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Euler’s Elastica energy

Euler's elastica:

E(T)= Jr(a+bk‘2)ds, a,b=0.

K 1s the curvature of the curve.



Willmore energy

Willmore energy

E(T)= J (H*=K)ds,
where H 1s the mean curvature and K 1s

the Gauss curvature.



Image surface

An image is regarded as
a surface. lIts level contours
are important.
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Images and level contours
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Regularity of An Image

R B S Ref: ROF model (92)

, /1500Level Curves:
I' : u(x)=c, ce(0,).

C

Total length of all contours:

R(u):JZIFCIdciJQIVuldx.
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Regularity: Elastica energy

Contour Curves:
[ s u(x)=c, ce(0,).

Euler's elastica:

A

50

—

E(IM)= Jr(a+b1<2)ds, a,b>0. |

K is the curvature of the curve. .

On a level curve: N

1500

(IVUI

Total Elastica of all contours:

R(u) = jE(r )dc = j(a+bV( ))|Vu|dx
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Regularity: Mean Curvature

The 1image surface:
ux)-z=0.

Its Gauss mean curvature 1s:

Vil 1 Vu,—1 1 V. u
V(XZ) (‘V( ) )ZEV(X,Z)'(‘EV ., _li‘jzgvx’ > :Hu
(XZ) X \\/1—'_ V u

c.f. Kimmel-Malladi-Sochen 97, Zhu-Chan 12, Schoenemann-Masnou-Cremers 12.
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Elastica energy has a long
history

Elastica Model:
Vv
| Vv

minvfg(a+b(v- )2)\Vv|+%(v—f)2.

The story about elastica energy for elasto-plastic numerical partial differential
equations is even longer and earlier.

References for imaging:
Nitzberg, Mumford and Shiota 1993
Masnou and Morel 1998
Ballester, Bertalmio, Caselles, Sapiro and Verdera 2001
Chan-Kang-Shen, 2002
Ambrosio and Masnou 2004
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Literature- Algorithms for Euler’s Elastica

Discrete curvature:

% Schoenemann-Kahl-Cremers (2009), El-Zehiry-Grady (2010,,2016),
Boykov-et-al, Veksler-et-al ...

Continuous curvature:

% Masnou-Morel (1998), Nitzberg-Mumford-Shiota (93), Ballester-
Bertalmio-Caselles-Sapiro-Verdera (2001), Chan-Kang-Shen(2002),
Bruckstein-et-al (01), Bae-Shi-T. (2011), T.-Hahn-Chung(2011),
Bredies-Pock-Wirth(2014), Papafitsoros-Schonlieb(2014), Kimmel-
Malladi-Sochen (97) .

Recent algorithms (continuous curvature):

% Sun-Chen BIT 14, Myllykoski-Glowinski-Karkkainen-Ross (SIIMS 15),
Zhang-Chen-Deng-Wang (NMTMA17), Chen-Mirebeau-Cohen (IJCV
16), Yashtini-Kang (SIIMS 16), Duan-et-al.

% Bredies-Pock-With (SIAM J. Math Anal 13), Chambolle-Pock (2018).



Reformulation |

The minimization of Euler’s Elastica

2
Vu A
Ew=||a+b|V-— | |[[Vul+— —u)’
(w)=]_ { \W\] Vil + 2] (f - )
Introducing new variables for the gradient and the unit normal vector

p=Vu, nzi,
| pl

The problem can be casted as a constrained minimization problem with new
variables

min, . Jg[a+b(V-n)2]p + %Jg(f— u)’

subject to p=Vu, |p|n= p.

Ref: (Duan- Wang-T.-Hahn, SSVM2012)
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Reformulation Il

In (Duvaut and J. Lions1976, Dean-Glowinski-Guidoboni2007, Bertalmio-et-
al 2000,)

Ifn#0,p#0, and |n|£1, then

|p|=n-p%n:p/|p

Equivalent formulation:
: 1
min, , , Jg[a+b(V-n)2 }|p‘ +Ejg(f—u)2

n|£1

subject to p=Vu,|p|=p-n,

The minimization variables are: u, p, n. When two of them are fixed
and we just need to minimize with one of them, each problem is

convex
34



Approach of Chambolle-Pock

Total Roto-Translational Variation, In arXiv:1709.09953, (2017) »

ForE c Qc R, we have for f(k)=1+|k |’ that
| e, (o
e e e L, =Rz,

where F is a convex functional. Moreover

J, focconvueta=] ] ooy =)

Related References: Bredies-Pock-Wirth (2013,2015),

35



Our New Reformulation

 Euler’s Elastica problem reads as:

. Vv |? 1 5
min {/Q <a+b‘v- Vv ) |Vv|dx + §/Q|f— V| dx} (3)

V: a functional space of the Sobolev’'s type, typically.

e A popular way to overcome the singularity: replace |Vv| by
\/62 + |Vv|?, € being a small parameter.

Vv
V|

function g (borrow from viscoplasticity, used in this work):

e A more sophisticated way is to replace by a vector-valued

p-Vv=I[Vv|, [p <1, (4)

with [p| = \/pf + p3, Yo = (pa, p2).



Our New Reformulation
e The elastica problem by (4) becomes (v, p)-problem:

1
min a+ bl|lV- 2) Vvdx—l——/f—vzdx] 5
(VMEW[/Q( V- ul) (vld 5 [ 1F - (5)

with
W= {(v, 1) € HA(Q) x H(Q,dv), p- Vv =V, |u] <1},

and
H(Q,div) = {p € (L3(Q))*, V- u € L3(Q)}).

e Proposition 1: Suppose that (u, A) is solution of problem (5), we

have then
/udx:/ fdx. (6)
Q Q



Our New Reformulation

e Let us define the sets > s and S by
>, = {q € (£2(Q)% v e H(Q),st.q = Vv and/(v—f)dx 0}
Q

and

S ={(a,p) € (L5(Q))* x (£3(Q))* a-p = la], |p| <1}



Reformulation lli

e Problem (5) is equivalent to the following one:

. il
nmLL@+MV+MNWM+iém—ﬂ%ww4®+k@u)

(a,1)
(7)
where (q, 1) € (£3(9))? x (£3(Q))?, and I, and Is are indicator functionals:

/ ()_{o, if q € Xy, » )_{0, if (q, ) €S,
= + 00, ifqe (L%(Q))°\Zr. Ll + 0o, if (g, u) € (L7(R))” x (L*(Q))*\S.

(8)

® Vg is the unique solution of the following problem

Vivg=V-q, inQ,

| vactx = [t )



Part ll: New Operator-Splitting Method For
Model (7)

e Denote by J; and J, the functionals defined by

e

h(@) = [ (a+ b7+ uf) lalds,

1
h(a) = 5 /Q v — f|2dx,

e Model (7) becomes:

(r;{ip) [J1(a, 1) + Jo(a) + Is.(a) + Is(q, p)] (11)

where (q, p) € (£3(Q))* x (£3(Q))*.
Suppose that (p, A) is a minimizer of the functional in (11).



e We have then v = v, and the following system of (necessary)
optimality conditions holds:

{0qJ1(p, A) + DJy(p) + Oks,(p) + Ogls(p, A) 3 0,

12

Du,Jl(pa A) + a[.LIS(pa A) = 07 ( )
where the D, (resp., the Js) denotes classical differentials (resp.,
generalized differentials, e.g., subdifferentials).

o Compute the solutions of (12) via computing the steady state
solutions of the following initial value problem (dynamical flow):

(9
8—'; + 9qJ1(P, A) + DJa(p) + 9l (p) + als(p, A) 3 0 on Q x (0, +00),

O
Y5 T Pudi(p, A) + 9uls(p, A) 5 0 on Q2 x (0, +o0),

L (P(0), A(0)) = (Po; Ao),

7\

(13)
with v > 0 (the choice of « will be discussed latter).



The Final Three Subproblems Need to Solve

[ n+1/3 _ _.n
p p + anl(pn+1/37An) 9 O / /
T . el 3 n+1/3
in Q= s A
An+1/3 . An nil/3 (p ) (22)
Y —+ DMJl(A ) =0
\ T
( n+2/3 _  n+1/3
P P i 8ql5(pn+2/3, >\n+2/3) =) 0 - .
. n+ n=k
)\n+2/3 _ )\n+1/3 23 < mi2)3 in Q= (P ; A ) (23)
8l + Ouls(p , A )30
\ T
(.n+1 _ _n+2/3
P Tp 4+ DJ2(pn+1) + 8’):f-(pn+1) 50 B B
A1 y\nt2/3 in Q= (p ;AT (24)
W =0
\ T

In the following, we will discuss the solution of the above subproblems when
applying scheme (22)-(24) to the solution of problem (7).



Computing p"*'/3 from (22)

e The multi-valued equation verified by p"™1/3 in the first equation of

(22) is nothing but the (formal) Euler-Lagrange equation of the
following minimization problem

1
n+1/3 _ : _/ . n2d / bV'AnZ d
P arg  min q—p X t+q a-+ q|ax
qe(£2(Q))? [2 Q| ‘ Q( ‘ ) la
(25)

e Problem (25) is very common and has a closed form solution by:

p™tl/3 = max{O, 1— ‘:n| }p”, (26)

where ¢ = 7a + 7b|V - A2,



Computing \"*1/3 from (22)

e The equation verified by A""%/3 in the second equation of (22) is
the (formal) Euler-Lagrange equation of the following minimization

problem
n+1/3 - - )‘n’2 2 n+1/3
A —arg min fy/ dx—l—/(a—l—b|v-u|)|p | dx
pE(L2(Q)? Q@ 27 Q
(27)
where A" and p"*1/3 are known.
e From the Euler-Lagrangian equation of (27), we get that the
solution A"t1/3 is the solution of following linear equation:
An—l—1/3 — A"
5 — V(2b|p" 3|V - A1) = 0in Q. (28)
_

Use periodic boundary condition for the above equation, (28) can be
efficiently and easily solved by the FFT.



Computing (p”+2/3,)\”+2/3) from (23)

e One can view system (23) as the Euler-Lagrange equation of the
following minimization problem:

min [/ q — p”+1/3|2dx+7/|u A"HL/3 24| (29)
(a,n)€S

e Problem (29) can be solved point-wise, reducing, a.e. on £, to the
following finite dimensional constrained minimization problem:

(Pn+2/3(x)a )\n+2/3(x)) = argmin(q,p)eo’jn+1/3(q7 pi x) (30)

where o = {(q, 1) € R> xR?, q-p =q|, |p| < 1}



Computing (p”+2/3,)\”+2/3) from (23)

e Note that V(q, ) € R? x R?, it has

2 2
Jns1/3(a, pi x) = ‘q — p”“/?’(X)‘ + |u — A™1/3(x)

e Dueto o ={(q,u) € R®xR? q-p=]lq|, |u| <1}, we may
decompose it to og and o1 by

o0 = {(a,1) € R* xR?,q =0, |p| <1},

o1 ={(q, 1) € R* xR*,q#0,q-p =|q|, || = 1}.

Clearly, it has 0 = 09 U 071.



Minimizing the functional in (30) over oy
e Over op, the minimization problem (31) reduces to

min — \2H/3 | . 34
u€R2,||u|§1 ‘IL () (34)

e Clearly, the solution of problem (34) is given by

)‘n+1/3(x)

)‘n+1/3 _ .

o )= L AR (39)
e Concerning pg+l/3(x) by the definition of g, we have

Py *(x)=0. (36)



Minimizing the functional in (30) over o

e Over o1, the minimization problem (32) reduces to

inf [ _ pmHL/3(5) 2 4 /30 2}.
(37)

e Denote x = p"t1/3(x) and y = A""1/3(x). Due to || = 1, problem
(37) has

|
inf — 2 _a- X — i 38
(9,)ER2xR2,q£0,q- p=|q], || =1 | 2 " —q THY (38)

e Set |q| = 6; since u = q/|q|, thus it implies that

q="0p, 6>0. (39)



Minimizing the functional in (30) over o

e Relation of q = 6,6 > 0 allows us to substitute problem (38) by
the following constrained minimization problem in R3

||
inf 0% —0p-x —yu -yl . 40
(H,M)GRxll?r;,9>O,|p,|:1 [2 K- X TH YI ( )

e To solve (40), we observe that the above problem is equivalent to

1
inf ' 07 —Op-x—ypu -yl . 41
OH;OMERT,I|2|:1 [2 porX=Ts yw (41)

e To minimize on a closed set of R3, the problem that we finally
consider is the following variant of problem (41)

1
i i 0% —0p-x—yu-y| . 42
i i {2 poX—yp y] (42)



Minimizing the functional in (30) over o

e To solve: ming>o Min cr2 |pu|=1 [%02 —Op-x— vy - y], we may
solve it by the following two steps:

e i) 0 being fixed, the solution p*(#) of problem (42) is given by

_ Ox+y
0% + vy|

p(0) (43)

ii) When p*(0) obtained, implying that problem (42) reduces to

1
2n>i|8 [592 — |0x + *yy|] (Solved by fixed point) (44)



Minimizing the functional in (30) over o

e Once 6* is computed, )\"+ /3( ) and p; " 2/3 (x) are obtained by:

An+2/3(X) _ 0*pn—|—1/3(x) + ,}/An+1/3(x) (45)
1 |9*pn+1/3(X)+’7An+1/3(X)"
and 2/3 2/3
p; 3 (x) = AT (), (46)

e Take two sets of ( +2/3( ), A n+2/ (x)) respectively computed on

oo and o1 to compute the energy of (30), then select the set with
the smaller energy, see (33).



Selection of the parameter v

e We intend to select the parameter v so that the two terms in (33)
are balanced. We note that

_ p(1)
M= o)
fhus O 1/ p(t+7)  p(t)
— lim = P U
E‘Lw(m(twn 1p(t)|) (47)

e Due to the following relation:

2 2 9p. : 2p - —ql?
:|p|2+|q|2_ p q:2(1_p q)g2(1— 2p q2)22 Ip2 qlz,
p[* lal* [pllal p|lal p|* + [q] p[* + |a

(48)

2

Iﬁ_i
p| |a|



Selection of the parameter v

e One has

o Vep(t+7) —p(t)|
~ VIp(t+ 1)+ Ip(2)1?

|p(t+T) ~p(t)
p(t+7)  |p(t)]

e Let 7 — 0, we get from (47) that

8_A
ot

_ 1o
p|| Ot

e For small 7, the minimizer of (29) verifies

|pn+2/3 _ pn+1/3|2 |)‘n+2/3 _ )\n+1/3|2 T 2

op n+1/3
~ —(|=(t
27 it o7 2 (‘8t( )

O

ke tn+1/3
3z )

\

(49)

+'y‘



Selection of the parameter v

e According to the above estimate, to balance these two terms, we

just need to choose

v = |pn+1/3|2.

e In order to avoid the case that [p"1/3| ~ 0, we choose in practice
v = max(|p"/32, a), (50)

where & is a given small number. In this work, we empirically
choose & = /7.



Computing p"! and \"*! from (24)

e Clearly we have
An-l—l _ An+2/3. (51)

e For p"™! subproblem, the multi-valued equation in (24) is the
Euler-Lagrange equation of the following minimization problem

p" ™t = arg min [ / ’q p”+2/3‘ dx—+ — / Vg — f|° dx] :
QEZf
(52)
the function vq is defined by (9).



Computing p"*! and \"*! from (24)

e Suppose that €2 is the rectangle (0, L) x (0, H). It was mentioned
that we shall use periodic boundary condition for the subproblem.
Define H},(Q), a space of doubly periodic functions, by

H,l,(Q) ={v € H'(Q); v(0,x) = v(L, x),

(53)
a.e. on (0, H); v(x1,0) = v(x1,H) a.e. on (0,L)}

e From the definition of X, problem (52) is equivalent to

pn—l—l — Vun—{—l

1
u"t = arg min [—/|Vv|2 dx—i—Z/ [y=if[F dx—/p"+2/3-Vvdx]
verl(@) |2 Jq 2 Jq Q



Computing p"*! and \"*! from (24)

e Function u"*! is the unique solution of the following well-posed

linear variational problem in #}(Q):
Y il = ’H,l,(Q),

/Vu"+1-Vvdx—|-7'/u"+1vdx:/p"+2/3-Vvdx—|—T/ fvdx,
Q Q Q Q

(54)
where Vv € H1(Q).



Computing p"*! and \"*! from (24)

e The problem (54) still has a unique solution which is the weak
solution of the following problem:

f_v2un+1 k3 TUn+1 = 7. pI‘H—2/3 i Tf, in Q

u"1(0, %) = u"™(0,x,) a.e. on (0, H);

u" 1 (x1,0) = u"(x1, H) a.e. on (0, L),

< n+1 n+1 (55)
ng (0,x) = 8gx (L,xy) a.e. on (0, H)
. 1
Ountl oyt
\ gx2 (x1,0) = gxz (x1,H) a.e. on (0, L).

which is also solved by FFT method.



Summerized Algorithm

Algorithm 2: A schematic description of the algorithm for problem (3)

Input: The inputted image f, the parameters a, b, v and 7.
Output: The computed image u™.

p°(x)/p°(x)|, if p°(x) # O, .

_ e Q.
0, otherwise.

Initialization: n =0, u° = f, p® = VT, )\O(x) — {

While: [[u""! — u”||/||u™"t]| > tol and n < Mg,
1. Solve system (22) to obtain (p"+1/3 Ant+1/3)
2. Solve system (23) to obtain (p"+2/3, )‘n+2/3)
3. Solve system (24) to obtain (u"t1, p"t1 An+l)

4. Check convergence and go to the next iteration or stop.
End While.

If iterations stop, take u* = u"*1.

tol: the stopping criterion tolerance; Mj;.,: the maximum of iterations; || - || represents
L> norm.



Advantages:

* The time-discretization step is, essentially, the only
parameter one has to choose.

 The results produced by the new method are less
sensitive to parameter choice.

* For the same stopping criterion tolerance, the new
method needs less iterations than its counterpart - ALM
method.

Moreover, the new method has a lower cost per iteration
than ALM.



Numerical Results

e Numerical Discretization: Finite difference for discretization on (2.

e Implemented in MATLAB(R2016a) on a laptop of 8Gb RAM and
Intel(R) Core(TM) i7-7500 CPU: ©@2.70 GHz 2.90GHz.

o See relative error (ReErr) of the solution is smaller than the
predefined tolerance tol, i.e.,

lu™ — u"||2

ReErr =
[um |2

< tol, (56)

where tol is a pre-defined positive value.



Image Smoothing

e a=0.1, b =0 (the ROF model), to/l =1 x 10~>.

Chambolle Total energy(Log)

6.6

—THC
= Our
6.4 =====Chambolle | -

o
()

Total energy(Log)
(2]

THC Proposed

o
©

5"6 k

0 100 200 300 400 500 600 700 800 900 1000
Iter. No.

FIGURE: The results (the first two columns), and energy plots (the right column) by the
three compared methods are shown. Note that the black dashed lines in the energy plots
represent the final energy of the ROF model solved by the Chambolle’s method. From this
figure, we know that the results of three compared approaches for ROF model finally
converge to the same energy value, which demonstrates the correctness of the proposed

method.
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FIGURE: Image smoothing using the ROF and Euler elastica models. Left: Noisy images;
Middle: ROF model treated by Chambolle’'s method; Right: the Euler elastica model treated by
the proposed algorithm. The parameters of our method are all set asa = b =0.1, 7 = 0.1 and

~" = max (|p"+1/3|, \/7_')



tter. No. v.s. ReErr(Log)

*
-1 -

o 500 1000 1500 2000 2500 3000 3500 4000
Iter. No.
kter. No. v.s. ReErr(Log)

© © N o & & b N

ReErr (Log)
&

Noisy THC Proposed ReErr

FIGURE: First row: the THC method and the proposed method both obtain good result with
rn = 0.01, » = 10, 3 = 100 for the THC method and 7 = 0.1 for the proposed method. Second
row: the THC method performs not so good with same parameters while the proposed method
performs still good. Default parameters for both methods: a = b = 0.1 and tol = 1 x 10™°.



® |f we increase the number of iteration (lter) with the same r; = 0.01, r» = 10,
r3 = 100 the THC method could get the correct result (the left image is the
result of Fig. 3 for the THC method).

Erlerier

lter = 3314 Iter = 10000 Iter = 30000

® Or, if we tune the parameters slightly as 1 = 0.05, r» = 10 and r3 = 100, the
THC may get good results.
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3 = 50 3 = 100 3 = 500 3 = 1000

FIGURE: Sensibility of the THC method to parameters. Varying one parameter and keep others
two unchanged (default: r = 0.01, r» = 10 and r3 = 100). With a = b = 0.1 and tol = 1 X 10,




TABLE: The iterations, total computational time and average computational
time (per iteration) for Fig. 3 when reaching the tolerance (Unit: second).

Image Method lterations | Time (s) | Average Time (s)/per iteration
ball (128 x 128) | roPosed | 390 o 0070
square (60 x 60) Pr;)-‘:_'()éed 323;9 116_1267 888§
star(100 x 100) Pr_cl)_[:'o;:ed 2526324 137'.7508 8883
Lena (256 x 256) Pr:_;i)_iocs:ed ggg éiié 8823




TABLE: The average computational time (per image) of the proposed method and the

(30 test images)

THC method on 30 test images with default parameters (Unit: second).

tol Method std = 0.1 | std =0.05 | std = 0.02
tol =1 x 10~° Pr;)%o(s;ed 774,29 776.23 766.1 4
tol =5 x 107° P';':qoéed 344,54 23é.74 236.1 6
tol = 1 x 10-* [ Lroposed 1 5> 50




Image Segmentation

® For a given image f, the Chan-Vese segmentation model with the Euler elastica
energy of the interface is shown as follows:

| vo
mgb'"[/g(”b‘v' Vel

" /Q n(f — a)? H(@) + (f — c2)* (1 — H(¢))dx| (57)

2
)|VH(¢)|dx

¢: a level set function, H(-): Heaviside function, c1, ¢»: two scalars, and a, b, n:
positive parameters.

® Introduce a new function v = H(¢), due to V - % =V. ;Z%i% , then the

model (57) can be rewritten as follows:

. Vv
min / a—|—b‘V~
velo,1] | Ja |V v|

2
> \Vv|dx—|—/ i (F =& e v (F =) (= wdx|.,
Q
(58)



Image Segmentation

e To solve (58) under the framework of the proposed method, we only
need to keep the same formulas of p"t1/3, \"+1/3 and p"t2/3,
A\"+2/3 problems, and rewrite the p"! problem (52) as follows,

[ Ty [ : :
d f — f — 1—v)d
min [/Q Pt [n(f - ) v (- c) (1- x|
(59)

where Vv = q.



Image Segmentation

e Let u™! be the minimizer of (59) without the constraint v € [0, 1].
It is easy to derive that the solution is a weak solution of:

n+1 _ ~n+2/3
-V (Vu e ) =g i % (60)

T

where g = =1 (f — a1)* + (f — &)°.

e The solution of (60) is not unique. However, we may modify (60) by

un+1

adding a time stabilization term T‘“ to get an approximate

solution for (60):

n+1 _ on+2/3 n+1 _ ,n
—V-(V“ ? )+” Y _g inQ (61

T v &

Solved as previous method of image smoothing!

o After computing u"!, it is easy to compute:

pn—i—l — VU"+1.



b=0 b=15 x 102 b=4x10*

FIGURE: A synthetic image (the first row) and its three different segmentation results
(the second row, blue lines) by applying the proposed algorithm to the Euler elastica
based segmentation model. Different curvature parameter b = 0,5 x 10%,4 x 10% are
used while fixing other parameters asa=1, n =1, 7 = 0.005 and v = 0.1.



Segmentation Results
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FIGURE: The results of image segmentation by the proposed method on the examples " vessel”
and "UCLA"”. The parameters for “vessel’: a = 1 X 1073, b =1, n=1, 7 = 0.03, ahd 4'=0.1,
while parameters for "UCLA"” examples: a = 0.6, b = 100, n = 0.5, 7 = 0.005, and v = 0.1.



Segmentation Results
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FIGURE: This example of "UCLA” is with bigger broken gaps, i.e., the "UCLA" with the gap
relation /> ;. The parameters for "vessel” are: a=1x 1073, b=1,n =1, 7 = 0.03, and
v = 0.1, while parameters for "UCLA" examples are all set as: a = 0.6, b = 100, n = 0.5,

7 =0.005, and &4=:0.1.
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FIGURE: The energy plot of p"t1/3 subproblem (25), A"*1/3 subproblem (27), (n + 2/3)
subproblem (29), p"! subproblem (59) and the total energy (58).
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THANK YOU!





