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Introduction: anisotropy and cartesian grids

Problems addressed

Finslerian eikonal equations, and the Stern-Brocot tree
Semi-Lagrangian schemes
Adaptive stencil refinement
Application to image segmentation

Riemannian eikonal equations, and Voronoi’s reduction
Monotone and causal schemes
Grid-adapted tensor decomposition

Global optimization of curvature dependent energies
The Reeds-Shepp models
Euler-Mumford elastica curves, and others
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Anisotropy in Partial Differential Equations (PDEs)

Anisotropy is the existence of preferred directions, locally, in a
domain. The phenomenon is generic and ubiquitous, and may
have a variety of causes, such as:
I Micro-structure, either biological, geologic, synthetic.
I Different nature of the domain dimensions, e.g. R2 × S1.
I Proximity of the domain boundary, or of discontinuities.

In the numerical analysis of PDEs, (strong) anisotropy is a
source of difficulties.
I Increased numerical cost, accuracy loss, instabilities or

failure of the numerical methods.
Several approaches can be envisioned to address these.
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First approach: adapt the domain representation

I Encode the problem anisotropy in a Riemannian metric.
I Create an anisotropic mesh of the domain.

Figure: Adaptive interpolation of a function with a sharp transition.
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Second approach: adapt the numerical scheme

I A basic cartesian grid is used throughout this work.

I Local adaptive stencils are created independently at each
point, without any consistency constraint.

I Easily address asymmetric or three dimensional anisotropy.
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Comparative advantages of the two approaches
Adaptive meshes

I Locally adjust the sampling density.
I Domains of arbitrary shape, and topology.

I Conforming meshes are a pre-requisite for some
applications (e.g. finite volume or finite element schemes).

Adaptive stencils on cartesian grids

I Simplicity of implementation.
I Numerical cost.
I Tools of lattice geometry.

I Cartesian grids are a pre-requisite for some applications
(e.g image processing).

Different tools for different applications.
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Lattice geometry
Is the simultaneous study of a positive quadratic form, and of a
discrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?

I Which integers are sums of three squares ?
I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?
12301866845301177551304949583849627207728535695953347921973224521517264005072
63657518745202199786469389956474942774063845925192557326303453731548268507917
026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has
100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.
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The eikonal equation (Riemannian case)
The distance map u : Ω→ R to a domain’s boundary obeys

‖∇u(x)‖D(x) = 1

for a.e. x ∈ Ω, in viscosity sense, and u = 0 on ∂Ω. Where
D(x) is the inverse metric tensor and ‖v‖D :=

√
〈v ,Dv〉.

Contribution: Single pass methods for (strongly) anisotropic pb.

Applications

I Image segmentation, with L. Cohen, R. Duits, et al
I Motion planning, with J. Dreo (Thales).
I Perspectives: Seismology, with L. Metivier.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

The eikonal equation (Riemannian case)
The distance map u : Ω→ R to a domain’s boundary obeys

‖∇u(x)‖D(x) = 1

for a.e. x ∈ Ω, in viscosity sense, and u = 0 on ∂Ω. Where
D(x) is the inverse metric tensor and ‖v‖D :=

√
〈v ,Dv〉.

Contribution: Single pass methods for (strongly) anisotropic pb.

Applications

I Image segmentation, with L. Cohen, R. Duits, et al
I Motion planning, with J. Dreo (Thales).
I Perspectives: Seismology, with L. Metivier.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

The eikonal equation (Riemannian case)
The distance map u : Ω→ R to a domain’s boundary obeys

‖∇u(x)‖D(x) = 1

for a.e. x ∈ Ω, in viscosity sense, and u = 0 on ∂Ω. Where
D(x) is the inverse metric tensor and ‖v‖D :=

√
〈v ,Dv〉.

Contribution: Single pass methods for (strongly) anisotropic pb.

Applications

I Image segmentation, with L. Cohen, R. Duits, et al
I Motion planning, with J. Dreo (Thales).
I Perspectives: Seismology, with L. Metivier.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

The eikonal equation (Riemannian case)
The distance map u : Ω→ R to a domain’s boundary obeys

‖∇u(x)‖D(x) = 1

for a.e. x ∈ Ω, in viscosity sense, and u = 0 on ∂Ω. Where
D(x) is the inverse metric tensor and ‖v‖D :=

√
〈v ,Dv〉.

Contribution: Single pass methods for (strongly) anisotropic pb.

Applications

I Image segmentation, with L. Cohen, R. Duits, et al
I Motion planning, with J. Dreo (Thales).
I Perspectives: Seismology, with L. Metivier.
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Anisotropic diffusion

Given a diffusion tensor field D : Ω ⊆ Rd → S++
d , takes the

form
∂tu = div(D∇u),

with suitable initial and boundary conditions.

Contribution: Monotone schemes for anisotropic problems.

Applications:

I Image processing, with J. Fehrenbach. (D = D(u))
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Anisotropic diffusion

Given a diffusion tensor field D : Ω ⊆ Rd → S++
d , takes the

form
∂tu = Tr(D∇2u),

with suitable initial and boundary conditions.
Contribution: Monotone schemes for anisotropic problems.

Applications:

I Image processing, with J. Fehrenbach. (D = D(u))

I Non-divergence form anisotropic diffusion.
I Monge-Ampere operator, with Benamou, Collino.
I Perspectives: HJB PDEs of stochastic models, F. Bonnans.
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Introduction: anisotropy and cartesian grids

Problems addressed

Finslerian eikonal equations, and the Stern-Brocot tree
Semi-Lagrangian schemes
Adaptive stencil refinement
Application to image segmentation

Riemannian eikonal equations, and Voronoi’s reduction
Monotone and causal schemes
Grid-adapted tensor decomposition

Global optimization of curvature dependent energies
The Reeds-Shepp models
Euler-Mumford elastica curves, and others

Conclusion
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Context: Domain Ω, local metric F : TΩ→ R+ defining

dF (x , y) := inf
γ

∫ 1

0
Fγ(t)(γ′(t)) dt s.t.

{
γ ∈ Liploc([0, 1],Ω)

γ(0) = x , γ(1) = y .

Objective: Compute numerically the exit time to the boundary

u(x) = min
y∈∂Ω

dF (x , y).

Bellman’s optimality principle
For any neighborhood V of x contained in Ω.

u(x) = min
y∈∂V

(
dF (x , y) + u(y)

)
.

x

y

Γ
¶V

¶W
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Context: Finite sets X , ∂X approximating Ω, ∂Ω. Polyhedral
neighborhood V (x), of each x ∈ X , with vertices in X ∪ ∂X .

Semi-Lagrangian discretization
Find U : X ∪ ∂X → R, vanishing on ∂X , and such that ∀x ∈ X

U(x) = min
y∈∂V (x)

(
Fx(y − x) + IV (x) U(y)

)
.

x
¶VHxL

¶X

x y1

y2

¶VHxL
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Discretization yields a coupled system of non-linear equations.

∀x ∈ X ,U(x) = ΛU(x), ∀x ∈ ∂X ,U(x) = 0. (1)

Analogous problem: computing shortest paths on graphs
Neighbors S(x) of x ∈ X , edge lengths w(x , y), operator

ΛU(x) = min
y∈S(x)

(
w(x , y) + U(y)

)
.

System (1) is solvable in a single pass by Dijkstra’s algorithm iff

w(x , y) ≥ 0 for all x ∈ X , y ∈ S(x).

Acuteness implies causality (Sethian, Kimmel, Vladimirsky,
96)
System (1) is solvable by the fast marching method, in a single
pass, iff

(u, v) make an Fx -acute angle,

whenever x + u, x + v lie in a common facet of V (x).
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What is an acute angle ? (Sethian,Kimmel,Vladimirsky,96)
Vectors u, v ∈ E = Rd , make an F -acute angle, where
F : E→ R+ an asymmetric norm, iff
I (Euclidean case) Assuming F (x) = m‖x‖, where m > 0,

〈u, v〉 ≥ 0.

I (Riemannian case) Assuming F (x) = ‖x‖M , where M � 0,

〈u,Mv〉 ≥ 0.

I (Differentiable case) 〈∇F (u), v〉 ≥ 0, and 〈∇F (v), u〉 ≥ 0.

u
v

u
v

Mu

Mv

u
v

∇F(u)

∇F(v)
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What is an acute angle ? (Sethian,Kimmel,Vladimirsky,96)
Vectors u, v ∈ E = Rd , make an F -acute angle, where
F : E→ R+ an asymmetric norm, iff
I (Euclidean case) Assuming F (x) = m‖x‖, where m > 0,

〈u, v〉 ≥ 0.
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I (Differentiable case) 〈∇F (u), v〉 ≥ 0, and 〈∇F (v), u〉 ≥ 0.

Figure: Stencil constructions proposed for isotropic (left), or midly
anisotropic metrics, due to Sethian, Kimmel, Alton, ...
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Introduction: anisotropy and cartesian grids

Problems addressed

Finslerian eikonal equations, and the Stern-Brocot tree
Semi-Lagrangian schemes
Adaptive stencil refinement
Application to image segmentation

Riemannian eikonal equations, and Voronoi’s reduction
Monotone and causal schemes
Grid-adapted tensor decomposition

Global optimization of curvature dependent energies
The Reeds-Shepp models
Euler-Mumford elastica curves, and others

Conclusion
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Fast-Marching using Adaptive Stencil Refinement

I Iterative refinement of the stencil until the acuteness
property is met. (FM-ASR scheme, on 2D cartesian grids)

0

I The splitting procedure is exploits the grid additivity.
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property is met. (FM-ASR scheme, on 2D cartesian grids)

0

I The splitting procedure is exploits the grid additivity.
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The Stern Brocot tree

a

b

A

B
=

a + a¢

b + b¢

a¢

b¢

a

b

a + A

b + B

A

B

A + a¢

B + b¢

a¢

b¢

Obtain the (n + 1)-th line by inserting a+a′

b+b′ between
consecutive elements a

b and a′

b′ of the n-th line.
I Each positive rational number appears exactly once in the

tree, in its irreducible form.
I Well studied arithmetic object, used for rational

approximation.
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First Last

First

Last

Context: F asymmetric norm on R2, T (F ) the FM-ASR stencil,

µ(F ) := max
|u|=|v |=1

F (u)

F (v)
.

Theorem (Worst and average stencil size)
For any asymmetric norm F on R2, denoting by Rθ the rotation
of angle θ, one has #(T (F )) ≤ Cµ lnµ, and∫ 2π

0
#(T (F ◦ Rθ)) dθ ≤ C ln3 µ

where µ := max{2, µ(F )}, and C is an absolute constant.
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Region segmentation using Rander geodesics
Define for any region Ω ⊆ R2 the energy

E(Ω) :=

∫
Ω
f (x)dx +

∫
∂Ω

g(x)dx .

Assuming f = divw , this rewrites as

E(Ω) =

∫
∂Ω

(〈w(x), n(x)〉+ g(x))dx =

∫ 1

0
Fγ(t)(γ′(t)) dt,

where γ : [0, 1]→ R2 parametrizes ∂Ω counter clockwise, and

Fx(v) := g(x)‖v‖+ 〈w(x)⊥, v〉.

I A Rander metric, provided |w(x)| < g(x) for all x .
I Ω is (locally) optimal iff ∂Ω is a geodesic.

I Joint work with Laurent Cohen, Da Chen.
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I Compute the field w by solving an elliptic equation:

∆p = f

on U ⊇ ∂Ω

⇒ div(w) = f where w = ∇p.
I Extract the minimizing Rander geodesics between some

known boundary points.

I The method is actually iterative, due to constraint
|w | < g , and so as to accept approximate boundary points.

Figure: Image segmentation examples, with L. Cohen, Da Chen.
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A generalized finite differences scheme takes the form:

FU(x) := F (x ,U(x), (U(x)− U(y))y∈X ),

where X is a finite set, and U : X → E. Desirable properties:

Monotony
F is non-decreasing in its second and (each) third variable.
I Yields comparison princples, used for convergence analysis.

Causality
F only depends on the positive part of (each) third variable.
I Enables solving FU ≡ 0 in a single pass, using the

fast-marching method (∼ Dijkstra’s algorithm).

Scheme for isotropic eikonal eqns (Rouy 92, Sethian 96)
At first order, denoting (ei )1≤i≤d the canonical basis of Rd ,

‖∇u(x)‖2 ≈ h−2
∑

1≤i≤d
max{0, u(x)−u(x−hei ), u(x)−u(x+hei )}2
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W generalize the isotropic scheme using tensor decompositions

D =
∑
1≤i≤I

λieie
T
i ,

with non-negative weights λi ≥ 0, and integer offsets ei ∈ Zd .
I We select an admissible decomposition maximizing∑

1≤i≤I
λi .

Optimal solution has I = d(d + 1)/2.
I The resulting linear program is known as Voronoi’s first

reduction (dual), and widely studied.
I Symmetries enable extremely fast resolution (one per

discretization point).
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Fast Marching using Voronoi’s First Reduction
At first order, assuming a decomposition D =

∑I
i=1 λieie

T
i ,

‖∇u(x)‖2D ≈
1
h2

∑
1≤i≤I

λi max{0, u(x)−u(x−hei ), u(x)−u(x+hei )}2

I Number of terms: I = d(d + 1)/2.
I Reduces to the original scheme if D = λ Id.
I Implemented in dimensions 2 to 5.
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I Number of terms: I = d(d + 1)/2.
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I Implemented in dimensions 2 to 5.

Figure: Unit ball defined by D−1, and offsets ei appearing in the
decomposition of D associated with Voronoi’s first reduction.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

Fast Marching using Voronoi’s First Reduction
At first order, assuming a decomposition D =

∑I
i=1 λieie

T
i ,

‖∇u(x)‖2D ≈
1
h2

∑
1≤i≤I

λi max{0, u(x)−u(x−hei ), u(x)−u(x+hei )}2

I Number of terms: I = d(d + 1)/2.
I Reduces to the original scheme if D = λ Id.
I Implemented in dimensions 2 to 5.

Figure: Unit ball defined by D−1, and offsets ei appearing in the
decomposition of D associated with Voronoi’s first reduction.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

Fast Marching using Voronoi’s First Reduction
At first order, assuming a decomposition D =

∑I
i=1 λieie

T
i ,

‖∇u(x)‖2D ≈
1
h2

∑
1≤i≤I

λi max{0, u(x)−u(x−hei ), u(x)−u(x+hei )}2

I Number of terms: I = d(d + 1)/2.
I Reduces to the original scheme if D = λ Id.
I Implemented in dimensions 2 to 5.

Figure: Unit ball defined by D−1, and offsets ei appearing in the
decomposition of D associated with Voronoi’s first reduction.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion
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i ,

‖∇u(x)‖2D ≈
1
h2

∑
1≤i≤I

λi max{0, u(x)−u(x−hei ), u(x)−u(x+hei )}2

I Number of terms: I = d(d + 1)/2.
I Reduces to the original scheme if D = λ Id.
I Implemented in dimensions 2 to 5.

Theorem
For each µ ≥ 1 and θ ∈ [0, 2π], denote rµ(θ) := max1≤i≤I ‖ei‖
where (λi , ei )1≤i≤I comes from the decomposition of

µ−1e(θ)⊗ e(θ) + µe(θ)⊥ ⊗ e(θ)⊥.

Then, as µ→∞

‖rµ‖Lp([0,2π]) �


µ1−1/p if 2 < p ≤ ∞
√
µ lnµ if p = 2
√
µ if 1 ≤ p < 2.
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The Reeds-Shepp model
Configuration space M2 := R2 × S1, positions and orientations.

‖(ẋ , ṅ)‖2M(x ,n) := c(x , n)2
(
〈n, ẋ〉2 + ε−2〈n⊥, ẋ〉2 + ‖ṅ‖2

)
.

I Theoretically, ε→ 0 and the model is sub-Riemannian.
I Numerically, good results obtained with ε = 0.1.

I Parametrization n = (cos θ, sin θ), θ ∈ [0, 2π], of S1.
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Application to tubular structure segmentation
I Segmenting the retinal vascular tree using Reeds-Shepp

model, with data driven c(x , n). With R. Duits et al.
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Application to tubular structure segmentation
I Segmenting the retinal vascular tree using Reeds-Shepp

model, with data driven c(x , n). With R. Duits et al.

Figure: Density plot of the cost function c(x , y , θ).
Related: (radius lift) Li and Yezzi 07, (θ lift) Péchaud et al 09.
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Higher dimensional Reeds-Shepp model

(s)

The model extends to R3 × S2,

and has an unexpected variant.

‖(ẋ , ṅ)‖2M(x ,n) := c(x , n)2
(
〈n, ẋ〉2 + ε−2‖Pn(ẋ)‖2 + ‖ṅ‖2).

‖(ẋ , ṅ)‖2M̃(x ,n)
:= c(x , n)2

(
ε−2〈n, ẋ〉2 + ‖Pn(ẋ)‖2 + ‖ṅ‖2).

where Pn := Id−n⊗ n is the orthogonal projection onto (Rn)⊥.

Figure: Left: Pn(ẋ) = 0.

Right: 〈n, ẋ〉 = 0.
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where Pn := Id−n⊗ n is the orthogonal projection onto (Rn)⊥.
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Conclusion

Determination of the connectivity of white matter
fibers, on dMRI data, with R. Duits et al

I Difficulty: some fiber bundles cross each other.
I Our solution: minimal paths w.r.t. the Reeds-Shepp model,

imposing directional consistency, with suitable c(x , n).
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Introduction: anisotropy and cartesian grids

Problems addressed

Finslerian eikonal equations, and the Stern-Brocot tree
Semi-Lagrangian schemes
Adaptive stencil refinement
Application to image segmentation

Riemannian eikonal equations, and Voronoi’s reduction
Monotone and causal schemes
Grid-adapted tensor decomposition

Global optimization of curvature dependent energies
The Reeds-Shepp models
Euler-Mumford elastica curves, and others

Conclusion
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
I Allows for cusps (shift into reverse gear).
I Has specific cost dependency

√
1 + κ2, w.r.t. curvature κ.

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins√
1 + κ2 1 + κ2 1 +∞κ>1

Figure: Minimal paths, in free space.
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
I Allows for cusps (shift into reverse gear).
I Has specific cost dependency

√
1 + κ2, w.r.t. curvature κ.

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins√
1 + κ2 1 + κ2 1 +∞κ>1

Figure: Control sets of the different models
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
I Allows for cusps (shift into reverse gear).
I Has specific cost dependency

√
1 + κ2, w.r.t. curvature κ.

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins√
1 + κ2 1 + κ2 1 +∞κ>1

Figure: Stencils used for the eikonal PDE discretization.
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
I Allows for cusps (shift into reverse gear).
I Has specific cost dependency

√
1 + κ2, w.r.t. curvature κ.

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins√
1 + κ2 1 + κ2 1 +∞κ>1

Figure: Level set of the distance function.
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Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
I Allows for cusps (shift into reverse gear).
I Has specific cost dependency

√
1 + κ2, w.r.t. curvature κ.

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins√
1 + κ2 1 + κ2 1 +∞κ>1

Figure: Backtracked geodesics,

projected onto R2.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

Curvature penalized planar paths
The Reeds-Shepp model penalizes path curvature, but it:
I Allows for cusps (shift into reverse gear).
I Has specific cost dependency

√
1 + κ2, w.r.t. curvature κ.

Generalizing the previous approach, we compute paths globally
minimizing various curvature dependent energies.

Reeds-Shepp forward Euler-Mumford Dubins√
1 + κ2 1 + κ2 1 +∞κ>1

Figure: Backtracked geodesics, projected onto R2.



Anisotropic
Fast

Marching

Jean-Marie
Mirebeau

Introduction

Panorama

Finslerian
eikonal
Semi-Lagrangian
schemes

Adaptive stencil
refinement

Image
segmentation

Riemannian
eikonal
Monotony and
causality

Grid-adapted
tensor
decomposition

Curvature
penalization
Reeds-Shepp

Other models

Conclusion

Computation of threatening trajectories, and
optimization of a surveillance system. With J. Dreo.

I An adversary starts at •, then visits •, finally returns to •

I His turning radius is bounded. Admissible paths Γ.
I Probability of detection depends on the distance and

orientation relative to the sensors. Cost function cλ(x , n).
I Goal: optimize the sensor configuration λ ∈ Λ.

max
λ∈Λ

min
γ∈Γ

∫ L(γ)

0
cλ(γ(s), γ′(s)) ds.

Dubins car Dubins car

I Related work by Barbaresco, Strode.
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Introduction: anisotropy and cartesian grids
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Conclusion

Thanks for your attention.

I Cartesian grids, which are natural for numerous
applications, are not incompatible with anisotropic pbs.

I The tools of lattice geometry allow to build fast, robust,
and accurate, adaptive numerical schemes.

I Handling (strongly) anisotropic PDEs allows to address
new models and applications.

Numerical codes, demo notebooks, available at
github.com/mirebeau/

github.com/mirebeau/
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The Reeds-Shepp model in the visual system.
I Neurons of the first layer V1 of the visual cortex react to

stimuli at a specific position x and orientation θ ∈ [0, π].

I Short range connectivity (marked by biocytin’s diffusion) is
isotropic, while long-range connectivity is anisotropic and
limited to iso-orientation domains. Bosking et al.

I Petitot, Citti, Sarti, connect with the Reeds-Shepp model.

Figure: Pinwheel structure of V1. Orientations coded by color.
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Conclusion

Poggendorff’s visual illusions
According to Franceschiello et al, the visual system infers,
between the endpoints of curves, a connection that:
I Has the correct tangents.
I Minimizes the Reeds-Shepp sub-Riemannian length.

Figure: First Poggendorff illusion (perceived misalignment of lines),
and its interpretation based on the Reeds-Shepp model.
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Poggendorff’s visual illusions
According to Franceschiello et al, the visual system infers,
between the endpoints of curves, a connection that:
I Has the correct tangents.
I Minimizes the Reeds-Shepp sub-Riemannian length.

Figure: First Poggendorff illusion (perceived misalignment of lines),
and its interpretation based on the Reeds-Shepp model.
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Poggendorff’s visual illusions
According to Franceschiello et al, the visual system infers,
between the endpoints of curves, a connection that:
I Has the correct tangents.
I Minimizes the Reeds-Shepp sub-Riemannian length.

Figure: Second Poggendorf illusion (perceived misalignment of circle
arcs), and its interpretation based on the Reeds-Shepp model.
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According to Franceschiello et al, the visual system infers,
between the endpoints of curves, a connection that:
I Has the correct tangents.
I Minimizes the Reeds-Shepp sub-Riemannian length.

Figure: Second Poggendorf illusion (perceived misalignment of circle
arcs), and its interpretation based on the Reeds-Shepp model.
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Poggendorff’s visual illusions
According to Franceschiello et al, the visual system infers,
between the endpoints of curves, a connection that:
I Has the correct tangents.
I Minimizes the Reeds-Shepp sub-Riemannian length.

Figure: Second Poggendorf illusion (perceived misalignment of circle
arcs), and its interpretation based on the Reeds-Shepp model.
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