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Gene Tree vs the (Containing) Species Tree

A species tree S represents the evolutionary history of species

» S can be binary or non-binary .
-- Hard polytomy
-- Soft polytomy.

» Each leaf represents a modern species. S1 S2 S3 S4
Species tree S

A gene tree G is over the members of a gene family

» G can be non-binary.
--- Non-binary nodes are soft polytomies.

» Each leaf represents a family gene and is labeled by
the species where it resides. A

S1g S2g S1g S3g S4g
Gene tree G



Part 1: Reconciliation

A reconciliation between gene tree G and
species tree S is a map from V(G) to V(S) with
the following properties:

» Leaf-preserving: f(x)isa leaf with the same label if x € Leaf(G);
» Order-preserving: u<v= f(u) < f(v),vu,veV(G).

S3g S4g Sl1g Slg S2g 1 2 3 4
Gene tree G Species tree S



Gene tree and species tree reconciliation is an
Important method for

» Inferring duplications, losses, and horizontal transfers
» Inferring orthology and paralogy gene relationship
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Gene Tree G Species Tree .S

Lowest Common Ancestor Reconciliation A
(Goodman et al, 1979, Page, 1994)

-- It maps leaves to respective leaves with the same label,

-- It maps internal node g Is the lowest common ancestor
of the images of its children.



Gene tree G Species tree S

u
u u,

Letu eV (G) with childrenu, and u,.
» Aduplicationis inferredwith u Iff
A(u) =A(u,),or A(u) = A(u,).
The inferred duplication occurred in the branch entering A(u)
» Gene lossesare computed using the # of branches on the path
fromA(u) to A(u,),1=1,2.

(The duplication cost of 1) = (the # of inferred duplications).
The gene loss cost is defined similarly.



R(G, S). All the reconciliations of G and S.
A . The Ica reconciliation of G and S.

Theorem Let G and S be binary. Then,

1). A has the smallest duplication cost
In ‘(R(G, S) (Gorecki & Tiuryn, 2006) ,

I1). A 1S the unique one with the smallest loss cost
INn R(G, S) (Chauve et al, 2009);

111). A Is the unigue one with the smallest deep
coalescence cost In R(G, S) (wu & Zhang, 2011);

IvV). A Is computable in O(|G|+|S|) (zhang, 1997).

A Is the parsimonious solution for binary trees.



Part Il Reconciliation with Non-binary Trees

General Reconciliation Problem:

Instance: A gene tree G and a species tree S;

Solution: Binary refinement G of G and S of S such that
the Ica reconciliation of G and S minimizes
a reconciliation cost.

Refinement
> >
Contraction




Our Heuristic Reconciliation Procedure

abcde fg abcdefg abcdefg

G G

7 losses
3 duplications

| I I |

Step 1 Step 2 Step 3

Refine S based on Refine G basedon  Reconcile G and S
structural inform. the refinement S to infer the evolution
of genetree G of species tree S of the gene family

ac a de ag ab de fg ac a de ag ab de fg ab adeagacde fg




Refine S based on the Structural Information of G

Instance: A (binary or non-binary) G and a non-binary S.
Solution: A binary refinement S of S that minimizes a
reconciliation cost of reconciling G and S.

The above refinement problem is NP-hard even for binary gene trees,
which is proved for the duplication cost via a reduction from

Species tree problem
Instance: A set of gene trees G; (0<i<n).
Solution: A species tree S’ that minimizes Z c(S",G;)

O<i<n

Ma, Li, & Zhang, SIAM J. Computing, 2000
Zhang, IEEE TCBB, 2011

Bansal & Shamir, IEEE TCBB, 2011

Than & Nakhleh, PLoS Comput. Biol. 2009



C. neoformans

P. ostreatus

S. pombe

S. octosporus

C. glabrata

S. cryophilus

S. cerevisiae

S. punctatus

B. dendrobatidis
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C. neoformans
P. ostreatus

S. pombe

S. octosporus
S. cryophilus

C. glabrata

S. cerevisiae

S. punctatus
B. dendrobatidis

G S. punct Torl

B. dendro Tor2
B. dendro Torl
C. neo Torl
P. ostr Torl
P. ostr Tor2
S. pombe Tor2
S. oct Tor2
S. cryo Tor2
S. oct Torl
S. cryoTorl
S. pombe Torl
C. glaTorl
S. cere Torl
C. gla Tor2

S. cere Tor2

Apply First-Partition algorithm recursively

S.oct | S. cryo
== S. cere | C. gla

S. pombe | S. oct | S. cryo
S. cere, C.gla| S. pombe, S. oct, S. cryo, P.ostr ...

Extract informative splits from G




%N First Partition Algorithm M\
>

a bcdef deabocf
{c}, {}
GOAL.: Partition the children of a non-binary node ‘
into two groups X and Y.
A good partition [X, Y] is found in two steps. et i) tch, {f}
{c.f. b}, {} {c, f}, {b}
{c.f.b,d}, {} {c.f. b}, {d}
{c.f.b,d, a}, {} {c.f. b, d}, {a}
{c.f.b,d,a}, {e} Partial Partition Extension Criterion
_ [P, Q] maximizes the number of ‘non-cut’ splits
Step 1: Find k A,|A, , which have the following property:
partial partitions ANP=gporAnQ=g foreveryi=1,2

(in red)



First Partition Algorithm

abcdef

Step 2. Extend
every partial partition
found in Step 1 into
a partition.

{c.f.b,d}, {}

{

{c.f.b,d,a}, {} {c.f. b, d}, {a}

4

{c.f. b, d, a}, {e} {c,f, b, e, d}, {a}

{c,f, b, a {d, e}
>
deabocf
{c}, {}
4
{c, f}, {} {c}, {f}
4
{c. f. b}, {} {c, f}, {b} {c}, {f, a}
-
{c. f. b}, {d} {c, e}, {f a}

{c, e, b}, {f a}

{c, f, b}, {a,d, e}

{c, e, d, b}, {f a}

{c,f b, a}, {d, e}




Performance of First-Partition Algorithm

We repeat the following test 1000 times for each of 8
combinations of k (# of splits over a ground set)
and t (the size of the ground set)

# of # of # of errors # of errors
elements ({) splits (k) by Fpt hy HC +
5 51 T 15
10 0 1=
10 53 0 4
10 1 2
20 0 0
15 T 0 3
15 0 1
30 0 1

t An algorithm made an error if it output a non-optimal partition on the input.

¥ HCisan algorithm designed through a reduction to the Min Hypergraph Cut problem
(Ouangraoua, Swenson, Chauve, 2009).



Resolving non-binary nodes in G based on S

O

abcde fg

ac a de ag ab de fg

» The following duplication inference rule does not work
for non-binary nodes:

» We present an extension of above rule to non-binary nodes.
The whole process takes O(|G|+|S]) time.



L. The lca reconciliation of G and S

S G
"(>>‘ m
abcdefg

ac a de ag ab de fg

» The node v and its children are mapped
to a subtree (in blue) under A, which is
expanded into a binary subtree
(by adding dark blue edges).

The image subtree in S



O

abcdefg

ac a de ag ab de fg

Stepl: Compute m(u), Algorithm
the maximum number of _ _
child images on a path from  ®(u) Is the # of children mapped to u.

an internal node u to a leaf _
descendant. m(u) =max{ m(u,),m(u,)}+o(u)



S G

A2

abcde fg
ac a de ag ab de fg
I
3
4
Step2: Compute «(u) / g(u) using m(u).
Algorithm a(u): the # of genes entering
alr) =1 a branch.

a(u) = B(p(u) — wip(u))
| {-m.{u.] if a(u) = m(u) or u is a leaf;
Blu) =

max{o(u), min{muy ), m(ug) } +w(w),l +wlu)}.

p(u): the # of genes leaving
a branch.



S
abcdefg
ac a de ag ab de fg

Stepl: Compute m(u),

Step2: Compute a(u) / f(u)
using m(u).

Step 3: Infer duplications
and losses.

If a(u) < S(u), duplications
() are postulated.

If a(u) > B(u), losses (=)
are postulated.



Theorem The above algorithm resolves a non-binary node v
with m(r)-1 duplications.

Sketch of Proof. Assume the following path from the root
to a leaf contains the largest number, m(r), of child images,

P:r:uO,ul,.°.uk

(1) There are no gene losses on P, 1.e., a(u;)<=p(u;).
(2) All the duplications are postulated on P.

# of duplications

Z[ﬂ(ui)_a(ui)]

= p(ug) —1+ Z[ﬂ(ui) = fUi) + U ,)]

= Zk:a)(ui) -1
= rr_l(/l(r))—l.




Thm (i) The obtained reconciliation of a non-binary node v
has the optimal dup. cost.
(i1) It also has the smallest loss cost over all the reconciliations
with the same duplication cost.

Idea of Proof. Letv have childrenvy,v,, ... v,. We consider
partially ordered set:

P=({L(Av:)): 1<i<k}, Q)

(1) L: The size of the longest chain in P
P.: The min. # of antichains into which P may be partitioned.

Dual of Dilworth Theorem (Mirsky, 1971): L=P.

(2) At least p-1 duplications are needed to produce all the children
of v (Berglund-Sonnhammer et al, 06, Chang & Eulenstein’06)



Part I11: Software and Experiments

Our algorithms have been implemented in Python.

» Our program reconciles one or more gene trees and
a species tree in the duplication cost, or the duplication
and then loss cost.

» It is executed from command line to allow for automated
analysis of large data sets.

» No limitation on the number of species.

» Automatically rerooting gene trees.

We validated our program on simulated and real data;
we also compared it with NOTUNG (Durand et al’08), which
requests either gene tree or species is binary.



Repeated the following experiment 1000 times for
n=20, 40, 60, 80,100:

-- Generate a binary species tree S over n species, and a
non-binary species tree S’ from S by randomly contracting edges.

-- Generate 16 binary gene trees over totally about 1.2n genes
In n species using proper duplication and gene loss rates in S;
and divided them into 4 groups containing 1, 3, 5, 7 gene trees
respectively.

-- Find the reconciliation of each group of gene trees and S°.

-- Check whether S and the refinement of S’ are 1dentical or not.



Accuracy with 20 species

Performance Analysis
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We tested our program on

1. Agenetree of Tor in 13 fungal species (Shertz et al. 2011)
and a non-binary species tree from NCBI taxonomy database.

--- Inferred duplication events are identical to those reported
In the paper;

--- Output refinement of the species tree is consistent with a
large binary fungal species tree appearing in literature
(www.broadinstitute.orq)

2. A non-binary STAT gene tree and a binary species tree.

--- Co-evolution of STAT and other proteins in its signaling
pathway.


http://www.broadinstitute.org/

The JAK/STAT Signaling Pathway

Jason S. Rawlings, Kristin M. Rosler and Douglas A. Harrison
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A: STAT tree
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Two vertebrate ancestor
Stat-Jal-Egfr-carrying
chromozomes

| 2RsWGD

Jawed vertebrate ancestor
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chromosomes
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Teleost WGD, gene losses, and few
genome rearrangements

Chromosome rearrangements and
a duplication produced Stat5a'b
before mammals
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Co-evolution of Egfr, Jak and STAT genes.

Nakatani, Takeda, Kohara, & Morishita, 2007



Conclusion

» \We developed a software for reconciliation with non-binary
trees

-- For binary gene tree and non-binary species tree, our program
output a reconciliation with much less duplications than NOTUNG.

-- Durand et al (2005, 2008), Chang & Eulenstein (2006),
Berglund-Sonnhammer et al.(2006)

» Parsimony approach vs Bayesian approach
-- Akerborg et al (2009); Arvestad et al, (2009)

» Study how to reconcile non-binary gene tree and HGT
(horizontal gene transfer) networks in future.
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