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» Micro-structure, either biological, geologic, synthetic.
» Different nature of the domain dimensions, e.g. R? x S!.

» Proximity of the domain boundary, or of discontinuities.
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have a variety of causes, such as:

Introduction

» Micro-structure, either biological, geologic, synthetic.
» Different nature of the domain dimensions, e.g. R? x S!.

» Proximity of the domain boundary, or of discontinuities.

In the numerical analysis of PDEs, (strong) anisotropy is a
source of difficulties.

» Increased numerical cost, accuracy loss, instabilities or
failure of the numerical methods.

Several approaches can be envisioned to address these.
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First approach: adapt the domain representation

Figure: Adaptive interpolation of a function with a sharp transition.
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» Encode the problem anisotropy in a Riemannian metric.

Adaptive interpolation of a function with a sharp transition.
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Second approach: adapt the numerical scheme

» A basic cartesian grid is used throughout this work.

» Local adaptive stencils are created independently at each
point, without any consistency constraint.

» Easily address

asymmetric or three dimensional anisotropy.
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» Conforming meshes are a pre-requisite for some
applications (e.g. finite volume or finite element schemes).
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» Simplicity of implementation.
» Numerical cost.
» Tools of lattice geometry.

» Cartesian grids are a pre-requisite for some applications
(e.g image processing).

Different tools for different applications.
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» Domains of arbitrary shape, and topology.
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» Simplicity of implementation.
» Numerical cost.
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ntreduction Sample applications

» What is the densest periodic packing of spheres ?

» Which integers are sums of three squares ?
Legendre's theorem:

N={i?+2+ k% (i,j,k) € Z°} U {4°(8b+T7);a,b € N}.
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Is the simultaneous study of a positive quadratic form, and of a
discrete subgroup of a vector space.

Sample applications

» What is the densest periodic packing of spheres 7

» Which integers are sums of three squares 7

» Message coding: error correction, cryptography.
What are the prime factors of RSA-768 7

12301866845301177551304949583849627207728535695953347921973224521517264005072
63657518745202199786469389956474942774063845925192557326303453731548268507917
026122142913461670429214311602221240479274737794080665351419597459856902143413
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Introduction

Lattice geometry
Is the simultaneous study of a positive quadratic form, and of a
discrete subgroup of a vector space.

Sample applications

» What is the densest periodic packing of spheres 7

» Which integers are sums of three squares 7

» Message coding: error correction, cryptography.
What are the prime factors of RSA-768 7

12301866845301177551304949583849627207728535695953347921973224521517264005072
63657518745202199786469389956474942774063845925192557326303453731548268507917
026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has
100+ pages of references, and has been cited 6000+ times.

» Few applications to PDE discretization. Bonnans et al, 04.
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The eikonal equation (Riemannian case)
The distance map v : Q — R to a domain’s boundary obeys

[Vu(x)llpx) =1

for a.e. x € , in viscosity sense, and v = 0 on 9. Where

D(x) is the inverse metric tensor and ||v||p := 1/(v, Dv).
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The eikonal equation (Riemannian case)
The distance map v : Q — R to a domain’s boundary obeys

[Vu(x)llpx) =1
for a.e. x € , in viscosity sense, and v = 0 on 9. Where

D(x) is the inverse metric tensor and ||v||p := v/(v, Dv).
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Contribution: Single pass methods for (strongly) anisotropic pb.
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The eikonal equation (Riemannian case)
The distance map v : Q — R to a domain’s boundary obeys

IVu(x)[lpx) =1
for a.e. x € , in viscosity sense, and v = 0 on 9. Where

D(x) is the inverse metrlc tensor and HVHD =4/ (v, Dv).
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Contribution: Single pass methods for (strongly) anisotropic pb.
Applications

» Image segmentation, with L. Cohen, R. Duits, et a/
» Motion planning, with J. Dreo (Thales).
» Perspectives: Seismology, with L. Metivier.
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with suitable initial and boundary conditions.
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Panorama form

Oru = div(DVu),

with suitable initial and boundary conditions.
Contribution: Monotone schemes for anisotropic problems.
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Jean-Marie Given a diffusion tensor field D : Q C RY — S:f”, takes the
form

dru = Tr(DV?u),

Panorama

with suitable initial and boundary conditions.
Contribution: Monotone schemes for anisotropic problems.

Applications:
» Image processing, with J. Fehrenbach. (D = D(u))
» Non-divergence form anisotropic diffusion.

» Monge-Ampere operator, with Benamou, Collino.

» Perspectives: HJB PDEs of stochastic models, F. Bonnans.
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7(0) = x,7(1) = y.
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hrebeas F(x.¥) 2 /0 100 (1) {7(0) =x,7(1) =y.

Objective: Compute numerically the exit time to the boundary

= min d .
u(x) min, F(x,y)
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Context: Domain Q, local metric 7 : TQ — R™ defining
v E Liploc([ov 1]¢§)
7(0) = x,7(1) = y.

Objective: Compute numerically the exit time to the boundary

1
dr(x,y) = igf/o Fyn(Y (1)) dt st {

= mind .
u(x) min, F(x,y)

Bellman's optimality principle
For any neighborhood V of x contained in Q.

u(x) = min (dr(x.y) + uy))-
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Context: Finite sets X, 0X approximating £, 0. Polyhedral
neighborhood V/(x), of each x € X, with vertices in X U 9X.

Semi-Lagrangian discretization
Find U : X U9X — R, vanishing on X, and such that Vx € X

Ue) = min (Fly =)+ Tug U0)).

. St AV (x)
- - %
D .. y2
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Neighbors S(x) of x € X, edge lengths w(x, y), operator

AU() = min (wix )+ U(y)).
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Discretization yields a coupled system of non-linear equations.
Vx € X, U(x) = AU(x), Vx € 0X,U(x)=0. (1)

Analogous problem: computing shortest paths on graphs
Neighbors S(x) of x € X, edge lengths w(x, y), operator

AU() = min (wix )+ U(y)).

System (1) is solvable in a single pass by Dijkstra's algorithm iff

w(x,y) >0 for all x € X, y € 5(x).
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Discretization yields a coupled system of non-linear equations.
Vx € X, U(x) = ANU(x), Vx € 0X,U(x)=0. (1)
Analogous problem: computing shortest paths on graphs

Neighbors S(x) of x € X, edge lengths w(x, y), operator

AU(x) = min) (W(x,y) + U(y)).

yeS(x
System (1) is solvable in a single pass by Dijkstra's algorithm iff
w(x,y) >0 forall x € X, y € S(x).
Acuteness implies causality (Sethian, Kimmel, Vladimirsky,
96)
System (1) is solvable by the fast marching method, in a single

pass, iff
(u, v) make an Fy-acute angle,

whenever x + u, x + v lie in a common facet of V/(x).



Anisotropic
Fast
Marching

Jean-Marie
Mirebeau

Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Monotony and
causality

Grid-adapted
tensor
decomposition

Reeds-Shepp

Other models

What is an acute angle 7 (Sethian,Kimmel,Vladimirsky,96)

Vectors u,v € E = RY, make an F-acute angle, where
F :E — Ry an asymmetric norm, iff

» (Euclidean case) Assuming F(x) = m||x||, where m > 0,

(u,v) > 0.
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Mirebeau F :E — Ry an asymmetric norm, iff

» (Euclidean case) Assuming F(x) = m||x||, where m > 0,

(u,v) > 0.

Semi-Lagrangian

schemes » (Riemannian case) Assuming F(x) = ||x||p, where M = 0,

(u, Mv) > 0.



Antoworic  What is an acute angle 7 (Sethian,Kimmel,Vladimirsky,96)
Marchin

) Vectors u,v € E = RY make an F-acute angle, where
Jean-Marie

Mirebeau F :E — Ry an asymmetric norm, iff

» (Euclidean case) Assuming F(x) = m||x||, where m > 0,
(u,v) > 0.
it » (Riemannian case) Assuming F(x) = ||x||p, where M > 0,
(u, Mv) > 0.

» (Differentiable case) (VF(u),v) >0, and (VF(v),u) > 0.

VF(v)

VF(u)



anisotropic \Nhat is an acute angle 7 (Sethian,Kimmel,Vladimirsky,96)

Fast

Marching Vectors u, v € E = RY, make an F-acute angle, where

F :E — Ry an asymmetric norm, iff

Jean-Marie

Mirebeau
» (Euclidean case) Assuming F(x) = m||x||, where m > 0,
(u,v) > 0.
e » (Riemannian case) Assuming F(x) = ||x||p, where M > 0,
(u, Mv) > 0.

» (Differentiable case) (VF(u),v) >0, and (VF(v),u) > 0.

%%%%%% <

Figure: Stencil constructions proposed for isotropic (left), or midly
anisotropic metrics, due to Sethian, Kimmel, Alton, ...
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Problems addressed

Finslerian eikonal equations, and the Stern-Brocot tree

Adaptive stencil refinement

Riemannian eikonal equations, and Voronoi's reduction

Global optimization of curvature dependent energies

Conclusion
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Fast-Marching using Adaptive Stencil Refinement

» |terative refinement of the stencil until the acuteness
property is met. (FM-ASR scheme, on 2D cartesian grids)
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> lIterative refinement of the stencil until the acuteness
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Fast-Marching using Adaptive Stencil Refinement

» |terative refinement of the stencil until the acuteness
property is met. (FM-ASR scheme, on 2D cartesian grids)

» The splitting procedure is exploits the grid additivity.

(0,0 (0,0)
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o |m

o
-

[}
: / \ / \ a A a+a a
é H B b+b b
1 L] ' f
it e :/\ /\ /\ /\ | / \ :
refinement : . .
614 2 4 223 i 435 253 4 a a+A A A+ A
1 1 0 - -
b b+B B B+b b

Obtain the (n + 1)-th line by inserting ZIZ// between

consecutive elements 2 2 and 2 & " of the n-th line.

» Each positive rational number appears exactly once in the
tree, in its irreducible form.

» Well studied arithmetic object, used for rational
approximation.



Anisotropic
Fast
Marching

Jean-Marie
Mirebeau

Context: F asymmetric norm on R2, T(F) the FM-ASR stencil,

Adaptive stencil
refinement F ( u
w(F) = max .
(F) luj=|v|=1 F(v)

~—
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<o Context: F asymmetric norm on R2, T(F) the FM-ASR stencil,

refinement F( u)
w(F) = max .
F) = s F )

Theorem (Worst and average stencil size)
For any asymmetric norm F on R?, denoting by Ry the rotation
of angle 0, one has #(T(F)) < Culnu, and

27

#(T(FoRp))do < Clndp
0

where p := max{2, u(F)}, and C is an absolute constant.
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£(Q) = /Q F(x)dx + / g(x)dx.

o2

Image

» Joint work with Laurent Cohen, Da Chen.
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Region segmentation using Rander geodesics
Define for any region Q C R? the energy

£(Q) = /Q F(x)dx + / g(x)dx.

o2

Assuming f = div w, this rewrites as

1
£(Q) = /89(<W(X), n(x)) + g(x))dx = /0 Frn (Y (1)) dt,
where 7 : [0, 1] — R? parametrizes 99 counter clockwise, and

Fv) = gVl + (w(x)", v).

» Joint work with Laurent Cohen, Da Chen.
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Region segmentation using Rander geodesics
Define for any region Q C R? the energy

£(Q) = /Q F(x)dx + / g(x)dx.

o2

Assuming f = div w, this rewrites as
1
£(Q) = /89(<W(X)7 n(x)) + g(x))dx = /0 Frn (Y (1)) dt,
where 7 : [0, 1] — R? parametrizes 99 counter clockwise, and
Fv) = gVl + (w(x)", v).
» A Rander metric, provided |w(x)| < g(x) for all x.

» Joint work with Laurent Cohen, Da Chen.
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Region segmentation using Rander geodesics
Define for any region Q C R? the energy

£(Q) = /Q F(x)dx + / g(x)dx.

o2

Assuming f = div w, this rewrites as

1
£(Q) = /89(<W(X), n(x)) + g(x))dx = /O Frn (Y (1)) dt,
where 7 : [0, 1] — R? parametrizes 99 counter clockwise, and

Fv) = gVl + (w(x)", v).

» A Rander metric, provided |w(x)| < g(x) for all x.
» Qs (locally) optimal iff 9 is a geodesic.
» Joint work with Laurent Cohen, Da Chen.
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» Compute the field w by solving an elliptic equation:
Ap=f = div(w) = f where w = Vp.

» Extract the minimizing Rander geodesics between some
known boundary points.
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» Compute the field w by solving an elliptic equation:
Ap=f = div(w) = f where w = Vp.

» Extract the minimizing Rander geodesics between some
known boundary points.

» The method is actually iterative, due to constraint
|w| < g, and so as to accept approximate boundary points.
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» Compute the field w by solving an elliptic equation:
Ap=fonUD09Q = div(w)=f where w = Vp.

» Extract the minimizing Rander geodesics between some
known boundary points.

» The method is actually iterative, due to constraint
|w| < g, and so as to accept approximate boundary points.
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Riemannian eikonal equations, and Voronoi's reduction
Monotone and causal schemes
Grid-adapted tensor decomposition
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A generalized finite differences scheme takes the form:

FU(x) := F(x, U(x), (U(x) = U(y))yex)
where X is a finite set, and U : X — E. Desirable properties:

Scheme for isotropic eikonal eqns (Rouy 92, Sethian 96)

At first order, denoting (&j)1<i<q4 the canonical basis of R,

[Vu(x)||? ~ h™2 Z max{0, u(x)—u(x—he;), u(x)—u(x+he;)}?
1<i<d
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Fast

Marehine FU(x) = F(x, U(x), (U(x) = U(y))yex);

rebens where X is a finite set, and U : X — E. Desirable properties:
Monotony
F is non-decreasing in its second and (each) third variable.

» Yields comparison princples, used for convergence analysis.

Scheme for isotropic eikonal eqns (Rouy 92, Sethian 96)

At first order, denoting (&j)1<i<q4 the canonical basis of R,

[Vu(x)||? ~ h™2 Z max{0, u(x)—u(x—he;), u(x)—u(x+he;)}?
1<i<d



Anisotropic A generalized finite differences scheme takes the form:

Fast

Marching FU(x) := F(x, U(x), (U(x) = U(y))yex)
rebens where X is a finite set, and U : X — E. Desirable properties:
Monotony
F is non-decreasing in its second and (each) third variable.
» Yields comparison princples, used for convergence analysis.
Causality
F only depends on the positive part of (each) third variable.
» Enables solving FU = 0 in a single pass, using the
ey fast-marching method (~ Dijkstra’s algorithm).

Scheme for isotropic eikonal eqns (Rouy 92, Sethian 96)

At first order, denoting (&j)1<i<q4 the canonical basis of R,

[Vu(x)||? ~ h™2 Z max{0, u(x)—u(x—he;), u(x)—u(x+he;)}?
1<i<d
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Mirebeau T
D= Z )\,-e,-e,- y
1<i<I

with non-negative weights \; > 0, and integer offsets e; € Z9.

» We select an admissible decomposition maximizing

> A

1<i<!

Grid-adapted

Optimal solution has | = d(d + 1)/2.
derponiion » The resulting linear program is known as Voronoi's first
reduction (dual), and widely studied.
» Symmetries enable extremely fast resolution (one per
discretization point).
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Fast Marching using Voronoi's First Reduction

At first order, assuming a decomposition D = Z,I':1 Ajeje

T

I

, u(x)—u(x—hei), u(x)—u(x—i—he,-)}2
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Fast Marching using Voronoi's First Reduction

At first order, assuming a decomposition D = Z, LAieie;,

[Vu(x)||3 ~ Z Ai max{0, u(x)—u(x—he;), u(x)—u(x+he;)}?
1<,</

» Number of terms: | = d(d + 1)/2.

Grid-adapted
tensor
decomposition
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Fast Marching using Voronoi's First Reduction

At first order, assuming a decomposition D = Z, LAieie;,

[Vu(x)||3 ~ Z Ai max{0, u(x)—u(x—he;), u(x)—u(x+he;)}?
1<,</

» Number of terms: | = d(d + 1)/2.
» Reduces to the original scheme if D = \ld.

Grid-adapted
tensor
decomposition



Anisotropic  Fast Marching using Voronoi's First Reduction

Fast

Marching At first order, assuming a decomposition D = Z _Aieiel,
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IVu(x)|lp ~ e Z A max{0, u(x)—u(x—he;), u(x)—u(x+he;)}

1<i<lI

» Number of terms: | = d(d +1)/2.
» Reduces to the original scheme if D = A ld.
Implemented in dimensions 2 to 5.

decompol tion

Figure: Unit ball defined by D!, and offsets e; appearing in the
decomposition of D associated with Voronoi's first reduction.

Reeds-Shepp
Other models
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decomposition

Fast Marching using Voronoi's First Reduction
T

i

At first order, assuming a decomposition D = S"1_, \;eje

[Vu(x)||3 ~ % Z A max{0, u(x)—u(x—he;), u(x)—u(x+he;)}>

» Number of terms: | = d(d +1)/2.
» Reduces to the original scheme if D = \ld.
» Implemented in dimensions 2 to 5.

+%W

Figure: Unit ball defined by D!, and offsets e; appearing in the
decomposition of D associated with Voronoi's first reduction.
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Fast Marching using Voronoi's First Reduction
T

i

At first order, assuming a decomposition D = S"1_, \;eje

» Number of terms: | = d(d +1)/2.
» Reduces to the original scheme if D = \ld.
» Implemented in dimensions 2 to 5.

Figure: Unit ball defined by D!, and offsets e; appearing in the
decomposition of D associated with Voronoi's first reduction.
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Fast Marching using Voronoi's First Reduction
At first order, assuming a decomposition D = >71_, \;eje

i

[Vu(x)||3 ~ 5 Z A max{0, u(x)—u(x—he;), u(x)—u(x+he;)}>

» Number of terms: | = d(d +1)/2.

» Reduces to the original scheme if D = \ld.

» Implemented in dimensions 2 to 5.
Theorem
For each > 1 and 6 € [0, 2], denote r,(0) := maxi<j</ | &il|
where (\j, ei)1<i<) comes from the decomposition of

i le(8) ® e(8) + pe(6)" ® e(6)".

Then, as . — oo pt=vP if2 < p < oo

Irulleeon) =< § VieInp if p=2
Vi ifl<p<2.
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Global optimization of curvature dependent energies
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The Reeds-Shepp model

Configuration space M, := R? x S!, positions and orientations.

G A Bgumy 1= €06 m)2 (507 + 20 507 + (1),

» Theoretically, ¢ — 0 and the model is sub-Riemannian.

» Numerically, good results obtained with ¢ = 0.1.

» Parametrization n = (cos#,sinf), 6 € [0, 27], of S*.
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Application to tubular structure segmentation

» Segmenting the retinal vascular tree using Reeds-Shepp
model, with data driven ¢(x, n). With R. Duits et al.
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e Application to tubular structure segmentation

Marching
Jean-Marie » Segmenting the retinal vascular tree using Reeds-Shepp

Mirebeau model, with data driven ¢(x, n). With R. Duits et al.

Reeds-Shepp
Other models

Figure: Density plot of the cost function c(x, y, ).
Related: (radius lift) Li and Yezzi 07, (@ lift) Péchaud et al 09.
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166 Ry = . ")2<<n,>'<>2 +e 2 |[Pa(x)II + [14]%).
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where P, := |d —n ® n is the orthogonal projection onto (Rn)=.

Reeds-Shepp

Figure: Left: P,(Xx) = 0.



M Higher dimensional Reeds-Shepp model(s)

Marchin
¢ The model extends to R3 x S?, and has an unexpected variant.

166 Ry = . n)2<<n,>'<>2 + 72| Pa(x)I1? + [|]%).

166 Ay = €06 '7)2(€’2<n,>'<>2 + [ PaGI + 1]1%)-

Jean-Marie
Mirebeau

where P, := |d —n ® n is the orthogonal projection onto (Rn)=.

Reeds-Shepp
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Fst Determination of the connectivity of white matter
Marching .
fibers, on dMRI data, with R. Duits et al

Jean-Marie
Mirebeau

» Difficulty: some fiber bundles cross each other.

» Our solution: minimal paths w.r.t. the Reeds-Shepp model,
imposing directional consistency, with suitable c¢(x, n).

“—g ;,Cf,?ﬁk ;35&4‘:*%:9
":|f~>-,1'f,""~;f‘f}';lT{r%ﬁ‘;;}:f;f - ]

1 AR ‘

v ’ o/ ' ‘ {

Reeds-Shepp — T |
Other models o : |
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Determination of the connectivity of white matter
fibers, on dMRI data, with R. Duits et al

» Difficulty: some fiber bundles cross each other.
» OQur solution: minimal paths w.r.t. the Reeds-Shepp model,
imposing directional consistency, with suitable ¢(x, n).

B 3

Front Front Back
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Problems addressed

Finslerian eikonal equations, and the Stern-Brocot tree

Riemannian eikonal equations, and Voronoi's reduction

Global optimization of curvature dependent energies
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
» Allows for cusps (shift into reverse gear).
» Has specific cost dependency /1 + x2, w.r.t. curvature .



A Curvature penalized planar paths

Marchin
o g The Reeds-Shepp model penalizes path curvature, but it:

Mirebeau » Allows for cusps (shift into reverse gear).
» Has specific cost dependency /1 + x2, w.r.t. curvature .
Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins
V14 K2 14 K2 1+ cor>1

Other models

Figure: Minimal paths, in free space.



Aee™e Curvature penalized planar paths

Marchin
o g The Reeds-Shepp model penalizes path curvature, but it:

Mirebeau » Allows for cusps (shift into reverse gear).
» Has specific cost dependency /1 + k2, w.r.t. curvature x.
Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins
V1+ k2 1+ K2 14 00x>1
RACHEL S iy \M !
Www AR
N_ .

Reeds-Shepp sy
Other models

Figure: Control sets of the different models
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Other models

Curvature penalized planar paths

The Reeds-Shepp model penalizes path curvature, but it:
» Allows for cusps (shift into reverse gear).

» Has specific cost dependency /1 + x2, w.r.t. curvature .

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins
V1+ k2 14 K2

d
o

=

1+ C??fc>1

Figure: Stencils used for the eikonal PDE discretization.
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
» Allows for cusps (shift into reverse gear).
» Has specific cost dependency v/1 + x2, w.r.t. curvature k.
Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins
V14 K2

Figure: Level set of the distance function.
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Other models

Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:

» Allows for cusps (shift into reverse gear).
» Has specific cost dependency v/1 + k2, w.r.t. curvature .

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins
V14 kK2 1+ k2 1+ 00k>1

Minimal paths for the Reeds-Shepp *forward* car

Figure: Backtracked geodesics,



Ao Curvature penalized planar paths

Marching

The Reeds-Shepp model penalizes path curvature, but it:

Jean-Marie
Mirebeau » Allows for cusps (shift into reverse gear).
» Has specific cost dependency V1 + k2, w.r.t. curvature .

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins
V1+ K2 14 K2 1+ 00k>1

Lo _Planar paths for the Euler-Mumford elastica model o Planar paths for the Dubins car

Other models

Figure: Backtracked geodesics, projected onto R?.
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Computation of threatening trajectories, and
optimization of a surveillance system.  With J. Dreo.

» An adversary starts at e, then visits e, finally returns to e

Dubins car Dubins car

» Related work by Barbaresco, Strode.
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Computation of threatening trajectories, and
optimization of a surveillance system.  With J. Dreo.

» An adversary starts at e, then visits e, finally returns to e
» His turning radius is bounded. Admissible paths T .

Dubins car Dubins car

» Related work by Barbaresco, Strode.
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Computation of threatening trajectories, and
optimization of a surveillance system.  With J. Dreo.

» An adversary starts at e, then visits e, finally returns to e
» His turning radius is bounded. Admissible paths T .

» Probability of detection depends on the distance and
orientation relative to the sensors. Cost function cy(x, n).

Dubins car Dubins car

» Related work by Barbaresco, Strode.
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Computation of threatening trajectories, and
optimization of a surveillance system.  With J. Dreo.

» An adversary starts at e, then visits e, finally returns to e
» His turning radius is bounded. Admissible paths T .

» Probability of detection depends on the distance and
orientation relative to the sensors. Cost function cy(x, n).

» Goal: optimize the sensor configuration A € A.

L)) . q
T@K(Tép/o ax(v(s),7'(s)) ds.

Dubins car Dubins car

» Related work by Barbaresco, Strode.
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» Cartesian grids, which are natural for numerous
applications, are not incompatible with anisotropic pbs.

Conclusion

Numerical codes, demo notebooks, available at
github.com/mirebeau/
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Thanks for your attention.

» Cartesian grids, which are natural for numerous
applications, are not incompatible with anisotropic pbs.

» The tools of lattice geometry allow to build fast, robust,
and accurate, adaptive numerical schemes.

» Handling (strongly) anisotropic PDEs allows to address
new models and applications.

Conclusion

Numerical codes, demo notebooks, available at
github.com/mirebeau/
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The Reeds-Shepp model in the visual system.

» Neurons of the first layer V1 of the visual cortex react to
stimuli at a specific position x and orientation 6 € [0, 7].

Figure: Pinwheel structure of V1. Orientations coded by color.
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A" Poggendorff's visual illusions
J:::.:i According to Franceschiello et al, the visual system infers,
Mirebeau between the endpoints of curves, a connection that:

» Has the correct tangents.

» Minimizes the Reeds-Shepp sub-Riemannian length.

First Poggendorf illusion

Conclusion

Figure: First Poggendorff illusion (perceived misalignment of lines),
and its interpretation based on the Reeds-Shepp model.
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Figure: First Poggendorff illusion (perceived misalignment of lines),
and its interpretation based on the Reeds-Shepp model.
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Figure: First Poggendorff illusion (perceived misalignment of lines),
and its interpretation based on the Reeds-Shepp model.
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Figure: Second Poggendorf illusion (perceived misalignment of circle
arcs), and its interpretation based on the Reeds-Shepp model.
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Figure: Second Poggendorf illusion (perceived misalignment of circle
arcs), and its interpretation based on the Reeds-Shepp model.
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Figure: Second Poggendorf illusion (perceived misalignment of circle
arcs), and its interpretation based on the Reeds-Shepp model.
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