SEPP: SATé-enabled phylogenetic placement (and metagenomics)

Tandy Warnow
Department of Computer Science
University of Texas
Computational Phylogenetics and Metagenomics

Courtesy of the Tree of Life project
Phylogeny (evolutionary tree)

From the Tree of the Life Website, University of Arizona
The New Science of Metagenomics

“Metagenomics will generate knowledge of microbial interactions so that they can be harnessed to improve human health, food security, and energy production.”

“Metagenomics combines the power of genomics, bioinformatics, and systems biology.”

“Metagenomics will be the systems biology of the biosphere.”

“There is no doubt that its concepts and methods will ultimately transform all biology.”

National Academies Press
Basic questions

• Who is there?
• What are they doing?
• What is being done by the microbial community?
Major Challenges

• **Phylogenetic analyses**: standard methods have *poor accuracy* on even moderately large datasets, and the most accurate methods are enormously *computationally intensive* (weeks or months, high memory requirements).

• **Metagenomic analyses**: methods for species classification of short reads have *poor sensitivity*. Efficient high throughput is necessary (millions of reads).
DNA Sequence Evolution

-3 mil yrs
-2 mil yrs
-1 mil yrs
today
The **true multiple alignment**

- Reflects historical substitution, insertion, and deletion events
- Defined using transitive closure of pairwise alignments computed on edges of the true tree
Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACC
S3 = TAGCTGACC
S4 = TCACGACCGACA
Phase 1: Multiple Sequence Alignment

S1 = AGGCTATCACCTGACCTCCA \quad S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC \quad S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC \quad S3 = TAG-CT--------GACCGC--
S4 = TCACGACCGACA \quad S4 = --------TCAC--GACCGACA
Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCAGCGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAGAGCGACCGC--
S3 = TAG-CT-------CGACCGC--
S4 = -------TCAC-AGCGACCGACA
Simulation Study Protocol
1000 taxon models, ordered by difficulty (Liu et al., 2009)
Problems

- Large datasets with high rates of evolution are hard to align accurately, and phylogeny estimation methods produce poor trees when alignments are poor.

- Many phylogeny estimation methods have poor accuracy on large datasets (even if given correct alignments)

- *Potentially useful genes are often discarded* if they are difficult to align.

These issues seriously impact large-scale phylogeny estimation (and Tree of Life projects)
Major Challenges

• Current phylogenetic datasets contain hundreds to thousands of taxa, with multiple genes.

• Future datasets will be substantially larger (e.g., iPlant plans to construct a tree on 500,000 plant species)

• Current methods have poor accuracy or cannot run on large datasets.
Phylogenetic “boosters”

Goal: improve accuracy, speed, robustness, or theoretical guarantees of base methods

Examples:
• DCM-boosting for distance-based methods (1999)
• DCM-boosting for heuristics for NP-hard problems (1999)
• SATé-boosting for alignment methods (2009)
• SuperFine-boosting for supertree methods (2011)
• DACTAL-boosting for all phylogeny estimation methods (2011)
• SEPP-boosting for metagenomic analyses (2011)
• DCMs “boost” the performance of phylogeny reconstruction methods.

Base method M → DCM → DCM-M
Today’s Talk

• **SATé**: Simultaneous Alignment and Tree Estimation (Liu et al., Science 2009, and Liu et al. Systematic Biology, in press)

• **SEPP**: SATé-enabled Phylogenetic Placement (Mirarab, Nguyen and Warnow, to appear, PSB 2012)

• **Taxon identification using SEPP** (Warnow, Pop, Mirarab, Nguyen, and Liu, in progress)
Part 1: SATé

Liu et al., Systematic Biology (in press)

Public software distribution (open source) through the University of Kansas, in use, world-wide
1000 taxon models, ordered by difficulty (Liu et al., 2009)
SATé Algorithm

Obtain initial alignment and estimated ML tree
SATé Algorithm

Obtain initial alignment and estimated ML tree

Alignment

Tree

Use tree to compute new alignment
SATé Algorithm

Obtain initial alignment and estimated ML tree

Estimate ML tree on new alignment

Use tree to compute new alignment
Obtain initial alignment and estimated ML tree

Estimate ML tree on new alignment

Use tree to compute new alignment

Alignment

Tree

If new alignment/tree pair has worse ML score, realign using a different decomposition

Repeat until termination condition (typically, 24 hours)

SATé Algorithm
One SATé iteration (really 32 subsets)

Decompose based on input tree

Estimate ML tree on merged alignment

Align subproblems

Merge subproblems
1000 taxon models, ordered by difficulty
1000 taxon models, ordered by difficulty

24 hour SATé analysis, on desktop machines
(Similar improvements for biological datasets)
1000 taxon models ranked by difficulty
Part II: SEPP

• SEPP: SATé-enabled Phylogenetic Placement, by Mirarab, Nguyen, and Warnow

• To appear, Pacific Symposium on Biocomputing, 2012 (special session on the Human Microbiome)
Metagenomic data analysis

NGS data produce fragmentary sequence data
Metagenomic analyses include unknown species

Taxon identification: given short sequences, identify the species for each fragment

Applications: Human Microbiome and other metagenomic projects
Issues: accuracy and speed
Phylogenetic Placement

Input: Backbone alignment and tree on full-length sequences, and a set of query sequences (short fragments)

Output: Placement of query sequences on backbone tree

Phylogenetic placement can be used for taxon identification, but it has general applications for phylogenetic analyses of NGS data.
Phylogenetic Placement

- Align each query sequence to backbone alignment

- Place each query sequence into backbone tree, using extended alignment
Align Sequence

S1 = -AGGCTATCACCTGACCTCCA-AA
S2 = TAG-CTATCAC--GACCGC--GCA
S3 = TAG-CT-------GACCGC--GCT
S4 = TAC-----TCAC--GACCGACAGCT
Q1 = TAAAAC
Align Sequence

S1 = \textcolor{blue}{-AGGCTATC}ACCTGACCTCCA-AA
S2 = \textcolor{blue}{TAG-CTATCAC}--GACCGC--GCA
S3 = \textcolor{blue}{TAG-CT}-------GACCGC--GCT
S4 = \textcolor{blue}{TAC----TCAC--GACCGACAGCT}
Q1 = \textcolor{blue}{-------T-A}--AAAC--------
Place Sequence

\[
\begin{align*}
S1 &= -AGGCTATCACCTGACCTCCA-AA \\
S2 &= TAG-CTATCAC--GACCGC--GCA \\
S3 &= TAG-CT-------GACCGC--GCT \\
S4 &= TAC----TCAC--GACCGACAGCT \\
Q1 &= --------T-A--AAAC--------
\end{align*}
\]
Phylogenetic Placement

• Align each query sequence to backbone alignment
 – HMMALIGN (Eddy, Bioinformatics 1998)
 – PaPaRa (Berger and Stamatakis, Bioinformatics 2011)
• Place each query sequence into backbone tree
 – Pplacer (Matsen et al., BMC Bioinformatics, 2010)
 – EPA (Berger and Stamatakis, Systematic Biology 2011)

Note: pplacer and EPA use maximum likelihood
HMMER vs. PaPaRa

Increasing rate of evolution
Insights from SATé
SEPP Parameter Exploration

- Alignment subset size and placement subset size impact the accuracy, running time, and memory of SEPP

- 10% rule (subset sizes 10% of backbone) had best overall performance
SEPP (10%-rule) on simulated data

Increasing rate of evolution
SEPP (10%) on Biological Data

16S.B.ALL dataset, 13k curated backbone tree, 13k total fragments
SEPP (10%) on Biological Data

16S.B.ALL dataset, 13k curated backbone tree, 13k total fragments

For 1 million fragments:
- PaPaRa+pplacer: \(~133\) days
- HMMALIGN+pplacer: \(~30\) days
- SEPP 1000/1000: \(~6\) days
Part III: Taxon Identification
Taxon Identification

- Objective: identify species, genus, etc., for each short read

- Leading methods: Metaphyler (Univ Maryland), Phylopythia, PhymmBL, Megan

- The best of these methods are very precise, but fail to classify many short reads.
rpsB 60bp leave out species

- **Genus**
 - Classified Correctly: 61%
 - Classified Incorrectly: 8%
 - Not Classified: 21%

- **Family**
 - Classified Correctly: 78%
 - Classified Incorrectly: 4%
 - Not Classified: 8%

- **Order**
 - Classified Correctly: 83%
 - Classified Incorrectly: 12%
 - Not Classified: 5%

- **Class**
 - Classified Correctly: 89%
 - Classified Incorrectly: 7%
 - Not Classified: 4%

- **Phylum**
 - Classified Correctly: 92%
 - Classified Incorrectly: 5%
 - Not Classified: 3%
rpsB 60bp leave out genus

Family: 30% Classified Correctly, 54% Classified Incorrectly, 16% Not Classified
Order: 34% Classified Correctly, 3% Classified Incorrectly, 63% Not Classified
Class: 34% Classified Correctly, 13% Classified Incorrectly, 53% Not Classified
Phylum: 21% Classified Correctly, 54% Classified Incorrectly, 8% Not Classified
rpsB 300bp leave out species

Metaphyler

- Genus: 49%
- Family: 50%
- Order: 67%
- Class: 76%
- Phylum: 84%

Metaphyler+

- Genus: 91%
- Family: 94%
- Order: 98%
- Class: 99%

SEPP

- Genus: <1%
- Family: <1%
- Order: <1%
- Class: <1%
- Phylum: <1%
rpsB 300bp leave out genus

<table>
<thead>
<tr>
<th></th>
<th>Family</th>
<th>Order</th>
<th>Class</th>
<th>Phylum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaphyler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metaphyler+SEPP</td>
<td>30%</td>
<td>11%</td>
<td>4%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>54%</td>
<td>9%</td>
<td>96%</td>
<td></td>
</tr>
</tbody>
</table>
Phylogenetic “Boosters”

• SATé: co-estimation of alignments and trees
• SEPP: phylogenetic analysis of fragmentary data
• Metaphyler+SEPP: taxonomic identification of short reads

Algorithmic strategies: divide-and-conquer and iteration to improve the accuracy and scalability of a base method
Relevant Publications

• SEPP: Mirarab, Nguyen, and Warnow, Proceedings of the Pacific Symposium on Biocomputing (PSB) 2012

• Metaphyler: Liu et al., BMC Genomics 2011 (Suppl 2): S4

• Metaphyler+SEPP: joint with Mihai Pop, Bo Liu, Siavash Mirarab, and Nam Nguyen, in preparation

See http://www.cs.utexas.edu/users/tandy/papers.html
Summary

• Standard alignment and phylogeny estimation methods do not provide adequate accuracy on large datasets, and NGS data present novel challenges

• When markers tend to yield poor alignments and trees, develop better methods - don’t throw out the data.
Acknowledgments

• Guggenheim Foundation Fellowship, Microsoft Research New England, National Science Foundation: Assembling the Tree of Life (ATOL), ITR, and IGERT grants, and David Bruton Jr. Professorship; NSERC support to Siavash Mirarab

• Collaborators:
 – SATé: Kevin Liu, Serita Nelesen, Sindhu Raghavan, and Randy Linder
 – SEPP: Siavash Mirarab and Nam Nguyen
 – Metaphyler+SEPP: Siavash Mirarab, Nam Nguyen, Bo Liu, and Mihai Pop