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overview

fundamental problem: before we set out to do anything with objects,
we usually need a notion of separation between them

usually well-known for same type of objects of the same dimension

what about same type of objects of different dimensions?

problem 1 distance between two linear subspaces of different
dimensions?

problem 2 metric between two linear subspaces of different dimensions?

problem 3 distance between two affine subspaces of the same
dimension?

problem 4 distance between two affine subspaces of different
dimensions?

problem 5 distance between two covariance matrices of different
dimensions?
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linear subspaces
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why subspaces

k objects: genes, tweets, images, etc

n features: expression levels, term frequencies, frames, etc

jth object described by feature vector aj = [a1j , . . . , anj ]
T ∈ Rn

data set described by A = [a1, . . . , ak ] ∈ Rn×k

I massive: n large
I high-dimensional: k large

often what is important is not A but subspace defined by A
I span{a1, . . . , ak} or µ+ span{a1 − µ, . . . , ak − µ}
I principal subspaces of A defined by eigenvectors of covariance matrix
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classical problem

Problem

a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ Rn two collections of k linearly
independent vectors; want measure of separation of subspace spanned by
a1, . . . , ak and the subspace spanned by b1, . . . , bk

two possible solutions: distances or angles between subspaces of the
same dimension

turns out to be equivalent

classical problem in matrix computations [Golub–Van Loan, 2013]

notations:
I write 〈a1, . . . , ak〉 := span{a1, . . . , ak}
I subspace A ⊆ Rn, write PA ∈ Rn×n for orthogonal projection onto A
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principal angles between subspaces

standard way to measure deviation between two subspaces

measure principal angles θ1, . . . , θk ∈ [0, π/2] between them

define principal vectors (a∗j , b
∗
j ) recursively as the solutions to the

optimization problem

maximize aTb
subject to a ∈ 〈a1, . . . , ak〉, b ∈ 〈b1, . . . , bk〉,

aTa1 = · · · = aTaj−1 = 0, ‖a‖ = 1,
bTb1 = · · · = bTbj−1 = 0, ‖b‖ = 1,

for j = 1, . . . , k

principle angles given by

cos θj = a∗Tj b∗j , j = 1, . . . , k

clearly θ1 ≤ · · · ≤ θk

L.-H. Lim (Chicago) cross-dimensional distances 6 / 39



readily computable

may be computed using qr and svd [Björck–Golub, 1973]

take orthonormal bases for subspaces and store them as columns of
matrices A,B ∈ Rn×k (e.g., Householder qr)

let svd of ATB ∈ Rk×k be

ATB = UΣV T

where Σ = diag(σ1, . . . , σk) and σ1 ≥ · · · ≥ σk are the singular values

note 0 ≤ σi ≤ 1 by orthonormality of columns of A and B

principal angles given by

cos θi = σi , i = 1, . . . , k

principal vectors given by

AU = [p1, . . . , pk ], BV = [q1, . . . , ql ]
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basic geometry of subspaces

k-dimensional linear subspace A in Rn is an element of the
Grassmann manifold Gr(k , n)

Stiefel manifold: V(k , n) set of n × k orthonormal matrices A ∈ Rn×k

Grassmann manifold: A = span(A) ∈ Gr(k , n) represents an
equivalence class

Gr(k , n) = V(k , n)/O(k)

rich geometry: smooth Riemannian manifold, algebraic variety,
homogeneous space, geodesic orbit space
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Grassmann distance

geodesic distance: along geodesic between A and B on Gr(k , n)

dGr(k,n)(A,B) =

[∑k

i=1
θ2
i

]1/2

dGr(k,n) is intrinsic, i.e., does not depend on any embedding

but dGr(k,n)(A,B) undefined for A ∈ Gr(k , n), B ∈ Gr(l , n), k 6= l
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distances between equidimensional subspaces

Grassmann distance dGr(k,n)(A,B) =
(∑k

i=1 θ
2
i

)1/2

Asimov distance dαGr(k,n)(A,B) = θk

Binet–Cauchy distance dβGr(k,n)(A,B) =
(

1−
∏k

i=1 cos2 θi

)1/2

Chordal distance dκGr(k,n)(A,B) =
(∑k

i=1 sin2 θi

)1/2

Fubini–Study distance dφGr(k,n)(A,B) = cos−1
(∏k

i=1 cos θi

)
Martin distance dµGr(k,n)(A,B) =

(
log
∏k

i=1 1/ cos2 θi

)1/2

Procrustes distance dρGr(k,n)(A,B) = 2
(∑k

i=1 sin2(θi/2)
)1/2

Projection distance dπGr(k,n)(A,B) = sin θk
Spectral distance dσGr(k,n)(A,B) = 2 sin(θk/2)
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distances between nonequidimensional subapces?

dependence on principal angles not a coincidence

Theorem (Wong, 1967; Ye–LHL, 2016)

any valid distance function d(A,B) on subspaces must be a function of
only their principal angles

ATB = U(cos Θ)V T, Θ = diag(θ1, . . . , θk)

however none works for subspaces of different dimensions

one solution: embed Gr(n, 0),Gr(n, 1), . . . ,Gr(n, n) in some bigger
space and measure distance in that space

J. Conway, R. Hardin, N. Sloane. “Packing lines, planes, etc.: Packings in Grassmannian

spaces,” Exp. Math., 5 (1996), no. 2, pp. 139–159
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example
simultaneous embedding of Gr(n, 0),Gr(n, 1), . . . ,Gr(n, n) into sphere
in R(n−1)(n+2)/2 as orthogonal projectors
chordal distance ‖AAT − BBT‖F =

√
2dκGr(k,n)(A,B)
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instrinsic distance?

want an intrinsic distance for subspaces of different dimensions

must agree with the geodesic distance on Gr(k , n) when both
subspaces are of the same dimension

dGr(k,n)(A,B) =

[∑k

i=1
θ2
i

]1/2

solution: inspired by Schubert calculus
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what we propose

given subspaces A of dimension k and B of dimension l

wlog assume k < l

define

Ω+(A) := {Y ∈ Gr(l , n) : A ⊆ Y}
Ω−(B) := {X ∈ Gr(k , n) : X ⊆ B}

Ω+(A) and Ω−(B) are Schubert varieties in Gr(l , n) and Gr(k , n)
respectively

two possibilities for our distance:

δ+(A,B) = min{dGr(l ,n)(X,B) : X ∈ Ω+(A)}
δ−(A,B) = min{dGr(k,n)(Y,A) : Y ∈ Ω−(B)}
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intrinsic distance for inequidimensional subspaces

Theorem (Ye–LHL, 2016)

for any two subspaces A of dimension k and B of dimension l ,

δ+(A,B) = δ−(A,B)

denote common value by δ(A,B)

Theorem (Ye–LHL, 2016)

for any two subspaces A of dimension k and B of dimension l ,

δ(A,B) =

[∑min(k,l)

i=1
θ2
i

]1/2

where

ATB = U(cos Θ)V T, Θ = diag(θ1, . . . , θmin(k,l), 1, . . . , 1)
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pictorial view

A

Gr(1, 3)

Ω−(B)

γ

X
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properties

agrees with dGr(k,n) when k = l

easily computable via singular value decomposition

does not depend on n: inclusion

i : Gr(k , n)→ Gr(k , n + 1)

is isometric and dGr(k,∞) defines metric on Gr(k ,∞)

distance in the sense of distance of a point to a set
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extends to all other distances

Theorem (Ye–LHL, 2016)

does not matter if dGr(k,n) is replaced by any other distances, always have
δ∗
+

(A,B) = δ∗
−

(A,B), ∗ = α, β, κ, µ, π, ρ, σ, φ

Asimov distance δα(A,B) = θmin(k,l)

Binet–Cauchy distance δβ(A,B) =
(

1−
∏min(k,l)

i=1 cos2 θi

)1/2

Chordal distance δκ(A,B) =
(∑min(k,l)

i=1 sin2 θi

)1/2

Fubini–Study distance δφ(A,B) = cos−1
(∏min(k,l)

i=1 cos θi

)
Martin distance δµ(A,B) =

(
log
∏min(k,l)

i=1 1/ cos2 θi

)1/2

Procrustes distance δρ(A,B) = 2
(∑min(k,l)

i=1 sin2(θi/2)
)1/2

Projection distance δπ(A,B) = sin θmin(k,l)

Spectral distance δσ(A,B) = 2 sin(θmin(k,l)/2)
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metric?

δ is a premetric but not a metric on doubly infinite Grassmannian

Gr(∞,∞) :=
∞⊔
k=1

Gr(k ,∞)

which parameterizes subspaces of all dimensions

e.g., δ(A,B) = 0 if A ⊂ B, triangle inequality not satisfied

no mathematically natural way to make Gr(∞,∞) into a metric
space: category of metric space does not admit coproduct
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our proposal

given two subspaces in Rn, A of dimension k and B of dimension l

wlog assume k < l , principal angles θ1, . . . , θk , now define

θk+1 = · · · = θl = π/2

get metrics on Gr(∞,∞) [Ye–LHL, 2016]

dGr(∞,∞)(A,B) =
(∑l

i=1
θ2
i

)1/2

=
(

(l − k)π2/4 +
∑k

i=1
θ2
i

)1/2

dκGr(∞,∞)(A,B) =
(∑l

i=1
sin2 θi

)1/2

=
(
l − k +

∑k

i=1
sin2 θi

)1/2

dρGr(∞,∞)(A,B) =
(

2
∑l

i=1
sin2(θi/2)

)1/2

=
(
l − k + 2

∑k

i=1
sin2(θi/2)

)1/2

essentially root mean square of two pieces of information: δ∗(A,B)
and ε(A,B) := |dimA− dimB|1/2

d∗Gr(∞,∞)(A,B) =
√
δ∗(A,B)2 + c2

∗ ε(A,B)2
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moreover

what about ∗ = α, β, φ, µ, π, σ?

not very interesting:

d∗Gr(∞,∞)(A,B) =

{
d∗Gr(k,∞)(A,B) if dimA = dimB = k

c∗ if dimA 6= dimB

constants c∗ > 0 given by

c = cα = π/2, cβ = cφ = cπ = cκ = cρ = 1, cσ =
√

2, cµ =∞

how to interpret?

max
X∈Ω+(A)

d∗Gr(l ,n)(X,B) = d∗Gr(∞,∞)(A,B) = max
Y∈Ω−(B)

d∗Gr(k,n)(Y,A)

provided n > 2l
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summary in english

given two subspaces in Rn, A of dimension k and B of dimension l

distance of A to nearest k-dimensional subspace contained in B
equals distance of B to nearest l-dimensional subspace containing A
common value gives distance between A and B
distance of A to furthest k-dimensional subspace contained in B
equals distance of B to furthest l-dimensional subspace containing A
common value gives metric between A and B
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volumetric analogue

µk,n natural probability density on Gr(k, n)

what we showed [Ye–LHL, 2016],

µl ,n
(
Ω+(A)

)
= µk,n

(
Ω−(B)

)
probability a random l-dimensional subspace contains A equals
probability a random k-dimensional subspace is contained in B
common value does not depend on the choices of A and B but only
on k, l , n and is given by

l!(n − k)!
∏l

j=l−k+1 ωj

n!(l − k)!
∏n

j=n−k+1 ωj

ωm := πm/2/Γ(1 + m/2) is volume of unit 2-norm ball in Rm
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affine subspaces
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affine subspaces

A ∈ Gr(k , n) k-dimensional linear subspace, b ∈ Rn displacement of
A from the origin

A = [a1, . . . , ak ] ∈ Rn×k basis of A, then a k-dimensional affine
subspace is

A + b := {λ1a1 + · · ·+ λkak + b ∈ Rn : λ1, . . . , λk ∈ R}

[A, b0] orthogonal affine coordinates if

[A, b0] ∈ Rn×(k+1), ATA = I , ATb0 = 0

Graff(k , n) Grassmannian of affine subspaces in Rn is set of all
k-dimensional affine subspaces of Rn
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Grassmannian of affine subspaces

Graff(k , n) is smooth manifold

Graff(k , n) is universal quotient bundle of Gr(k, n)

0→ S → Gr(k , n)× Rn → Graff(k , n)→ 0

Graff(k , n) is homogeneous space

Graff(k , n) ∼= E(n)/(O(n − k)× E(k)
)

where E(n) is group of orthogonal affine transformations

Graff(k , n) is Zariski open subset of Gr(k + 1, n + 1)

Gr(k + 1, n + 1) = X ∪ X c , X ∼= Graff(k , n), X c ∼= Gr(k + 1, n)

first three do not give useful distance on Graff(k , n), last one does
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embedding Graff(k , n) into Gr(k + 1, n + 1)

j : Graff(k, n)→ Gr(k + 1, n + 1), A + b 7→ span(A ∪ {b + en+1})

y

z

A

x

b

e3

A + b

j(A + b)
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distance between affine subspaces

define distance between two k-dimensional affine subspaces as

dGraff(k,n)(A + b,B + c) := dGr(k+1,n+1)

(
j(A + b), j(B + c)

)
reduces to Grassmann distance when b = c = 0

if [A, b0] and [B, c0] ∈ Rn×(k+1) are orthogonal affine coordinates,
then

dGraff(k,n)(A + b,B + c) =
(∑k+1

i=1
φ2
i

)1/2

affine principal angles defined by

φi = cos−1 τi , i = 1, . . . , k + 1,

where τ1 ≥ · · · ≥ τk+1 are singular values of[
A b0/

√
1 + ‖b0‖2

0 1/
√

1 + ‖b0‖2

]T [
B c0/

√
1 + ‖c0‖2

0 1/
√

1 + ‖c0‖2

]
∈ R(k+1)×(k+1)
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affine subspaces of different dimensions?

Ω+(A + b) :=
{
X + y ∈ Graff(l , n) : A + b ⊆ X + y

}
Ω−(B + c) :=

{
Y + z ∈ Graff(k , n) : Y + z ⊆ B + c

}
Theorem (LHL–Wong–Ye, 2018)

k ≤ l ≤ n, A + b ∈ Graff(k , n), B + c ∈ Graff(l , n), then

dGraff(k,n)

(
A + b,Ω−(B + c)

)
= dGraff(l ,n)

(
B + c ,Ω+(A + b)

)
,

and their common value is

δ(A + b,B + c) =
(∑min(k,l)+1

i=1
φ2
i

)1/2
,

where φ1, . . . , φmin(k,l)+1 are affine principal angles corresponding to[
A b0/

√
1 + ‖b0‖2

0 1/
√

1 + ‖b0‖2

]T [
B c0/

√
1 + ‖c0‖2

0 1/
√

1 + ‖c0‖2

]
∈ R(k+1)×(l+1)
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works with other distances too

common value δ∗(A + b,B + c) given by:

δα(A + b,B + c) = φk+1, δβ(A + b,B + c) =
(

1 −
∏k+1

i=1
cos2 φi

)1/2

,

δπ(A + b,B + c) = sinφk+1, δµ(A + b,B + c) =
(

log
∏k+1

i=1

1

cos2 φi

)1/2

,

δσ(A + b,B + c) = 2 sin(φk+1/2), δφ(A + b,B + c) = cos−1(∏k+1

i=1
cosφi

)
,

δκ(A + b,B + c) =
(∑k+1

i=1
sin2 φi

)1/2

, δρ(A + b,B + c) =
(

2
∑k+1

i=1
sin2(φi/2)

)1/2
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ellipsoids

L.-H. Lim (Chicago) cross-dimensional distances 31 / 39



same thing different names

real symmetric positive definite matrices A ∈ Rn×n

ellipsoids centered at the origin in Rn,

EA := {x ∈ Rn : xTAx ≤ 1}

inner products on Rn,

〈 ·, · 〉A : Rn × Rn → R, (x , y) 7→ xTAy

covariances of nondegenerate random variables X : Ω→ Rn,

A = Cov(X ) = E [(X − µ)(X − µ)T]

many more: diffusion tensors, sums-of-squares polynomials,
mean-centered Gaussians, etc
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psd cone

Sn vector space of real symmetric or complex Hermitian matrices

Sn
++

cone of real symmetric positive definite or complex Hermitian
positive definite matrices

rich geometric structures
I Riemannian manifold
I symmetric space
I Bruhat–Tits space
I CAT(0) space
I metric space of nonpositive curvature

Riemannian metric
ds2 = tr(A−1dA)2

induced by the trace inner product tr(ATB) on tangent space Sn
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Riemannian distance

most awesome distance on Sn
++

:

δ2 : Sn
++
× Sn

++
→ R+, δ2(A,B) =

[∑n

j=1
log2(λj(A

−1B))
]1/2

invariant under
I congruence:

δ2(XAX T,XBX T) = δ2(A,B)

I similarity:
δ2(XAX−1,XBX−1) = δ2(A,B)

I inversion:
δ2(A−1,B−1) = δ2(A,B)

for comparison, all matrix norms are at best invariant under
I unitary transformations: Frobenius, spectral, nuclear, Schatten, Ky Fan
I permutations and scaling: operator p-norms, Hölder p-norms, p 6= 2

L.-H. Lim (Chicago) cross-dimensional distances 34 / 39



important in applications

optimization δ2 equivalent to the metric defined by the self-concordant log
barrier in semidefinite programming, i.e., log det : Sn

++
→ R

statistics δ2 equivalent to the Fisher information metric for Gaussian
covariance matrix estimation problems

linear algebra δ2 gives rise to the matrix geometric mean

other areas computer vision, medical imaging, radar signal processing,
pattern recognition

for A ∈ Sm
++

, B ∈ Sn
++

, m 6= n, can we define δ2(A,B)?
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analogues of our Schubert varieties

assume m ≤ n, A ∈ Sm
++

, B ∈ Sn
++

convex set of n-dimensional ellipsoids containing EA

Ω+(A) :=

{
G =

[
G11 G12

G ∗12 G22

]
∈ Sn

++
: G11 � A

}
.

convex set of m-dimensional ellipsoids contained in EB

Ω−(B) := {H ∈ Sm
++

: B11 � H},

where B11 is upper left m ×m principal submatrix of B

recall partial order on Sn
++

A � B if and only if B − A ∈ Sn
+
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Riemannian distance for inequidimensional ellipsoids

Theorem (LHL–Sepulchre–Ye, 2018)

for any A ∈ Sm
++

and B ∈ Sn
++

,

δ2

(
A,Ω−(B)

)
= δ2

(
B,Ω+(A)

)
denote common value by δ+2 (A,B)

Theorem (LHL–Sepulchre–Ye, 2018)

if B11 upper left m ×m principal submatrix of B, then

δ+2 (A,B) =
[∑k

j=1
log2 λj(A

−1B11)
]1/2

,

where k is such that λj(A
−1B11) ≤ 1 for j = k + 1, . . . ,m
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summary in english

given two ellipsoids, EA of dimension m and EB of dimension n

distance from EA to the set of m-dimensional ellipsoids contained in
EB equals the distance from EB to the set of n-dimensional ellipsoids
containing EA
common value gives distance between EA and EB
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