The Kähler-Ricci Flow and Geometry of Open Manifolds

Xi-Ping Zhu

(Zhongshan University)

Let M be a complete noncompact Kähler manifold with Kähler metric $g_{\alpha\bar{\beta}}$. We will consider the Ricci flow for the Kähler metric

$$\begin{cases} \frac{\partial}{\partial t}g_{\alpha\bar{\beta}}(x,t) = -R_{\alpha\bar{\beta}}(x,t), & x \in M, \ t > 0\\ \\ g_{\alpha\bar{\beta}}(x,0) = g_{\alpha\bar{\beta}}(x), & x \in M. \end{cases}$$

- Short time existence (Shi)
- Preserving the Kählerity (Hamilton)

• Preserving the nonnegativity of holomorphic bisectional curvature (Bando, Mok)

Thus the Ricci flow is a useful tool to study complete K \ddot{a} hler manifolds with nonnegative holomorphic bisectional curvature.

§1. Motivations

Motivation I

The classical uniformization theorem

simply connected, Riemann surface
$$\stackrel{\text{biholomorphic}}{\cong} \begin{cases} S^2 \\ \mathbb{C} \\ D \text{ (unit disc)} \end{cases}$$

• It gives the characterization for the standard complex structures of onedimensional Kähler manifolds.

• There is a vast variety of biholomorphically distinct complex structures on \mathbb{R}^{2n} for n > 1.

Differential geometry version of classical uniformization theorem

positive curvature, Riemann surface
$$\stackrel{\text{biholomorphic}}{\cong} \begin{cases} S^2 \\ \mathbb{C} \end{cases}$$

On a higher dimensional Kähler manifold

Higher dimensional uniformization problems

• Frankel conjecture:

compact $n - \dim K \ddot{a}hler \ manifold \ M, \ bisect > 0 \Rightarrow M \stackrel{\text{biholo.}}{\cong} \mathbb{C}P^n$

Completely solved by Mori, Siu-Yau.

• Greene-Wu, Yau conjecture:

noncompact $n - \dim K \ddot{a}hler manifold M$, $bisect > 0 \Rightarrow M \stackrel{\text{biholo.}}{\cong} \mathbb{C}^n$

Motivation II

Soul theorem (Cheeger-Gromoll-Meyer)

 $\begin{array}{ccc} & the \ normal \ bundle \ \nu(S) \ of \ a \\ & \cong \\ manifold, \ sect. \geq 0 \\ & &$

Yau conjecture

		$a\ holomorphic\ vector\ bundle$		
noncompact, Kähler	$\stackrel{biholo.}{\cong}$	over a compact Hermitian		
manifold, bisect. ≥ 0				
		$symmetric\ space$		

§2. Long Time Existence

Let $(M, g_{\alpha \overline{\beta}}(x))$ be a complete noncompact Kähler manifold with nonnegative holomorphic bisectional curvature. Consider the Ricci flow with the Kähler metric $g_{\alpha \overline{\beta}}$ as initial data. Its scalar curvature evolves by

$$\frac{\partial}{\partial t}R(x,t) = \Delta_t R(x,t) + 2|Ric(x,t)|^2_{g_{\alpha\bar{\beta}}(t)}$$

• $R|_{t=0} \ge \delta_0 > 0 \implies$ the solution blows up in finite time Example: $\mathbb{C}P^k \times \mathbb{C}^{n-k}$

Long time existence result (Shi)

Suppose the initial metric $g_{\alpha\bar{\beta}}$ has bounded and nonnegative bisectional curvature, and suppose $\exists C > 0$ and $0 < \theta < 2$ such that

$$\oint_{B_0(x_0,r)} R(x,0) dx \stackrel{\Delta}{=} \frac{1}{Vol(B_0(x_0,r))} \int_{B_0(x_0,r)} R(x,0) dx \le \frac{C}{(1+r)^{\theta}},$$

for all $x_0 \in M$ and $0 \leq r < +\infty$.

Then the Ricci flow has a smooth solution for all $t \in [0, +\infty)$.

Decay estimate (Chen-Zhu)

Let M be a complete Kähler manifold with bisect> 0. Then for any $x_0 \in M$, there exists a positive constant C such that

$$\oint_{B_0(x_0,r)} R(x)d \le \frac{C}{1+r}, \quad \text{for all } 0 \le r < +\infty.$$

Conjecture: Let $(M, g_{\alpha \overline{\beta}})$ be a complete noncompact Kähler manifold with bisect> 0. Then the Ricci flow with $g_{\alpha \overline{\beta}}$ as initial metric has a solution for all $t \in [0, +\infty)$.

§3. Ancient Solutions

Consider $g_{\alpha\bar{\beta}}(t)$, $-\infty < t < T$ (with $T < +\infty$), an ancient solution to the Ricci flow on a Kähler manifold, with bounded and nonnegative holomorphic bisectional curvature.

• Asymptotic scalar curvature ratio

$$A(t) = \limsup_{d_t(x,x_0) \to +\infty} R(x,t) d_t^2(x,x_0)$$

• Asymptotic volume ratio

$$\nu(t) = \lim_{r \to +\infty} \frac{Vol_t(B_t(x_0, r))}{r^{2n}}$$

Proposition: Any ancient solution to the Ricci flow on a Kähler manifold, with bounded and nonnegative bisectional curvature, has

$$A(t) = \limsup_{d_t(x,x_0) \to +\infty} R(x,t) d_t^2(x,x_0) = +\infty, \text{ for each } t.$$

Proposition: (Chen-Zhu)

Let M be a (complex) two-dimensional complete noncompact Kähler manifold. Suppose $g_{\alpha\bar{\beta}}(t)$, $-\infty < t \leq T$, is a nonflat ancient solution to the Ricci flow with bounded and nonnegative holomorphic bisectional curvature. Then

$$\nu(t) = \lim_{r \to +\infty} \frac{Vol_t(B_t(x_0, r))}{r^{2n}} = 0$$

for each $t \in (-\infty, T]$.

• (Perelman) Any complete noncompact nonflat ancient solution to the Ricci flow with bounded and nonnegative curvature operator has

$$\nu(t) = 0$$
, for each t

• Conjecture: The previous proposition should hold for all dimensions.

Application (Chen-Zhu)

Let M be a (complex) two-dimensional complete noncompact Kähler manifold with the metric $g_{\alpha\bar{\beta}}(x)$, which has bounded and nonnegative bisectional curvature, and has maximal volume growth, i.e.,

$$Vol(B(x_0, r)) \ge wr^{2n}$$
, for all $0 \le r < +\infty$, and some $w > 0$.

Then the Ricci flow with $g_{\alpha\bar{\beta}}(x)$ as initial data has a smooth solution $g_{\alpha\bar{\beta}}(x,t)$ for all $t \in [0, +\infty)$ and satisfies

$$|R_m(x,t)| \leq B/t$$
, everywhere for some $B = B(w)$.

• (Perelman) For every w > 0, $\exists B = B(w), C = C(w), \tau_0 = \tau_0(w)$ with the following property. Suppose we have a solution $g_{ij}(t), -r_0^2 \leq t \leq 0$, to the Ricci flow satisfying

$$R_m(x,t) \ge -r_0^{-2}$$
 for $-r_0^2 \le t \le 0$ and $x \in B_t(x_0,r_0)$,

and

$$Vol_0(B_0(x_0, r_0)) \ge wr_0^n$$

Then

$$|R_m(x,t)| \le Cr_0^{-2} + B(t+\tau_0 r_0^2)^{-1}$$

whenever $-r_0^2 \le t \le 0$ and $d_t(x, x_0) \le \frac{1}{4}r_0$.

§4. Volume Growth and Curvature Decay

Consider a complete noncompact Kähler manifold M with bisect ≥ 0 .

Examples

• Klembeck, Cao :

$$n - dim \ K\ddot{a}hler \ manifolds \ with \ bisect > 0$$

$$Vol(B(x_0,r)) \approx cr^n$$

$$|R_m(x)| \le C/d(x, x_0)$$

 \bullet Cao :

 $n - \dim K \ddot{a}hler manifolds with bisect > 0$ $Vol(B(x_0, r)) \approx cr^{2n}$

$$|R_m(x)| \le C/d(x, x_0)^2$$

Volume growth

- Bishop-Gromov : $Vol(B(x_0, r)) \le Cr^{2n}$, for all r > 0.
- Calabi-Yau : $Vol(B(x_0, r)) \ge Cr$, for all $r \ge 1$.

Proposition (Chen-Zhu)

Let M be a (complex) n-dimensional complete noncompact Kähler manifold with bisect ≥ 0 everywhere and bisect > 0 at least at one point. Then

$$Vol(B(x_0, r)) \ge Cr^n$$
, for all $r \ge 1$.

Curvature decay

• Chen-Zhu :

$$\oint_{B(x_0,r)} R(x) dx \le \frac{C}{1+r}, \quad for \ all \ r > 0.$$

(assuming bisect > 0).

• Mok-Siu-Yau : $n \geq 2$

$$Vol(B(x_0, r)) \ge cr^{2n}, \quad for \ all \ r \ge 0$$
$$R(x) \le C/1 + d(x_0, x)^{2+\epsilon}, \quad x \in M, \quad for \ some \ \epsilon > 0$$
$$\Rightarrow M \stackrel{holo. \ isom.}{\cong} \mathbb{C}^n$$

 \bullet Chen-Zhu :

$$\oint_{B(x_0,r)} R(x)dx \leq \frac{\epsilon(r)}{r^2}, \quad \text{for all } x_0 \in M \text{ and } r > 0$$

$$(\text{ where } \epsilon(r) \to 0 \text{ as } r \to +\infty) \text{ and } R(x) \text{ is bounded}$$

$$\Rightarrow M \text{ is a complete flat Kähler manifold}$$

• Ni-Tam :

$$\int_{0}^{r} s(\oint_{B(x_{0},s)} R(y)dy)ds = o(\log r), \quad for \ all \ x_{0} \in M$$
$$\liminf_{r \to +\infty} [\exp(-ar^{2})\int_{B(x_{0},r)} R^{2}] < +\infty, \quad (a > 0)$$
$$\Rightarrow M \ is \ a \ complete \ flat \ K\"ahler \ manifold.$$

noncompact Kähler manifolds with bisect > 0

	$\alpha < n$	$\alpha = n$	$n < \alpha < 2n$	$\alpha = 2n$	$\alpha > 2n$
$Vol(B(x_0,r)) \approx r^{\alpha}$	No				No
		$\beta = 1$	$1<\beta<2$	$\beta = 2$	$\beta > 2$
$\oint_{B(x_0,r)} R = O(r^{-\beta})$	No				No

Yau prediction: bisect> 0, maximal volume growth (i.e. $\alpha = 2n$)

 \Rightarrow quadratic decay in average sense (i.e. $\beta=2$)

Theorem (Chen-Zhu)

Suppose bisect
> 0, bounded curvature, maximal volume. Suppose also $R_m \geq 0 \mbox{ if } n \geq 3. \mbox{ Then }$

$$\oint_{B(x,r)} R(y) dy \le C \frac{\log(2+r)}{r^2}, \quad for \ all \ x \in M \ and \ r > 0.$$

Moreover \exists polynomial growth holomorphic functions f_1, \dots, f_n algebraically independent.

Theorem (Ni)

Suppose bisect> 0 and admit a nonconstant holomorphic function of polynomial growth. Then

$$\oint_{B(x,r)} R(y) dy \le \frac{C}{r^2}, \quad for \ all \ r > 0.$$

Question: For a complete noncompact (complex) $n - \dim$ Kähler manifold and $\theta \in [1, 2]$,

$$Vol(B(x_0, r)) \approx r^{\theta n} \quad \stackrel{?}{\longleftrightarrow} \quad \oint_{B(x_0, r)} R \approx \frac{const.}{r^{\theta}}$$

§5. Liouville Properties

Classical Liouville theorem

- f holomorphic on \mathbb{C} , $|f(z)| \leq const. \Rightarrow f(z) \equiv const.$,
- f holomorphic on \mathbb{C} , $|f(z)| \leq const.(1+|z|^d)$

 $\Rightarrow f(z)$ is a holomorphic polynomial of degree $\leq d$.

Yau's Liouville theorem:

On a complete noncompact Riemannian manifold with $Ric \geq 0$, there hold

- u harmonic, $u(x) \ge 0 \Rightarrow u(x) \equiv const.$,
- (Cheng-Yau) u harmonic, $|u(x)| \le o(d(x, x_0))$

$$\Rightarrow u(x) \equiv const.$$

Notations

 $M^m - - -$ Riemannian manifold of real dimension m

 $M^n - - -$ Kähler manifold of complex dimension n

 $\mathcal{H}_d(M^m)$ = the space of harmonic functions u(x) with $|u(x)| \leq O(d(x, x_0)^d)$

 $\mathcal{O}_d(M^n)$ = the space of holomorphic functions f(z) with $|f(z)| \leq O(d(x, x_0)^d)$

Yau conjecture

- (I) (real case) Suppose $Ric(M^m) \ge 0$, then
 - (I.0) (finiteness): $dim_{\mathbb{R}}\mathcal{H}_d(M^m) < +\infty$, for each d > 0;
 - (I.1) (Sharp estimate): $dim_{\mathbb{R}}\mathcal{H}_d(M^m) < dim_{\mathbb{R}}\mathcal{H}_d(\mathbb{R}^m)$, for each $d \in \mathbb{Z}^+$;
 - (I.2) (rigidity): if \exists a positive integer d such that

$$\dim_{\mathbb{R}} \mathcal{H}_d(M^m) = \dim_{\mathbb{R}} \mathcal{H}_d(\mathbb{R}^m)$$

then $M^m \stackrel{\text{isom.}}{\cong} \mathbb{R}^m.$

- (II) (complex case) Suppose $\operatorname{bisect}(M^n) \ge 0$, then
 - (II.1) (sharp estimate): $\dim_{\mathbb{C}} \mathcal{O}_d(M^n) \leq \dim_{\mathbb{C}} \mathcal{O}_d(\mathbb{C}^n)$, for each $d \in \mathbb{Z}^+$;
 - (II.2) (rigidity): if \exists a positive integer d such that

$$\dim_{\mathbb{C}} \mathcal{O}_d(M^n) = \dim_{\mathbb{C}} \mathcal{O}_d(\mathbb{C}^n),$$

then $M^n \stackrel{\text{isom. biholo.}}{\cong} \mathbb{C}^n.$

Real case

(I.0) (finiteness): $"dim_{\mathbb{R}}\mathcal{H}_d(M^m) < +\infty"$ completely affirmative answer $\begin{cases} \bullet \text{ Colding - Minicozzi} \\ \bullet \text{ P.Li} \end{cases}$

(I.1) (Sharp estimate): $''dim_{\mathbb{R}}\mathcal{H}_d(M^m) \leq dim_{\mathbb{R}}\mathcal{H}_d(\mathbb{R}^m)''$

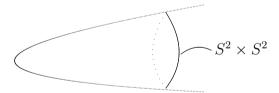
Only known for
$$m = 2$$
 or $d = 1$
• Kasue

(I.2) (rigidity): "equality holds for some $d > 0 \iff M^m \stackrel{isom.}{\cong} \mathbb{R}^m$ "

Only known for
$$d = 1$$

 $\left\{ \begin{array}{l} \bullet Li \\ \bullet Cheeger - Colding - Minicozzi \end{array} \right.$

Donnelly's example



One can not expect a strong version of Yau's conjecture:

$$\dim_{\mathbb{R}}\mathcal{H}_{\alpha}(M^m) \leq \dim_{\mathbb{R}}\mathcal{H}_{[\alpha]}(\mathbb{R}^m)$$

for all positive constant $\alpha > 0$.

Complex case

- (II.1) (Sharp estimate)
- Ni: Under an additional assumption

$$Vol(B(x_0, r)) \ge cr^{2n}$$
, for all $r > 0$ and some $c > 0$

$$\Rightarrow \dim_{\mathbb{C}} \mathcal{O}_d(M^n) \leq \dim_{\mathbb{C}} \mathcal{O}_{[d]}(\mathbb{C}^n), \quad for \ each \ d > 0;$$

• Chen-Fu-Yin-Zhu: (completely affirmative answer)

$$\dim_{\mathbb{C}} \mathcal{O}_d(M^n) \leq \dim_{\mathbb{C}} \mathcal{O}_{[d]}(\mathbb{C}^n), \quad for \ each \ d > 0.$$

(II.2) (rigidity)

• Chen-Fu-Yin-Zhu: (completely affirmative answer)

$$\dim_{\mathbb{C}} \mathcal{O}_d(M^n) = \dim_{\mathbb{C}} \mathcal{O}_d(\mathbb{C}^n), \quad \text{for some integer } d > 0$$
$$\iff M^n \stackrel{\text{isom. biholo.}}{\cong} \mathbb{C}^n.$$

Generalization (Chen-Fu-Yin-Zhu)

Suppose bisect $(M^n) \ge 0$ and

$$Vol(B(x_0, r)) \le C(1+r)^{2k}, \ \forall r > 0,$$

Then

- $dim_{\mathbb{C}}\mathcal{O}_d(M^n) \leq dim_{\mathbb{C}}\mathcal{O}_{[d]}(\mathbb{C}^{[k]}), \quad for \ each \ d > 0;$
- " =" holds for some positive integer d

$$\iff M^n \stackrel{isom. \ biholo.}{\cong} \mathbb{C}^{[k]} \times M_2^{n-[k]}$$

§6. Uniformization Theorems

Greene-Wu-Yau conjecture:

A complete noncompact Kähler manifold of positive holomorphic bisectional curvature is biholomorphic to a complex Euclidean space.

• Mok-Siu-Yau

Suppose (complex) dim. ≥ 2 and

- (i) $Vol(B(x_0, r)) \ge C_1 r^{2n}$, for all r > 0,
- (ii) $R(x) \leq C_2/1 + d(x_0, x)^{2+\epsilon}$, for some $\epsilon > 0$.

Then

$$M^n \stackrel{isom. \ biholo.}{\cong} \mathbb{C}^n.$$

• Mok

Suppose

(i)
$$Vol(B(x_0, r)) \ge C_1 r^{2n}$$
, for all $r > 0$,
(ii) $R(x) \le C_2/1 + d(x_0, x)^2$.

Then M^n is biholomorphic to an affine algebraic variety.

Moreover, if in addition the complex dimension n = 2 and

(iii) $\operatorname{sect}(M^n) > 0$

then

$$M^2 \stackrel{biholo.}{\cong} \mathbb{C}^2.$$

• Chen-Tang-Zhu

Suppose n = 2, bounded curvature and

 $Vol(B(x_0, r)) \ge C_1 r^{2n}$, for all r > 0.

Then M^2 is biholomorphic to \mathbb{C}^2 .

Ideas of proof

Step 1 Evolve the Kähler metric by the Ricci flow

- Time-decay estimate
- \bullet Stein
- \bullet homeomorphic to \mathbb{R}^4

Step 2 Construct algebraically independent holomorphic functions

- Space-decay estimate
- Poincaré-Lelong equation
- Hörmander's $\bar{\partial}$ -theory

Step 3 Algebraic embedding

- multiplicity estimaties
- \bullet desingularizaiton