▶ Preshape $x \in X = \bigoplus_{E} (\mathbb{R}^d)^n$, $E_x = \{e \in E | x_e \neq 0\}$
- Identification: $x \sim y \in E$ there exists a bijection

$$\phi: E_x \to E_y, \quad y_{\phi_e} = x_e$$

- Equivalence relation. Shape space: $ilde{X} = X/\sim$
- Quotient pseudo-metric: d metric on X,

$$ar{d}(ar{x},ar{y}) = \inf\left\{\sum_{i=1}^k d(x_i,y_i), x_1\inar{x}, y_k\inar{y}, y_i\sim x_{i+1}
ight\}$$

d = || − ||₁: *Tree-Edit-Distance*, *d* = || − ||₂: *Quotient-Euclidean-Distance*,

Geodesics in tree-space

Theorem (Feragen, Lo, de Bruijne, Nielsen, Lauze, 2013)

- The quotient pseudometric \overline{d} is a metric on \tilde{X} .
- (\tilde{X}, \bar{d}) is a geodesic space.
- Geodesics are not generally unique, neither for ordered nor unordered trees
- ▶ d̄=QED: for a generic tree T₁ (of any size), for a generic second tree T₂ (of any size), there is a unique geodesic connecting them.
- At generic points, the space is locally CAT(0).
- Its geodesics are locally unique at generic points.
- At non-generic points, the curvature is unbounded.

Metric and Geodesics

From the distance

$$ar{d}(ar{x},ar{y}) = \inf\left\{\sum_{i=1}^k d(x_i,y_i), x_1\inar{x}, y_k\inar{y}, y_i\sim x_{i+1}
ight\}$$

- k in formula above: topological transition the geodesics / in the combinatorics of trees.
- Out of these transitions: straight line segments. So what is the smallest k?
- When sufficiently unique geodesics can be computed, a lot more can.

CAT(0), Geometric triangles

Figure: Geodesic Triangles in Tree-Shape Space

Computational Complexity of tree-space geodesics ⁷

```
Assume edge attributes have dimension > 1 (for dim = 1, S. Provan).
```

Theorem

Computing QED geodesics between unordered trees is NP complete.

Mean trees can be computed

⁸ Leaf vasculature data:

Figure: A set of vascular trees from ivy leaves form a set of planar tree-shapes.

Figure: a): The vascular trees are extracted from photos of ivy leaves. b) The mean vascular tree.

⁸Feragen, Hauberg, Nielsen, Lauze, 2011

Mean trees can be computed

8

The mean upper airway tree

Figure: A set of upper airway tree-shapes along with their mean tree-shape.

⁸Feragen, Hauberg, Nielsen, Lauze, 2011

Mean trees can be computed

8

Figure: A set of upper airway tree-shapes (projected). (Fergen, Lo, de Bruijne, Nielsen, Lauze 2013)

Figure: The QED and TED means (algorithm by Trinh and Kimia).

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > 37 / 60

⁸Feragen, Hauberg, Nielsen, Lauze, 2011

Theorem (Existence of means⁹)

- Means in non-positively curved spaces are unique.
- Means in non-positively curved spaces can be computed using a random infinite weighted midpoints sequence.
- \rightsquigarrow Computation of mean trees ¹⁰.

⁹Sturm 2003

¹⁰Feragen, Hauberg, Nielsen, Lauze 2011; Miller et al 2012

Sturm means

Theorem (Existence of means⁹)

- Means in non-positively curved spaces are unique.
- Means in non-positively curved spaces can be computed using a random infinite weighted midpoints sequence.
- \blacktriangleright \rightsquigarrow Computation of mean trees ¹⁰.

 $^{10}\mathrm{Feragen.}$ Hauberg, Nielsen, Lauze 2011; Miller et al 2012

Statistics on larger trees: Mean airway ¹¹

How local are local statistics?

- Restrict to: all representations of certain restricted tree topologies.
- **Example 1:** Restrict to the set \tilde{X}_N of trees with N leaves.

Example 2: Restrict to all topologies occuring in airway trees.

Dealing with NP - Useful property of airways

The first 6-8 generations of the airway tree are "similar" in different people.

NB!: Not all present in all people; **not all present in all segmentations.**

Regularize via fixed leaf label sets¹³

- Label the "leaves" of your trees; constant leaf label set.
- A Variant of Billera-Holmes-Vogtmann (BHV) trees: gives a vectorized version of phylogenetic tree-space
- Polynomial time distance algorithms ¹²

Right figure courtesy of Megan Owen.

¹²Owen, Provan, 2011
 ¹³Feragen et al. 2012

・< 部 > < き > < き > き や の ()
 43 / 60

Idea:

 Generate suggested leaf label configurations and the corresponding tree spanning the labels

 Evaluate configuration in comparison with training data using geodesic distances between leaf-labeled airway trees

Idea:

- Many possible label configurations
- Make tractable using a hierarchical labeling scheme

40 airway trees from 20 subjects with different stages of COPD, hand labeled by 2 experts in pulmonary medicine.

 Accuracy (leave-1-subject-out): Not significantly better (paired T-test), but as good as the experts

Label	Algorithm	Expert		
Avg segmental labels	72.7	71.0		
Avg all 29 labels	80.5	79.5		
10×40×41				

As reproducible as a medical expert: (not significantly better in paired *T*-test):

Two scans per subject, registered for label transfer. Reproducible labels / segmental labels on average, out of 20/29:

	Segmental	All
Expert 1	14.0	22.8
Expert 2	15.1	23.9
Automatic	15.2	24.0
Out of	20	29

Performance not significantly dependent on COPD level

COPD stage by GOLD standard (0=healthy, 3=severe)

Spearman: ($\rho = -0.22$, p = 0.18)

¹⁴Feragen et al, MICCAI 2012.

Automatically labeled databases ~> statistics

Automatic labeling ~> Danish Lung Cancer Screening Trial

- Database of 8016 airway trees
- 1692 unique subjects
- ▶ 732 women and 960 men

Hwo to perform statistics?

Hypothesis testing and localization of class-dependent differences¹⁶

- COPD/healthy samples: $A = a_1, \ldots, a_{N_1}$ and $B = b_1, \ldots, b_{N_2}$
- Tools: means and distances
- Permutation tests for equality of means and variance:

$$T(A, B) = d(\hat{\mu}_A, \hat{\mu}_B),$$

$$S(A, B) = \|var(A) - var(B)\|,$$

$$p_T = (1 + \#\{T_m \ge T_0 | m = 1, ..., M\})/(M+1), ...$$

Consistent with clinical findings ¹⁵

	LABEL	P-VALUE mean	P-VALUE variance
Trachea 11 co	full	0.0010	0.0060
	RMB	0.0020	0.0939
R2 RMB L1+2+3	RUL	0.2298	0.1668
R3 RUL LMB LUL I3	BrInt	0.0050	0.1249
R4 R4+5 Bronchint	RLL	0.0300	0.0959
R5 PUL R6 L6 L5	LMB	0.0859	0.0210
	LUL	0.0320	0.0390
	L1+2+3	0.0260	0.0410
R7 R8 R9 R10	LLB	0.5524	0.1588

¹⁵Hoesein et al, 2012

¹⁶Feragen .Datar, Xu, Howard, Owen

Why the step to PCA is so hard

Figure: Courtesy of Megan Owen

- What is a "line"?
- How do you parametrize a "line"?
- How do you optimize over a family of "lines"?

First PCs ¹⁷

- Definition:
 - Must go through majority consensus tree
 - PCs are "simple lines"

Computational constraints

Set statistics¹⁸

▶ Assume: Dataset $X \subset T$ spans T well \rightsquigarrow optimize over X (|X| = 8016)

$$S = \arg. \min_{x \in \mathcal{T}} f(x), \qquad S = \arg. \min_{x \in \mathcal{X}} f(x)$$

Example: Frechet mean and set mean

$$\mu = \arg.\min_{x \in \mathcal{T}} \sum_{i=1}^{N} d^2(x, x_i), \qquad \mu = \arg.\min_{x \in \mathcal{X}} \sum_{i=1}^{N} d^2(x, x_i)$$

Projection onto geodesic segments¹⁹

- Parametrize geodesic segments γ by their endpoints
- $\operatorname{pr}_{\gamma}(x) = \operatorname{arg.min}_{z \in \gamma(I)} d(x, z)^2$
- Non-positive curvature \Rightarrow unique projection
- Computed with golden ratio search

Set PCA²⁰

First PC: $PC1 = \arg.\min_{x,x' \in \mathcal{T}} \sum_{i=1}^{N} d^{2}(x_{i}, \operatorname{pr}_{\gamma_{x,x'}}(x_{i})),$

Set PC: $PC1 = \arg. \min_{x,x' \in \mathcal{X}} \sum_{i=1}^{N} d^{2}(x_{i}, \operatorname{pr}_{\gamma_{x,x'}}(x_{i})),$

Fisher's LDA – the Euclidean version

LDA as line maximizing projected class separation

$$L_{LDA} = \arg. \max_{L} \frac{d^{2}(\hat{\mu}(\operatorname{pr}_{L}(A), \hat{\mu}(\operatorname{pr}_{L}(B)))}{\hat{s}^{2}(\operatorname{pr}_{L}(A)) + \hat{s}^{2}(\operatorname{pr}_{L}(B))}$$

Treespace LDA²¹

LDA as geodesic segment maximizing projected class separation

$$\gamma_{LDA} = \arg. \max_{x,x' \in \mathcal{T}} \frac{d^2(\hat{\mu}(\mathsf{pr}_{\gamma_{x,x'}}(A), \hat{\mu}(\mathsf{pr}_{\gamma_{x,x'}}(B)))}{\hat{s}^2(\mathsf{pr}_{\gamma_{x,x'}}(A)) + \hat{s}^2(\mathsf{pr}_{\gamma_{x,x'}}(B))}.$$

Set LDA²²

LDA as geodesic segment maximizing projected class separation

$$\gamma_{LDA} = \arg. \max_{x,x' \in \mathcal{X}} \frac{d^2(\hat{\mu}(\mathsf{pr}_{\gamma_{x,x'}}(A), \hat{\mu}(\mathsf{pr}_{\gamma_{x,x'}}(B)))}{\hat{s}^2(\mathsf{pr}_{\gamma_{x,x'}}(A)) + \hat{s}^2(\mathsf{pr}_{\gamma_{x,x'}}(B))}.$$

Wrap-up

- We have: A tree-space framework for analysis of geometric trees
- Nice geometric properties for statistical analysis
- Leaf label assignment gives computational advantages at a modeling cost
- Even in the simpler space of leaf-labeled trees, many statistical problems remain open.
- For tree-shape spaces, curvature questions linked to combinatorial complexity: locality of statistics?