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Airway shape modeling

Starting point: What does the average human airway tree look
like?

Wanted:
I A tree-space for geometric trees, where distances are given by

geodesic (shortest path) length.
I Statistics defined using geodesics, analogous to manifold

statistics.
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Airway shape modeling

I Smoker’s lung (COPD) is caused by inhaling damaging
particles.

I Likely that damage made depends on airway geometry
I Reversely: COPD changes the airway geometry, e.g. airway

wall thickness.
I  Geometry can help diagnosis/prediction.
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Airway shape modeling

Description of data:
I Topology, branch shape – work with centerline trees

embedded in R3.
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Airway shape modeling

Description of data:
I Somewhat variable topology (combinatorics) in anatomical

tree
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Airway shape modeling

Description of data:
I Substantial amount of noise in segmented trees (missing or

spurious branches), especially in COPD patients,
i.e. inherently incomplete data

I Thus, we need a space for trees with different sizes, topologies
and branch shapes.
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Tree-space paths

We work with Geodesic Metric Spaces

Airway tree-space

A path in tree-space corresponds to a tree deformation.
A shortest path from A1 to A2 is a geodesic.
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Statistics in metric spaces

I Statistics: Frechet/Ensemble means defined based on
distance alone:

m = argmin
∑

i=1...n

d2(T ,Ti ).

I Computation: Using geodesics
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Curvature in metric spaces

I A CAT (0) space is a metric space in which geodesic triangles
are ”thinner” than for their comparison triangles in the plane;
that is, d(x , a) ≤ d(x̄ , ā).

I A space has non-positive curvature if it is locally CAT (0).
I (Similarly define curvature bounded by κ by using comparison

triangles in hyperbolic space or spheres of curvature κ.)
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Curvature in metric spaces

Example

a b c d

a bc d

ab cd

a bc d

ab cd

a b c d

Theorem (see e.g. Bridson-Haefliger)
Let (X , d) be a CAT (0) space; then all pairs of points have a
unique geodesic joining them. The same holds locally in CAT (κ)
spaces, κ 6= 0.
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Statistics in metric spaces and the CAT(0) property

Theorem
In CAT(0) spaces:
I Frechet means are unique - m = argminx∈X

∑N
i=1 d

2(x , xi )
1

I centroids are unique 2

I Birkhoff shortening converges 3

I circumcenters are unique 4

1
Sturm 2003

2
Billera, Holmes, Vogtmann 2001

3
Feragen, Hauberg, Nielsen, Lauze 2011

4
Bridson-Haefliger 1999
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A space of geometric trees: Intuition

15 / 60

What would a path-connected space of deformable trees look like?

I Easy: Trees with same topology in their own ”component”
I Harder: How are the components connected?
I Solution: glue collapsed trees, deforming one topology to another
I  Stratified space, self intersections



A space of geometric trees: Intuition

The tree-space has conical ”bubbles”
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Classical example: Tree edit distance (TED)

I TED is a classical, algorithmic distance
I Tree-space with TED is a nonlinear metric space
I dist(T1, T2) is the minimal total cost of changing T1 into T2

through three basic operations:
I Remove edge, add edge, deform edge.
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Classical example: Tree edit distance (TED)

I Tree-space with TED is a geodesic space, but almost all
geodesics between pairs of trees are non-unique (infinitely
many)

I Then what is the average of two trees? Many!
I Tree-space with TED has everywhere unbounded curvature.
I TED is not suitable for statistics.
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Classical example: Tree edit distance (TED)

The problems can be ”solved” by choosing specific geodesics5.
OBS! Geometric methods can no longer be used for proofs, and
one risks choosing problematic paths.

Figure: Trinh and Kimia compute average shock graphs using TED with
the simplest possible choice of geodesics.

5
Trinh, Kimia, CVPR workshops 2010
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Tree representation 6

Tree parametrization (T , x)

I T = (V ,E , r , <) finite rooted,
ordered/planar binary tree, describing the
tree topology (combinatorics)

I x ∈
⊕

e∈E (Rd)n, d = 3, n = ] landmarks/edge

6
Feragen, Lo, de Bruijne, Nielsen, Lauze, 2010
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Tree representation 6

We are allowing collapsed edges, which means that
I we can represent higher order vertices
I we can represent trees of different sizes using the same

combinatorial tree T

(dotted line = collapsed edge = zero/constant attribute)

6
Feragen, Lo, de Bruijne, Nielsen, Lauze, 2010
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The space of tree-like preshapes

Let T be a finite ordered (planar), rooted binary tree

Definition
Define the space of tree-like pre-shapes as the direct sum⊕

e∈E
(Rd)n

where (Rd)n is the edge shape space.
This is just a space of pre-shapes.

Remove the ordered tree (vertices) hypothesis to represent non
planar trees.
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From pre-shapes to shapes

Many shapes have more than one representation
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From pre-shapes to shapes
Not all shape deformations can be recovered as natural paths in
the pre-shape space:
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Shape space definition

I Start with the pre-shape space X =
⊕

e∈E (Rd)n.
I Define an equivalence ∼ by identifying points in X that

represent the same ordered/unordered tree-shape.

I Space of ordered/unordered tree-like shapes X̃ = X/ ∼:
folded vector space.

I Corresponds to identifying, or gluing together, subspaces
{x ∈ X |xe = 0 if e /∈ E1} and {x ∈ X |xe = 0 if e /∈ E2} in X .
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Shape space definition

quotient

Figure: Space of ordered trees with at most 2 edges
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Some details

I Preshape x ∈ X =
⊕

E

(
Rd
)n, Ex = {e ∈ E |xe 6= 0}

I Identification: x ∼ y ∈ E there exists a bijection

φ : Ex → Ey , yφe = xe

I Equivalence relation. Shape space: X̃ = X/ ∼
I Quotient pseudo-metric: d metric on X ,

d̄(x̄ , ȳ) = inf

{
k∑

i=1

d(xi , yi ), x1 ∈ x̄ , yk ∈ ȳ , yi ∼ xi+1

}

I d = ‖ − ‖1: Tree-Edit-Distance,
I d = ‖ − ‖2: Quotient-Euclidean-Distance,
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Geodesics in tree-space

Theorem (Feragen, Lo, de Bruijne, Nielsen, Lauze, 2013)
I The quotient pseudometric d̄ is a metric on X̃ .
I (X̃ , d̄) is a geodesic space.
I Geodesics are not generally unique, neither for ordered nor

unordered trees
I d̄=QED: for a generic tree T1 (of any size), for a generic

second tree T2 (of any size), there is a unique geodesic
connecting them.

I At generic points, the space is locally CAT (0).
I Its geodesics are locally unique at generic points.
I At non-generic points, the curvature is unbounded.
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Metric and Geodesics

I From the distance

d̄(x̄ , ȳ) = inf

{
k∑

i=1

d(xi , yi ), x1 ∈ x̄ , yk ∈ ȳ , yi ∼ xi+1

}

I k in formula above: topological transition the geodesics / in
the combinatorics of trees.

I Out of these transitions: straight line segments. So what is
the smallest k?

I When sufficiently unique geodesics can be computed, a lot
more can.
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CAT (0), Geometric triangles

Figure: Geodesic Triangles in Tree-Shape Space
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Computational Complexity of tree-space geodesics 7

Assume edge attributes have dimension > 1
(for dim = 1, S. Provan).

Theorem
Computing QED geodesics between unordered trees is NP
complete.

... ...

==

7
(Feragen 2012)
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Mean trees can be computed
8 Leaf vasculature data:

Figure: A set of vascular trees from ivy leaves form a set of planar
tree-shapes.

Figure: a): The vascular trees are extracted from photos of ivy leaves. b)
The mean vascular tree.

8
Feragen, Hauberg, Nielsen, Lauze, 2011
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Mean trees can be computed

8

The mean upper airway tree

Figure: A set of upper airway tree-shapes along with their mean
tree-shape.

8
Feragen, Hauberg, Nielsen, Lauze, 2011
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Mean trees can be computed

8

Figure: A set of upper airway tree-shapes (projected). (Fergen, Lo, de
Bruijne, Nielsen, Lauze 2013)

QED TED

Figure: The QED and TED means (algorithm by Trinh and Kimia).

8
Feragen, Hauberg, Nielsen, Lauze, 2011
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Sturm means

Theorem (Existence of means9)

I Means in non-positively curved spaces are unique.
I Means in non-positively curved spaces can be computed using

a random infinite weighted midpoints sequence.
I  Computation of mean trees 10.

9
Sturm 2003

10
Feragen, Hauberg, Nielsen, Lauze 2011; Miller et al 2012
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Statistics on larger trees: Mean airway 11

11
(Feragen, Owen and Feragen Hauberg, Nielsen, Lauze 2011)
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How local are local statistics?

I Restrict to: all representations of certain restricted tree
topologies.

I Example 1: Restrict to the set X̃N of trees with N leaves.

I Example 2: Restrict to all topologies occuring in airway trees.
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Dealing with NP - Useful property of airways

The first 6-8 generations of the airway tree are ”similar” in different
people.
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R6

R4

R5 RLL

R7 R8 R9 R10

L8 L9 L10L7

R4+5

L1+2+3

NB!: Not all present in all people; not all present in all
segmentations.
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Regularize via fixed leaf label sets13

I Label the ”leaves” of your trees; constant leaf label set.
I A Variant of Billera-Holmes-Vogtmann (BHV) trees: gives a

vectorized version of phylogenetic tree-space
I Polynomial time distance algorithms 12
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Right figure courtesy of Megan Owen.

12
Owen, Provan, 2011

13
Feragen et al. 2012
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Geodesic airway branch labeling14
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14
Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling14

Idea:
I Generate suggested leaf label configurations and the

corresponding tree spanning the labels

R7

R8

R9 R10 R10R7

R8

R9

I Evaluate configuration in comparison with training data using
geodesic distances between leaf-labeled airway trees

Unlabeled tree

R1

R2
R3R5

R4
R1

R2

R3

R5

R4

R1

R2R3

R5 R4

Potential
labelings

The space of leaf-labeled trees
Expert-labeled trees
Tree with suggested labels

14
Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling14

Idea:
I Many possible label configurations
I Make tractable using a hierarchical labeling scheme
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Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling14
I 40 airway trees from 20 subjects with different stages of

COPD, hand labeled by 2 experts in pulmonary medicine.
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I Accuracy (leave-1-subject-out):
Not significantly better (paired T-test), but as good as the
experts

Label Algorithm Expert
Avg segmental labels 72.7 71.0

Avg all 29 labels 80.5 79.5
14

Feragen et al, MICCAI 2012. 47 / 60



Geodesic airway branch labeling14

As reproducible as a medical expert:
(not significantly better in paired T -test):

Two scans per subject, registered for label transfer. Reproducible
labels / segmental labels on average, out of 20/29:

Segmental All
Expert 1 14.0 22.8
Expert 2 15.1 23.9

Automatic 15.2 24.0
Out of 20 29

14
Feragen et al, MICCAI 2012.
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Geodesic airway branch labeling14

Performance not significantly dependent on COPD level

Spearman: (ρ = −0.22, p = 0.18)

14
Feragen et al, MICCAI 2012.
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Automatically labeled databases  statistics

Automatic labeling  Danish Lung Cancer Screening Trial
I Database of 8016 airway trees
I 1692 unique subjects
I 732 women and 960 men

Hwo to perform statistics?
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Hypothesis testing and localization of class-dependent
differences16

I COPD/healthy samples: A = a1, . . . , aN1 and B = b1, . . . , bN2

I Tools: means and distances
I  Permutation tests for equality of means and variance:

T (A,B) = d(µ̂A, µ̂B),
S(A,B) = ‖var(A)− var(B)‖,
pT = (1 + ]{Tm ≥ T0|m = 1, . . . ,M})/(M + 1), ...

I Consistent with clinical findings 15
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15
Hoesein et al, 2012

16
Feragen ,Datar, Xu, Howard, Owen

51 / 60



Why the step to PCA is so hard

A0|BCD

0

A
B C

D
T1

T2

A B C D

0

0

A B
C

D

ABC|D0

AB|CD0

AB0 | CD

T’2T’1

= geodesic

AD0 | BC 0

A
B C

D

0

A
B

C D

Figure: Courtesy of Megan Owen

I What is a ”line”?
I How do you parametrize a ”line”?
I How do you optimize over a family of ”lines”?
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First PCs 17

I Definition:
I Must go through majority consensus tree
I PCs are ”simple lines”

a b c d

a bc d

ab cd

a bc d

ab cd

I Computational constraints

17
Nye 2011
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Set statistics18

I Assume: Dataset X ⊂ T spans T well  optimize over X
(|X | = 8016)

S = arg.minx∈T f (x), S = arg.minx∈X f (x)

I Example: Frechet mean and set mean

µ = arg.minx∈T
N∑
i=1

d2(x , xi ), µ = arg.minx∈X
N∑
i=1

d2(x , xi )
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0.2

−0.05
0
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−0.25
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−0.15

−0.1

−0.05

0

18
Feragen et al 2013

54 / 60



Projection onto geodesic segments19

I Parametrize geodesic segments γ by their endpoints
I prγ(x) = arg.minz∈γ(I ) d(x , z)2

I Non-positive curvature ⇒ unique projection
I Computed with golden ratio search

a b c d

a bc d

ab cd

a bc d

ab cd

19
Feragen et al 2013
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Set PCA20

I First PC:

PC1 = arg.minx ,x ′∈T
N∑
i=1

d2(xi , prγx,x′ (xi )),

I Set PC:

PC1 = arg.minx ,x ′∈X
N∑
i=1

d2(xi , prγx,x′ (xi )),

20
Feragen et al, IPMI 2013
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Fisher’s LDA – the Euclidean version

I LDA as line maximizing projected class separation

LLDA = arg.maxL
d2(µ̂(prL(A), µ̂(prL(B))

ŝ2(prL(A)) + ŝ2(prL(B))
.

L

A

B

H
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Treespace LDA21

LDA as geodesic segment maximizing projected class separation

γLDA = arg.maxx ,x ′∈T
d2(µ̂(prγx,x′ (A), µ̂(prγx,x′ (B))

ŝ2(prγx,x′ (A)) + ŝ2(prγx,x′ (B))
.

a b c d
a bc d

ab cd

a bc d

ab cd

21
Feragen et al, IPMI 2013

58 / 60



Set LDA22

LDA as geodesic segment maximizing projected class separation

γLDA = arg.maxx ,x ′∈X
d2(µ̂(prγx,x′ (A), µ̂(prγx,x′ (B))

ŝ2(prγx,x′ (A)) + ŝ2(prγx,x′ (B))
.

2223
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Wrap-up

I We have: A tree-space framework for analysis of geometric
trees

I Nice geometric properties for statistical analysis
I Leaf label assignment gives computational advantages at a

modeling cost
I Even in the simpler space of leaf-labeled trees, many

statistical problems remain open.
I For tree-shape spaces, curvature questions linked to

combinatorial complexity: locality of statistics?
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