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Subjective boundaries

I Human tend to “see” invisible boundaries that yield plausible
objects.

I Important mechanism of the human visual system to interpret the
3D world under normal conditions.

I Provides strong clues for depth recognition [Nitzberg, Mumford,
Shiota ’93].

I Psychophysical experiments suggest that those boundaries are well
modeled by elastic curves [Kanizsa ’79].
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The Elastica functional

I ...obtained from minimizers of the Elastica energy

∫
Γ

(1 + α2|κ|2) dγ , α > 0.

I Long history, dating back at least to Bernoulli (1691) and Euler
(1744)
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Generalization to images

The Elastic curve energy can be generalized to whole images by imposing
the Elastica energy to each level line of an image u ∈ C2

c (Ω,R) [Masnou,
Morel ’98], [Ambrosio, Masnou ’03]∫
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Minimizing the Elastica energy

I The Elastica energy is highly non-convex and hence is difficult to
minimize directly

I Involves higher-order derivatives and hence is difficult to discretize
and minimize [Chan, Kang, Shen ’03].

I Recent approaches are based on Augmented Lagrangian approaches,
which amounts to solving a non-convex saddle-point problem [Tai,
Hahn, Chung ’11], [Yashtini, Kang ’15], [Bae, Tai, Zhu ’17],
[Dweng, Glowinsky, Tai ’18].

I Related methods exist in the PDE community, e.g. Weickert’s EED
[Weickert ’96] or joint interpolation of vector fields and intensities
[Ballester, Bertalmio, Caselles, Sapiro, Verdera ’03]

I In shape processing, phase-field methods have successfully been used
to minimize the Willmore energy [Franken, Rumpf, Wirth ’10],
[Dondl, Mugnai, Röger ’13], [Bretin, Masnou, Oudet ’13]
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Visual cortex

I Experiments suggest that the visual cortex is made of orientation
sensitive layers [Hubel, Wiesel ’59]

I Cells are connected between the layers to get a sense of curvature at
objects boundaries
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Mathematical models of the visual cortex

I The basic idea for a mathematical model is to keep the local
orientation of the boundary as a separate variable.

I Related to the “Gauss map” (x , ν(x)) [Anzelotti ’88] and also
“curvature varifolds” [Hutchinson ’86].

I In image processing, the idea is to represent image boundaries
(gradients) in the Roto-translation (RT) space Ω × S1.

I Use the sub-Riemannian structure of the RT space to describe the
geometry of the visual cortex [Koenderink, van Doorn ’87], [Hoffman
’89], [Zucker ’00], [Petitot, Tondut ’98/’03], [Citti, Sarti ’03/’06].

I Sub-Riemannian diffusion in the RT space for inpainting and
denoising problems [Citti, Sarti ’03/’06], [Franken, Duits ’10],
[Boscain, Chertovskih, Gauthier, Remizov ’14], [Citti, Franceschiello,
Sanguinetti, Sarti ’15], [Duits et al. ’19]

I Geodesics (minimal paths) by solving an anisotropic Eikonal
equation [Mirebeau ’14, ’17], [Duits et al. ’14, ’16], [Mirebeau ’18]
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Variational / energy minimization approaches

I LP relaxations / discrete optimization on graphs [Schoenemann,
Cremers ’07], [Schoenemann, Kahl, Cremers ’09], [El Zehiry, Grady
’10], [Strandmark, Kahl ’11], [Nieuwenhuis, Toeppe, Gorelick,
Veksler, Boykov ’14]

I Total vertex regularization (TVX) [Bredies, P. Wirth ’13], uses
curvature penalizations in the 3D RT Ω× S1 space based on a
metric on S1 (not quadartic curvature).

I Extension of the lifting idea to a 4D space Ω× S1 × R [Bredies, P.
Wirth ’15] to penalize the quadratic curvature.

I This talk: arbitrary convex function (also quadratic) of the curvature
in the 3D RT space Ω× S1.
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Parametrized curves in the plane
I Consider the boundary of a smooth 2D set E ⊂ Ω ⊆ R2 represented

by a parametrized curve γ(t) = (x1(t), x2(t)) with parameter
t ∈ [0, 1].

I Its arc length variation is given by

ds

dt
= |γ̇(t)| =

√
(ẋ1(t))2 + (ẋ2(t))2

I The tangential angle θ(t) is such that

γ̇(t)

|γ̇(t)|
= (cos θ(t), sin θ(t))

I The curvature κE of ∂E is defined as the ratio between the variation
of the tangential angle θ and the variation of its length s, that is

κE =
dθ

ds
=

dθ
dt
ds
dt

=
dθ
dt√

(ẋ1(t))2 + (ẋ2(t))2
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Lifting the curve

I We now “lift” the 2D curve γ(t) to a
3D curve Γ(t) = (x1(t), x2(t), θ(t)) in
the RT space Ω × S1:

I The length of the lifted curve is given
by∫ 1

0
|Γ̇(t)| dt =

∫ 1

0

√
(ẋ1(t))2 + (ẋ2(t))2 + (θ̇(t))2 dt

=
∫ 1

0

√
1 + (θ̇(t))2

(ẋ1(t))2+(ẋ2(t))2

√
(ẋ1(t))2 + (ẋ2(t))2 dt

=
∫ L

0

√
1 + κ2

E ds

I Length of the curve in the lifted space
has a “sense” of curvature!

I How can we generalize this to more
general energies involving the
curvature?

−1

0

1
−1 −0.5

0 0.5
1

0

2

4

6

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

E

∂E

dx2

dx1
dθ

x1

x2

θ

10 / 36



Normalized tangential field

I We define the tangential vector p(t) = (px(t), pθ(t)) where

px(t) = (ẋ1(t), ẋ2(t)) , pθ(t) = θ̇(t), |px(t)| =
√

(ẋ1(t))2 + (ẋ2(t))2

I We further define the normalized tangential field
τ(x , θ) = (τ x(x , θ), τθ(x , θ)) in Ω × S1

τ(x(t), θ(t)) =
p(t)

|p(t)|
, ∀t ∈ [0, 1]

I The curvature is therefore given by

κE (t) =
pθ(t)

|px(t)|
=

τθ(x(t), θ(t))

|τ x(x(t), θ(t))|
,
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Curvature penalizing energies

I We consider f : R→ [0,+∞] a convex, lower-semicontinuous
function and want to define a lower-semicontinuous extension to
energies of the type

E 7→
∫
∂E

f (κE ) dH1,

where E ⊂ Ω is a set with C 2 boundary, and κE is the curvature of
the set.

I Using the normalized tangential vector field τ(x , θ), the energy can
be extended to Ω × S1:∫

∂E

f (κE ) dH1 =

∫
Ω×S1

f (τθ/|τ x |)|τ x | dH1 ΓE ,

where ΓE is the lifted curve.

I Note that the expression f (τθ/|τ x |)|τ x | is in the form of the
perspective of a convex function.
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Different convex energies∫
Ω×S1

f (τθ/|τ x |)|τ x | dH1 ΓE

I f1(s) = 1 + α|s|: Total Absolute Curvature∫
Ω×S1

|τ x |+ α|τθ| dH1 ΓE .

I f2(s) =
√

1 + α2|s|2: Total Roto-Translational Variation 1∫
Ω×S1

√
|τ x |2 + α2|τθ|2 dH1 ΓE

I f3(s) = 1 + α2|s|2: Total Squared Curvature∫
Ω×S1

|τ x |+ α2 |τθ|2

|τ x |
dH1 ΓE .

Convex energies in the measure σ = τ dH1 ΓE

1Also known as Reeds-Shepp model for cars [Reeds, Shepp ’90]
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The measure σ

The measure σ = τ dH1 ΓE is not arbitrary: It satisfies two important
constraints:

(i) By construction, it is a circulation and has zero divergence in Ω × S1

since we want to represent closed curves (or ending at the
boundary).

(ii) Its marginals in Ω × S1, denoted by σ̄ =
∫
S1 σ

x also have zero
divergence.

(iii) It follows that there exists a BV function u such that Du⊥ = σ̄, here
u is the characteristic function of the set E .
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Convex representation

I We define the following convex function

h(θ, p) =


|px |f (pθ/|px |) if px ∈ IR+θ, p

x 6= 0,

f∞(pθ) if px = 0,

+∞ else.

,

where f∞(t) = lims→0 sf (t/s) is the recession function of f .

I This function encodes the sub-Riemannian structure of Ω × S1.

I It is well known that h is a one-homogeneous function, hence the
support function of a convex set, that is

h(θ, p) = sup
ξ∈H(θ)

ξ · p

where the convex set H(θ) is given by:

H(θ) = {ξ = (ξx , ξθ) ∈ R3 : ξx · θ ≤ −f ∗(ξθ)}, θ = (cos θ, sin θ)
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Visualization of the set H(θ)
Example using f (t) = 1 + α2t2 (Elastica):

H(θ) = {ξ = (ξx , ξθ) ∈ R3 : ξx · θ +
(ξθ)2

(2α)2
≤ 1}

ξx1

ξx2

H

ξxθ

(a) H ∩ {(ξx , ξθ) : ξx ∈ R2, ξθ = 0}

ξxθ

ξθ

P

1

(b) Profile P
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The functional
I We introduce the following functional:

F (u) = inf

{∫
Ω×S1

h(θ, σ) : divσ = 0, σ̄ = Du⊥
}

I In general, σ is a bounded Radon measure, therefore the correct way
to write the energy is rather∫

Ω×S1

h

(
θ,

σ

|σ|

)
d |σ|.

and the constraints are understood in the weak sense.
I We assume that f (t) ≥ γ

√
1 + t2 such that

F (u) ≥ γ
∫

Ω×S1

|σ| ≥ γ
∫

Ω

|Du|

I It can be shown that the functional is convex, lower-semicontinuous
on BV (Ω), since∫

Ω×S1

h(θ, σ) = sup
ϕ(x,θ)∈H(θ)

∫
Ω×S1

ϕ · σ
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Tightness of the representation

We can show the following result:

Theorem
Let E ⊂ Ω be a set with C 2 boundary. Then

F (χE ) =

∫
∂E∩Ω

f (κE (x))dH1(x).

I The proof is based on Smirnov’s theorem (1994), which shows that
if σ is a measure with divσ = 0 then it is a superposition of curves.

I We conjecture that our result can be extended to general BV
functions u with C 2 level sets, hence coinciding with Masnou and
Morel’s model.

I We could hope that F (u) is the lower-semicontinuous envelope of
the original functional, however, simple examples show that this is
not the case [Bellettini, Mugnai ’04/’05], [Dayrens, Masnou ’16].
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Dual representation

I Recall our primal functional

F (u) = inf

{∫
Ω×S1

h(θ, σ) : divσ = 0, σ̄Du⊥
}
.

I It has the following dual representation

F (u) = sup

{∫
Ω

ψ · Du⊥ : ψ ∈ C 0
c (Ω;R2),

∃ϕ ∈ C 1
c (Ω × S1), θ · (∇xϕ+ ψ) + f ∗(∂θϕ) ≤ 0

}
.

I Coincides with the dual representation in our previous work [Bredies,
P. Wirth ’15] which is based on an explicit lifting of the curvature
variable.

I In our approach the curvature variable appears naturally as the
derivative of the orientation.
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Discretization

I We use a staggered
2D-3D averaged
Raviart-Thomas finite
elements discretization
based on cubes.

I Divergence-conforming
discretization, uses a
cube-center-based
quadrature rule for the
energy.

I We can show
consistency of the
discretization up to
small oscillations.

(i, j) (i + 1
2 , j + 1

2 )

(i + 1, j)

(i, j + 1)

Si,j

(i, j, k)

Vi,j,k
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Discrete Problem
I The consider discrete optimization problems of the form

min
u

Fδ(u) + Gδ(u),

with

Fδ(u) = min
σ

{
δ2
xδθ

∑
j=(i,j,k)∈J

h(kδθ, (Aσ)j) : Dσ = 0, Pσ − Gu = 0

}
.

I We solve this non-smooth convex optimization problem by
considering its Lagrangian

min
u,σ

max
φ,ψ,ξ

∑
j∈J

(Aσ)j · ξj −
∑

j=(i,j,k)∈J

h∗(kδθ, ξj) + Gδ(u) +∑
j∈J

(Dσ)jφj +
∑

i∈I1∪I2

((Pσ)i − (Gu)i)ψi,

I We solve the saddle-point problem with a pre-conditioned first-order
primal-dual algorithm.
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First experiment: computing a disk

I Consider the Elastica energy for the boundary of a disk∫
∂B(0,r)

(1 + α2κ2)dH1 = 2π(r + α2/r)

I The energy is minimized for r = 1/α.

I We study the effect of different discretizations of the angular
dimension by computing (via inpainting) a disk of radius r = 10.

Nθ HTV (2πr ≈ 62.83) HAC (2π ≈ 6.28) HSC (2π/r ≈ 0.62)

4 60.10 6.34 1.75
8 54.80 6.28 0.89

16 58.50 6.28 0.70
32 61.52 6.28 0.64
64 62.93 6.28 0.62
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Disk inpainting

(a) u0

(b) Nθ = 4 (c) Nθ = 8 (d) Nθ = 16 (e) Nθ = 32 (f) Nθ = 64
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Visualization of the measure σ
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Where it fails: Non-smooth level sets

I We consider the following inpainting problem by minimizing the
Elastica energy.

(a) Original image (b) Input image u0 (c) Computed image u

I The energy of the original Elastica energy should be infinite

I Our convexification finds a lower energy solutions with non-smooth
level sets
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Visualization of the measure σ
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Shape regularization

I We consider the problem of regularizing a given shape
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Shape regularization

(a) TAC, λ = 8 (b) TAC, λ = 4 (c) TAC, λ = 2
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Shape regularization

(a) TRV, λ = 8 (b) TRV, λ = 4 (c) TRV, λ = 2
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Shape regularization

(a) TSC, λ = 8 (b) TSC, λ = 4 (c) TSC, λ = 2
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Shape completion (1)

(a) Input image (b) TAC, α = 15 (c) TRV, α = 15 (d) TSC, α = 50

(e) Input image (f) TAC, α = 15 (g) TRV, α = 15 (h) TSC, α = 10
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Shape completion (2)

(a) Input image (b) TAC, α = 15 (c) TRV, α = 15 (d) TSC, α = 10

(e) Input images with rotations 0, π/8, π/4 (f) TAC, α = 15
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Weickert’s cat

I Shape reconstruction from “dipole” data

I The dipoles are original data from J. Weickert.

Dipole data
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Weickert’s cat

I Shape reconstruction from “dipole” data

I The dipoles are original data from J. Weickert.

Minimizing the TSC energy
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Weickert’s cat

I Shape reconstruction from “dipole” data

I The dipoles are original data from J. Weickert.

Original shape
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Image inpainting

Input
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Image inpainting

TV
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Image inpainting

TSC
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Image inpainting

Input

33 / 36



Image inpainting

TV
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Image inpainting

TSC
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Image denosing: Guassian noise

Input
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Image denosing: Guassian noise

TV, α = 0, λ = 10
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Image denosing: Guassian noise

TSC, α = 10, λ = 40
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Image denosing: S & P noise

Input
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Image denosing: S & P noise

TV, α = 0, λ = 2
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Image denosing: S & P noise

TSC, α = 10, λ = 7
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Conclusion
I Convex representation of curvature penalizing variational

models for shape and image processing

I Tightness result for C 2 shapes

I Functional is below the convex envelope of the original energy

I Discretization based on staggered averaged Raviart-Thomas finite
elements

I Numerical computation using primal-dual schemes

I A fine resolution of the angular domain is necessary to faithfully
approximate squared curvature

I Application to various shape and image processing problems

Thank you for listening!
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