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Design mathematical methods and algorithms to model and analyze the anatomy

 Statistics of organ shapes across subjects in species, populations, diseases… 

 Mean shape, subspace of normal vs pathologic shapes

 Shape variability (Covariance)

 Model organ development across time (heart-beat, growth, ageing, ages…)

 Predictive (vs descriptive) models of evolution

 Correlation with clinical variables

Computational Anatomy



Geometric features in Computational Anatomy

Noisy geometric features

 SPD (covariance) matrices

 Curves, fiber tracts

 Surfaces

 Transformations

 Rigid, affine, locally affine, diffeomorphisms

Goal: statistical modeling at the population level

 Simple statistics on non-Euclidean manifolds (mean, PCA…)

X. Pennec – IPAM, 02/04/2019 3



Hierarchy of Non-linear spaces

Constant curvatures spaces

 Sphere, 

 Euclidean, 

 Hyperbolic

Lie groups and symmetric spaces

 Riemannian case: compact/non-compact (positive/negative curvature)

 Non-Riemannian cases: change isometry to affine transformation

Homogeneous spaces

 All points are comparable through a group action

Riemannian or affine spaces

Quotient and stratified spaces
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Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]

 Reference template = Mean (atlas)

 Shape variability encoded by the “random” template deformations

 Consistent structures for statistics on groups of transformations? 

 No bi-invariant Riemannian metric, but an invariant symmetric affine connection
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 Beyond the 0-dim mean higher dimensional subspaces

 When embedding structure is already manifold (e.g. Riemannian):  

Not manifold learning (LLE, Isomap,…) but submanifold learning

 Natural subspaces for extending PCA to manifolds?

Low dimensional subspace approximation? 
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Manifold of cerebral ventricles

Etyngier, Keriven, Segonne 2007.

Manifold of brain images

S. Gerber et al, Medical Image analysis, 2009.
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Outline

Statistics beyond the mean

 Basics statistics on Riemannian manifolds

 Barycentric Subspace Analysis: an extension of PCA

Beyond the Riemannian metric: an affine setting

Conclusions
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Bases of Algorithms in Riemannian Manifolds

Riemannian metric:

 Dot product on tangent space 

 Geodesics are length minimizing curves

Exponential map (normal coord. System)

 Folding (Expx) = geodesic shooting

 Unfolding (Logx) = boundary value problem

 Geodesic completeness: covers M \ Cut(x)

Operator Euclidean space Riemannian manifold

Subtraction

Addition

Distance

Gradient descent )( ttt xCxx  
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Several definitions of the mean

Tensor moments of a random point on M

 𝔐1 𝑥 = 𝑀׬ 𝑥𝑧 𝑑𝑃(𝑧) Tangent mean: (0,1) tensor field

 𝔐2(𝑥) = 𝑀׬ 𝑥𝑧 ⊗ 𝑥𝑧 𝑑𝑃(𝑧) Covariance: (0,2) tensor field

 𝔐𝑘(𝑥) = 𝑀׬ 𝑥𝑧 ⊗ 𝑥𝑧⊗⋯ ⊗ 𝑥𝑧 𝑑𝑃(𝑧) k-contravariant tensor field

 𝜎2 𝑥 = 𝑇𝑟𝑔 𝔐2 𝑥 = 𝑀׬ 𝑑𝑖𝑠𝑡2 𝑥, 𝑧 𝑑𝑃(𝑧) Variance function

Mean value = optimum of the variance

 Frechet mean [1944] = global minima

 Karcher mean [1977] = local minima

 Exponential barycenters = critical points (P(C) =0)

𝔐1 ҧ𝑥 = 𝑀׬ ҧ𝑥𝑧 𝑑𝑃(𝑧) = 0 (implicit definition)

Covariance at the mean

 𝔐2 ҧ𝑥 = 𝑀׬ ҧ𝑥𝑧 ⊗ ҧ𝑥𝑧 𝑑𝑃 𝑧
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Tangent PCA (tPCA)

Maximize the squared distance to the mean 

(explained variance)

 Algorithm

 Unfold data on tangent space at the mean 

 Diagonalize covariance at the mean Σ 𝑥 ∝ σ𝑖 ҧ𝑥𝑥𝑖 ҧ𝑥𝑥𝑖
𝑡

 Generative model: 

 Gaussian (large variance) in the horizontal subspace 

 Gaussian (small variance) in the vertical space

 Find the subspace of 𝑇𝑥𝑀 that best explains the variance
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Manifold data on a manifold

 Anatomical MRI and DTI

 Diffusion tensor on a 3D shape

Freely available at http://www-sop.inria.fr/asclepios/data/heart

A Statistical Atlas of the Cardiac Fiber Structure
[ J.M. Peyrat, et al., MICCAI’06, TMI 26(11), 2007]
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• Average cardiac structure

• Variability of fibers, sheets



A Statistical Atlas of the Cardiac Fiber Structure
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[ R. Mollero, M.M Rohé, et al,  FIMH 2015]

10 human ex vivo hearts (CREATIS-LRMN, France)

 Classified as healthy (controlling weight, septal 

thickness, pathology examination)

 Acquired on 1.5T MR Avento Siemens

 bipolar echo planar imaging, 4 repetitions, 12 

gradients

 Volume size: 128×128×52, 2 mm resolution



Problems of tPCA

Analysis is done relative to the mean

 What if the mean is a poor description of the data? 

 Multimodal distributions

 Uniform distribution on subspaces

 Large variance w.r.t curvature
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Images courtesy of S. Sommer

Bimodal distribution on S2



Principal Geodesic / Geodesic Principal Component Analysis

Minimize the squared Riemannian distance to a low 

dimensional subspace (unexplained variance) 

 Geodesic Subspace: 𝐺𝑆 𝑥,𝑤1, …𝑤𝑘 = exp𝑥 σ𝑖 𝛼𝑖𝑤𝑖 𝑓𝑜𝑟 𝛼 ∈ 𝑅𝑘

 Parametric subspace spanned by geodesic rays from point x

 Beware: GS have to be restricted to be well posed [XP, AoS 2018]

 PGA (Fletcher et al., 2004, Sommer 2014)

 Geodesic PCA (GPCA, Huckeman et al., 2010) 

 Generative model:

 Unknown (uniform ?) distribution within the subspace

 Gaussian distribution in the vertical space

Asymmetry w.r.t. the base point in 𝐺𝑆 𝑥,𝑤1, …𝑤𝑘

 Totally geodesic at x only
X. Pennec – IPAM, 02/04/2019 14
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Outline

Statistics beyond the mean

 Basics statistics on Riemannian manifolds

 Barycentric Subspace Analysis

 Natural subspaces in manifolds

 Rephrasing PCA with flags of subspaces

Beyond the Riemannian metric: an affine setting

Conclusions



Affine span in Euclidean spaces

Affine span of (k+1) points: 

weighted barycentric equation

Aff x0, x1, … xk = {x = σ𝑖 𝜆𝑖 𝑥𝑖 𝑤𝑖𝑡ℎ σ𝑖 𝜆𝑖 = 1} 

= x ∈ 𝑅𝑛 𝑠. 𝑡 σ𝑖 𝜆𝑖 (𝑥𝑖−𝑥 = 0, 𝜆 ∈ 𝑃𝑘
∗} 

Key ideas: 

 tPCA, PGA: Look at data points from the 

mean (mean has to be unique)

 Triangulate from several reference: 

locus of weighted means
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Barycentric subspaces and Affine span

in Riemannian manifolds

Fréchet / Karcher barycentric subspaces (KBS / FBS)
 Absolute / local minima of weighted variance: σ2(x,λ) = σλ𝑖𝑑𝑖𝑠𝑡

2 𝑥, 𝑥𝑖
 Also works in stratified spaces (e.g. trees) [LFM of Weyenberg, Nye]

Exponential barycentric subspace and affine span
 Weighted exponential barycenters: 𝔐1 𝑥, 𝜆 = σ𝑖 𝜆𝑖 log𝑥(𝑥_𝑖) = 0

 Affine span = closure of EBS in M    𝐴𝑓𝑓 𝑥0, … 𝑥𝑘 = 𝐸𝐵𝑆 𝑥0, … 𝑥𝑘

Properties (k+1 affinely independent reference points)
 BS are well defined in a neighborhood of reference points

 Local k-dim submanifold (det(H) ≠0), globally stratified space

 EBS = critical points of the weighted variance partitioned into a cell

complex by the index of the Hessian (irruption of algebraic geometry)

X. Pennec – IPAM, 02/04/2019 17

[ X.P. Annals of Statistics 2018 ] 



The natural object for PCA:

Flags of subspaces in manifolds

Subspace approximations with variable dimension

 Optimal unexplained variance  non nested subspaces

 Nested forward / backward procedures  not optimal

 Optimize first, decide dimension later  Nestedness required

[Principal nested relations: Damon, Marron, JMIV 2014]

Flags of affine spans in manifolds: 𝐹𝐿(𝑥0 ≺ 𝑥1 ≺ ⋯ ≺ 𝑥𝑛)

 Sequence of nested subspaces

A𝑓𝑓 𝑥0 ⊂ 𝐴𝑓𝑓 𝑥0, 𝑥1 ⊂ ⋯𝐴𝑓𝑓 𝑥0, … 𝑥𝑖 ⊂ ⋯𝐴𝑓𝑓 𝑥0, … 𝑥𝑛 = 𝑀

Barycentric subspace analysis (BSA):

 Energy on flags: Accumulated Unexplained Variance

 optimal flags of subspaces in Euclidean spaces = PCA

X. Pennec – IPAM, 02/04/2019 18

[ X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2018 ] 



Robustness with Lp norms

Affine spans is stable to p-norms 

 σ𝑝(x,λ) =
1

𝑝
σλ𝑖𝑑𝑖𝑠𝑡

𝑝 𝑥, 𝑥𝑖 /σλ𝑖

 Critical points of σ𝑝(x,λ) are also critical points of  σ2(x,λ′) with

𝜆𝑖
′ = 𝜆𝑖 𝑑𝑖𝑠𝑡

𝑝− 2 𝑥, 𝑥𝑖 (non-linear reparameterization of affine span)

Unexplained p-variance of residuals

 2 < 𝑝 → +∞: more weight on the tail,

at the limit: penalizes the maximal distance to subspace

 0 < 𝑝 < 2: less weight on the tail of the residual errors: 

statistically robust estimation

 Non-convex for p<1 even in Euclidean space

 But sample-limited algorithms do not need gradient information

X. Pennec – IPAM, 02/04/2019 19



Application in Cardiac motion analysis

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]
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Application in Cardiac motion analysis
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Take a triplet of 

reference images

Find weights li and 

SVFs vi such that:

• 𝒗𝒊 registers image

to reference i

• σ𝒊𝝀𝒊 𝒗𝒊 = 𝟎 𝒗𝟎

𝒗𝟏

𝒗𝟐

Optimize reference 

images to achieve 

best registration 

over the sequence

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]



Application in Cardiac motion analysis
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𝝀𝟎

𝝀𝟏

𝝀𝟐

[ Marc-Michel Rohé et al., MICCAI 2016, MedIA 45:1-12, 2018 ]

Barycentric coefficients curvesOptimal Reference Frames



Cardiac Motion Signature

23

Tested on 10 controls [1] and 16 Tetralogy of Fallot patients [2]

Dimension reduction from +10M voxels to 3 reference frames + 60 coefficients

Low-dimensional representation of motion using:

Barycentric coefficients curvesOptimal Reference Frames

[1] Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis (2013)

[2] Mcleod K., et al.: Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics. IEEE TMI (2015)
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Take home messages

Natural subspaces in manifolds

 PGA & Godesic subspaces: 

look at data points from the (unique) mean

 Barycentric subspaces: 

« triangulate » several reference points

 Justification of multi-atlases?

Critical points (affine span) rather than 

minima (FBS/KBS)

 Barycentric coordinates need not be 

positive (convexity is a problem)

 Affine notion (more general than metric)

 Generalization to Lie groups (SVFs)?

Natural flag structure for PCA

 Hierarchically embedded approximation 

subspaces to summarize / describe data

X. Pennec – IPAM, 02/04/2019 24
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Outline

Statistics beyond the mean

Beyond the Riemannian metric: an affine setting

 The bi-invariant Cartan connection on Lie groups

 Extending statistics without a metric

Conclusions



Limits of the Riemannian Framework

Lie group: Smooth manifold with group structure

 Composition g o h and inversion g-1 are smooth

 Left and Right translation Lg(f) = g o f    Rg (f) = f o g

 Natural Riemannian metric choices using left OR right translation

No bi-invariant metric in general 

 Incompatibility of the Fréchet mean with the group structure

 Left of right metric: different Fréchet means

 The inverse of the mean is not the mean of the inverse 

 Examples with simple 2D rigid transformations

 Can we design a mean compatible with the group operations?

 Is there a more convenient non-Riemannian structure?
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Smooth affine connection spaces:

Drop the metric, use connection to define geodesics

Affine Connection (infinitesimal parallel transport)

 Acceleration = derivative of the tangent vector along a curve

 Projection of a tangent space on 

a neighboring tangent space

Geodesics = straight lines

 Null acceleration: 𝛻 ሶ𝛾 ሶ𝛾 = 0

 2nd order differential equation:

Normal coordinate system

 Local exp and log maps

X. Pennec – IPAM, 02/04/2019 27

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 

Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Canonical Connections on Lie Groups

A unique Cartan-Schouten connection

 Bi-invariant and symmetric (no torsion) 

 Geodesics through Id are one-parameter subgroups (group 

exponential)

 Matrices : M(t) = A exp(t.V)

 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)

 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝝍 𝝓 = 𝝍𝝓−𝟏𝝍
 Matrix geodesic symmetry: 𝑆𝐴 𝑀 𝑡 = 𝐴 exp −𝑡𝑉 𝐴−1𝐴 = 𝑀(−𝑡)
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 

Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Statistics on an affine connection space

Fréchet mean: exponential barycenters

 σ𝑖 𝐿𝑜𝑔𝑥 𝑦𝑖 = 0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]

 Existence local uniqueness if local convexity [Arnaudon & Li, 2005]

Covariance matrix & higher order moments

 Defined as tensors in tangent space

Σ = 𝐿𝑜𝑔𝑥׬ 𝑦 ⊗ 𝐿𝑜𝑔𝑥 𝑦 𝜇(𝑑𝑦)

 Matrix expression changes with basis

Other statistical tools

 Mahalanobis distance, chi2 test

 Tangent Principal Component Analysis (t-PCA)

 Independent Component Analysis (ICA)?
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[XP & Arsigny, 2012, XP & Lorenzi, Beyond Riemannian Geometry, 2019]



Statistics on an affine connection space

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]

 Locus of points x such that σ𝐿𝑜𝑔 𝑥−1. 𝑦𝑖 = 0

 Algorithm: fixed point iteration (local convergence)

𝑥𝑡+1 = 𝑥𝑡 ∘ 𝐸𝑥𝑝
1

𝑛
෍𝐿𝑜𝑔 𝑥𝑡

−1. 𝑦𝑖

 Mean stable by left / right composition and inversion 

Matrix groups with no bi-invariant metric

 Heisenberg group: bi-invariant mean is unique (conj. ok for solvable) 

 Rigid-body transformations: uniqueness if unique mean rotation 

 SU(n) and GL(n): log does not always exist (need 2 exp to cover)
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[XP and V. Arsigny. Exponential Barycenters of the Canonical Cartan Connection and 

Invariant Means on Lie Groups. In Matrix Information Geometry. 2012 ]



The Stationnary Velocity Fields (SVF)

framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple

 Compatible with “inverse-consistency”

 Vector statistics directly generalized to diffeomorphisms.

 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years

X. Pennec - CEP 19-02-2019 31

[Lorenzi, XP. IJCV, 2013 ]

Patient A

Patient B

? ?Template



The Stationnary Velocity Fields (SVF)

framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple

 Compatible with “inverse-consistency”

 Vector statistics directly generalized to diffeomorphisms.

 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years
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[Lorenzi, XP. IJCV, 2013 ]

ObservedExtrapolated Extrapolated

year
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Cartan-Schouten Connections vs Riemannian metric

What is similar

 Standard differentiable geometric structure [curved space without torsion] 

 Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework

 No metric to measure

 The exponential does always not cover the full group

 Pathological examples close to identity in finite dimension

 Similar limitations for the discrete Riemannian framework 

What we gain

 No metric choice to justify

 A globally invariant structure invariant by composition & inversion 

 Simple geodesics, efficient computations (stationarity, group exponential) 

 A global symmetry that may simplify algorithms

X. Pennec – IPAM, 02/04/2019 
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Outline

Statistics beyond the mean

Beyond the Riemannian metric: an affine setting

Conclusions:

Beyond Riemannian and affine geometries?



Pushing the frontiers of Geometric Statistics

Beyond the Riemannian / metric structure

 Riemannian manifolds, Non-Positively Curved (NPC) metric spaces

 Towards Affine connection, Quotient, Stratified spaces

Beyond the mean and unimodal concentrated laws

 Flags (nested sequences) of subspace in manifolds

 Non Gaussian statistical models within subspaces?

Unify statistical estimation theory

 Explore influence of curvature, singularities 

(borders, corners, stratifications)

on non-asymptotic estimation theory
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Quotient spaces

Functions/Images modulo time/space parameterization

 Amplitude and phase discrimination problem

X. Pennec – IPAM, 02/04/2019 36

[Allassoniere, Amit, Trouvé, 2005],

Example by Loic Devillier, IPMI 2017



The curvature of the template 

shape’s orbit and presence of 

noise creates a repulsive bias

𝜎
𝜎2: variance of 

measurement error

37

Bias ෡𝑻, 𝑻 =
𝜎2

2
𝑯 𝑻 + 𝒪(𝜎4)

where 𝐇 𝑻 : mean curvature vector of template’s orbit

Theorem [Miolane et al. (2016)]: Bias of estimator ෡𝑻 of the template 𝑻

Bias

X. Pennec – IPAM, 02/04/2019 

Noise in top space = 

Bias in quotient spaces

Extension to Hilbert of ∞-dim: bias for  𝜎 > 0, asymptotic for 𝜎 → ∞,
[Devilliers, Allasonnière, Trouvé and XP. SIIMS 2017, Entropy, 2017] 

 Estimated atlas is topologically more complex than should be



Towards non-smooth spaces

Stratified spaces

 Correlation matrices
 Positive semi definite (PSD) matrices

with unit diagonal [Grubisic and Pietersz, 2004]

 Orthant spaces (phylogenetic trees)
 BHV tree space [Billera Holmes Voigt, Adv Appl Math, 2001] 

[Nye AOS 2011] [Feragen 2013] [Barden & Le, 2017]

Can we explain non standard statistical results?
 Sticky mean [Hotz et al 2013] [Barden & Le 2017], repulsive mean [Miolane 2017]

 Faster convergence rate with #sample in NPC spaces [Basrak, 2010]
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[Ellingson et al, Topics in Nonparametric Statistics, 2014]

Adapted from 

[Rousseeuw and 

Molenberghs, 

1994].

Corr(3)

Tree space T4

Adapted from [Dinh et 

al, AoS 2018, 



Part 1: Foundations
 1:Riemannian geometry [Sommer, Fetcher, Pennec]

 2: Statistics on manifolds [Fletcher]

 3: Manifold-valued image processing with SPD matrices [Pennec]

 4: Riemannian Geometry on Shapes and Diffeomorphisms 

[Marsland, Sommer]

 5: Beyond Riemannian: the affine connection setting for 

transformation groups [Pennec, Lorenzi]

Part 2: Statistics on Manifolds and Shape Spaces
 6: Object Shape Representation via Skeletal Models (s-reps) and 

Statistical Analysis [Pizer, Maron]

 7: Inductive Fréchet Mean Computation on S(n) and SO(n) with 

Applications [Chakraborty, Vemuri]

 8: Statistics in stratified spaces [Ferage, Nye]

 9: Bias in quotient space and its correction [Miolane, 

Devilier,Pennec]

 10: Probabilistic Approaches to Statistics on Manifolds: 

Stochastic Processes, Transition Distributions, and Fiber Bundle 

Geometry [Sommer]

 11: Elastic Shape Analysis, Square-Root Representations and 

Their Inverses [Zhang, Klassen, Srivastava]
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Part 3: Deformations, Diffeomorphisms and their Applications
 13: Geometric RKHS models for handling curves and surfaces in Computational Anatomy : currents, varifolds, f-

shapes, normal cycles [Charlie, Charon, Glaunes, Gori, Roussillon]

 14: A Discretize-Optimize Approach for LDDMM Registration [Polzin, Niethammer, Vialad, Modezitski]

 15: Spatially varying metrics in the LDDMM framework [Vialard, Risser]

 16: Low-dimensional Shape Analysis In the Space of Diffeomorphisms [Zhang, Fleche, Wells, Golland]

 17: Diffeomorphic density matching, Bauer, Modin, Joshi]

To appear 09-2019, Elsevier



Thank you for your attention 
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