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Subjective boundaries
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» Human tend to “see” invisible boundaries that yield plausible
objects.

» Important mechanism of the human visual system to interpret the
3D world under normal conditions.

» Provides strong clues for depth recognition [Nitzberg, Mumford,
Shiota '93].

» Psychophysical experiments suggest that those boundaries are well
modeled by elastic curves [Kanizsa '79].
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The Elastica functional

» ...obtained from minimizers of the Elastica energy

B

C

JO R

/(1 +a?|k?) dy, a > 0.
.

» Long history, dating back at least to Bernoulli (1691) and Euler
(1744)
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Generalization to images

The Elastic curve energy can be generalized to whole images by imposing
the Elastica energy to each level line of an image u € C2(Q, R) [Masnou,
Morel '98], [Ambrosio, Masnou '03]
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Minimizing the Elastica energy

» The Elastica energy is highly non-convex and hence is difficult to
minimize directly

» Involves higher-order derivatives and hence is difficult to discretize
and minimize [Chan, Kang, Shen '03].

P> Recent approaches are based on Augmented Lagrangian approaches,
which amounts to solving a non-convex saddle-point problem [Tai,
Hahn, Chung '11], [Yashtini, Kang '15], [Bae, Tai, Zhu '17],
[Dweng, Glowinsky, Tai '18].

P Related methods exist in the PDE community, e.g. Weickert's EED

[Weickert '96] or joint interpolation of vector fields and intensities
[Ballester, Bertalmio, Caselles, Sapiro, Verdera '03]

» In shape processing, phase-field methods have successfully been used
to minimize the Willmore energy [Franken, Rumpf, Wirth '10],
[Dondl, Mugnai, Roger '13], [Bretin, Masnou, Oudet '13]
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Visual cortex
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» Experiments suggest that the visual cortex is made of orientation
sensitive layers [Hubel, Wiesel '59]

» Cells are connected between the layers to get a sense of curvature at
objects boundaries
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Mathematical models of the visual cortex

» The basic idea for a mathematical model is to keep the local
orientation of the boundary as a separate variable.

» Related to the “Gauss map” (x,v(x)) [Anzelotti '88] and also
“curvature varifolds” [Hutchinson '86].

» In image processing, the idea is to represent image boundaries
(gradients) in the Roto-translation (RT) space Q x St.

P Use the sub-Riemannian structure of the RT space to describe the
geometry of the visual cortex [Koenderink, van Doorn '87], [Hoffman
"89], [Zucker '00], [Petitot, Tondut '98/'03], [Citti, Sarti '03/'06].

» Sub-Riemannian diffusion in the RT space for inpainting and
denoising problems [Citti, Sarti '03/'06], [Franken, Duits "10],
[Boscain, Chertovskih, Gauthier, Remizov '14], [Citti, Franceschiello,
Sanguinetti, Sarti '15], [Duits et al. '19]

» Geodesics (minimal paths) by solving an anisotropic Eikonal
equation [Mirebeau '14, '17], [Duits et al. '14, '16], [Mirebeau '18]
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Variational / energy minimization approaches

» LP relaxations / discrete optimization on graphs [Schoenemann,
Cremers '07], [Schoenemann, Kahl, Cremers '09], [El Zehiry, Grady
'10], [Strandmark, Kahl '11], [Nieuwenhuis, Toeppe, Gorelick,
Veksler, Boykov '14]

» Total vertex regularization (TVX) [Bredies, P. Wirth '13], uses
curvature penalizations in the 3D RT Q x S! space based on a
metric on S! (not quadartic curvature).

» Extension of the lifting idea to a 4D space Q x St xR [Bredies, P.
Wirth '15] to penalize the quadratic curvature.
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Parametrized curves in the plane

» Consider the boundary of a smooth 2D set E C Q C R? represented
by a parametrized curve y(t) = (x1(t), x2(t)) with parameter
t €[0,1].
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Parametrized curves in the plane

>

Consider the boundary of a smooth 2D set £ C Q C R? represented
by a parametrized curve y(t) = (x1(t), x2(t)) with parameter
t €[0,1].

Its arc length variation is given by
ds . - 3 - 5
< = Ji(0) = VEROF + GalD)

The tangential angle 6(t) is such that

M = (cos O(t),sin O(t))

The curvature kg of OE is defined as the ratio between the variation
of the tangential angle 6 and the variation of its length s, that is

do _do _do
Kp = =t = dt
s > >
ds 1 V(a(1)? + (e(1))?
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Lifting the curve

> We now “lift” the 2D curve (t) to a

3D curve I'(t) =

(x

1(1), x2(t),60(t)) in

the RT space Q x S!:

» The length of the lifted curve is given

by

Jo IF(e)] dt

S Ga(0) + (a(0)? + (B(2))? dt

fO \/1 (x( (fz(
0 \/1+/1E ds

2

% (D)2 V(3 ()2 + (k(1))? dt

» Length of the curve in the lifted space
has a “sense” of curvature!

» How can we generalize this to more
general energies involving the

curvature?

dx
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Normalized tangential field

> We define the tangential vector p(t) = (p*(t), p?(t)) where

Pi(t) = (xa(t). (1), p7(8) =0(t), [P ()] = V/(xa())? + (xe(t))?

» We further define the normalized tangential field
7(x,0) = (1¥(x,0),7%(x,0)) in Q x S

(0. 06) = P v e o)

|p(t)

» The curvature is therefore given by
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Curvature penalizing energies

» We consider f : R — [0, +00] a convex, lower-semicontinuous
function and want to define a lower-semicontinuous extension to
energies of the type

E— [ f(ke)dH,
JOE

where E C Q is a set with C? boundary, and kg is the curvature of
the set.

» Using the normalized tangential vector field 7(x, #), the energy can
be extended to  x S!:

f(re) At = [ F(7%/|7))|7| dH L TE,
oE Q xSt

where [g is the lifted curve.

» Note that the expression f(7%/|7¥|)|7*| is in the form of the
perspective of a convex function.
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Different convex energies

/ F(r0 )| )| ML Te
Q xSt

LAlso known as Reeds-Shepp model for cars [Reeds, Shepp '90]
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’ Convex energies in the measure o = 7 dH* T
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The measure o

The measure 0 = 7 dH! L ¢ is not arbitrary: It satisfies two important
constraints:

(i) By construction, it is a circulation and has zero divergence in Q x S!
since we want to represent closed curves (or ending at the
boundary).

(i) Its marginals in Q x S, denoted by & = [, 0™ also have zero
divergence.

(iii) It follows that there exists a BV function u such that Du’ = &, here
u is the characteristic function of the set E.
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Convex representation

» We define the following convex function

pX|F(p°/ 1) if p* € IR16, p* #0,
h(6,p) = § £(p”) if p* =0, :
+00 else.

where £°°(t) = lims_o sf(t/s) is the recession function of f.
» This function encodes the sub-Riemannian structure of Q x St.

» It is well known that h is a one-homogeneous function, hence the
support function of a convex set, that is

h(0,p) = sup &-p
§EH(0)

where the convex set H(0) is given by:

HO)={¢= (&) eR®: &0 <~ (&)}, 0= (cosb,sin0)
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Visualization of the set H(6)
Example using f(t) = 1 + a?t? (Elastica):

H(O) = {&= (&) e R &0+

(€7)
(207 =1

£

(a) HN{(¢",¢%) & e R?, ¢ =0}

(b) Profile P
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The functional
» We introduce the following functional:

F(u) = inf{/Q h(0,0) : divo =0, & = DUL}

xSt

» In general, o is a bounded Radon measure, therefore the correct way
to write the energy is rather

/ h <9, ") d|o].
Q xSt |o|

and the constraints are understood in the weak sense.
> We assume that f(t) > vv/1+ t? such that

Fw=a [ ol=v [ [0
Qx§t Q

» |t can be shown that the functional is convex, lower-semicontinuous
on BV(Q), since

/ h(8,0) =  sup / p-o
Q xSt p(x,0)eH(0) JQ xSt
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Tightness of the representation

We can show the following result:

Theorem
Let E C Q be a set with C? boundary. Then

Flxe) = /8 e ().

» The proof is based on Smirnov's theorem (1994), which shows that

if o is a measure with divo = 0 then it is a superposition of curves.

» We conjecture that our result can be extended to general BV
functions u with C? level sets, hence coinciding with Masnou and
Morel’s model.

» We could hope that F(u) is the lower-semicontinuous envelope of
the original functional, however, simple examples show that this is
not the case [Bellettini, Mugnai '04/'05], [Dayrens, Masnou '16].
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Dual representation

» Recall our primal functional

F(u) = inf{/Q h(0,0) : dive =0, 5DUJ'}.

xSt

» It has the following dual representation
Flu) = sup{/w-DuJ‘ L€ CO(Q;R?),
Q

Jpe CHQ X SY, 0 (Vip+ ) + F*(Dpyp) < 0}-

» Coincides with the dual representation in our previous work [Bredies,
P. Wirth '15] which is based on an explicit lifting of the curvature
variable.

» In our approach the curvature variable appears naturally as the
derivative of the orientation.
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Discretization

» We use a staggered
2D-3D averaged
Raviart-Thomas finite
elements discretization
based on cubes.

» Divergence-conforming
discretization, uses a
cube-center-based
quadrature rule for the
energy.

» We can show
consistency of the
discretization up to
small oscillations.
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Discrete Problem

» The consider discrete optimization problems of the form
min Fs(u) + Gs(u),
u

with

Fg(u):mgin {5)%59 Z h(kdg, (Ac);) : Do =0, Pa—gu—O}.

=(iJ,k)eT

» We solve this non-smooth convex optimization problem by
considering its Lagrangian

min max Z(.AU Z h*(kdg, &) + Gs(u) +

o et €J j=(ij,keT
Z(Da)j¢j + Y _((Po)i— (Gu)) i,
i€eJ ieZtuz?

» We solve the saddle-point problem with a pre-conditioned first-order
primal-dual algorithm.
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First experiment: computing a disk

» Consider the Elastica energy for the boundary of a disk

/ (1+ k) dH = 27(r + a2 /r)
9B(0,r)

» The energy is minimized for r = 1/a.

» We study the effect of different discretizations of the angular
dimension by computing (via inpainting) a disk of radius r = 10.

Ny | Hrv (2mr ~62.83) Hac (27 ~6.28) Hsc (2m/r ~ 0.62)

4 60.10 6.34 1.75
8 54.80 6.28 0.89
16 58.50 6.28 0.70
32 61.52 6.28 0.64

64 62.93 6.28 0.62
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Disk inpainting

b) N(.) =4 C =38 d) N9 =16 (e) Ng =32 f) Ng =64
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Visualization of the measure o

40 40
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Where it fails: Non-smooth level sets

» We consider the following inpainting problem by minimizing the
Elastica energy.

(a) Original image (b) Input image u° (c) Computed image u

» The energy of the original Elastica energy should be infinite

» Our convexification finds a lower energy solutions with non-smooth
level sets
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Visualization of the measure o
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Shape regularization

» We consider the problem of regularizing a given shape
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Shape regularization

L@ A d

(a) TAC, A =8 (b) TAC, A =4 ) TAC, A =2
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Shape regularization
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(a) TRV, A =38 ) TRV, A =14 ) TRV, A =2
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Shape regularization

(a) TSC, A =8 (b) TSC, A =4 ) TSC, A =2

28/36



Shape completion (1)

€000

(a) Input image ) TAC, a =15 (c) TRV, a =15 ) TSC, a =50

(e) Input image (f) TAC, =15 (g) TRV, a =15 (h) TSC, o =10
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Shape completion (2)

) Input image ) TAC, a =15 ) TRV, a =15 ) TSC, a =10

) Input images with rotations 0, /8, 7 /4 ) TAC, a =15
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Weickert's cat

» Shape reconstruction from “dipole” data

» The dipoles are original data from J. Weickert

Dipole data

1PN G4
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Minimizing the TSC energy
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Weickert's cat

» Shape reconstruction from “dipole” data

» The dipoles are original data from J. Weickert.

Original shape
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Image inpainting

Input

Q>
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Image inpainting
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Image inpainting

TSC
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Image inpainting

Input

Q>
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Image inpainting
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Image inpainting

33/36



Image denosing: Guassian noise

Input
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Image denosing: Guassian noise

TV, a=0, A=10



Image denosing: Guassian noise

TSC, a =10, A =40



Image denosing: S & P noise

Input
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Image denosing: S & P noise
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Image denosing: S & P noise

TSC, a =10, A=7
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Conclusion

>

>
>

Convex representation of curvature penalizing variational
models for shape and image processing

Tightness result for C2 shapes
Functional is below the convex envelope of the original energy

Discretization based on staggered averaged Raviart-Thomas finite
elements

Numerical computation using primal-dual schemes

A fine resolution of the angular domain is necessary to faithfully
approximate squared curvature

Application to various shape and image processing problems
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Thank you for listening!
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