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High-Throughput Biotechnologies Record
Global Signals

DNA microarrays, e.g.,
rely on hybridization to
record the complete
genomic signals that
guide the progression
of cellular processes,
such as abundance
levels of DNA, RNA,
and DNA- and RNA-
bound proteins on a
genomic scale.



Global Mathematical Vocabulary for
Molecular Biological Discovery

Develop generalizations
of the matrix and tensor
decompositions that
underlie the theoretical
description of the
physical world;

Create models that
compare and integrate
different types of large-
s c a l e  m o l e c u l a r
biological data;

P r e d i c t  g l o b a l
mechanisms that govern
the activity of DNA and
RNA.



Physics-Inspired Matrix (and Tensor) Models
Mathematical frameworks for the description of the data, in which the
mathematical variables and operations might represent biological reality.

SVD
Alter, Brown & Botstein,
PNAS 97, 10101 (2000).

Comparative
GSVD

Alter, Brown & Botstein,
PNAS 100, 3351 (2003).

Integrative
Pseudoinverse

Alter & Golub,
PNAS 101, 16577 (2004).

“Eigengenes” and
“eigenarrays” Æ cellular

processes and states
in a single dataset.

“Genelets” and
“arraylets” Æ phenomena

exclusive to one of, or
common to two datasets.

“Pseudoinverse
correlation” Æ

causal coordination
between two datasets.

Eigenvalue Decomposition Generalized Eigenvalue
Decomposition

Inverse Projection



Patterns Underlie Principles of Nature:
Global Correlations to Causal Coordination

Alter, PNAS 103, 16063 (2006);
Alter, in Microarray Data Analysis: Methods and Applications (Humana Press, 2007), pp. 17–59.

Kepler’s discovery of his first law of planetary motion from
mathematical modeling of Brahe’s astronomical data.

Kepler, Astronomia Nova (Voegelinus, Heidelberg, 1609).



Integrative Pseudoinverse Projection
Predicts a Global Mode of Genetic Regulation

Alter & Golub, PNAS 101, 16577 (2004);  http://alterlab.org/pseudoinverse/
Alter, Golub, Brown & Botstein, Miami Nature Biotechnology Winter Symposium:

 Cell Cycle, Chromosomes and Cancer (January 31 – February 4, 2004, Miami Beach, FL).

DNA binding of replication initiation proteins is correlated with minimum
expression of adjacent genes during the cell cycle stage G1.

Simon et al., Cell 106, 697 (2001);  Wyrick et al., Science 294, 2397 (2001).



Novel Correlation Between DNA Replication
and RNA Expression Might Be Due to a

Previously Unknown Mechanism of Regulation
Æ Replication initiation requires binding at replication origins during G1.

Diffley, Cocker, Dowell, & Rowley, Cell 78, 303 (1994).
Æ Replication initiation proteins are involved with transcriptional silencing

at the yeast mating loci.
Micklem et al., Nature 366, 87 (1993).

Either one of two previously unknown modes of regulation might underlie
this correlation:
Æ Replication might regulate transcription:

Binding at origins might interfere with adjacent gene expression.
Æ Transcription might regulate replication:

G1 gene expression might reduce the efficiency of adjacent origins.
Donato, Chung & Tye, PLoS Genet. 2, E141 (2006);
Snyder, Sapolsky & Davis, MCB 8, 2184 (1988).

This demonstrates that a data-driven mathematical model of DNA
microarray data can be used to predict a cellular mechanism of regulation
that is truly on a genome scale.



Networks are Tensors of “Subnetworks”
Alter & Golub, PNAS 102, 17559 (2005);

http://alterlab.org/network_decomposition/

Æ =

+ +  ...

The relations among the activities of genes, not only the activities of the
genes alone, are known to be pathway-dependent, i.e., conditioned by
the biological and experimental settings in which they are observed.



Math Variables Æ Biology
Significant EVD subnetworks Æ

functionally independent pathways:
Pheromone Signaling Pathway
KAR4 || CIK1

Pheromone Arrest Exit & G1 Entry

Cell Cycle  S ´ M
KAR4 || -CIK1

Cell Cycle  G1 ´ G2



Integrative Higher-Order SVD
Predicts an Equivalent Global
Mode of Genetic Regulation

Omberg, Golub & Alter, PNAS 104, 18371 (2007);
http://alterlab.org/HOSVD/

This HOSVD is computed
from each SVD of the data
tensor unfolded along all
axes perpendicular to one
given axis,
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T =R! ×aU×bVx×cVy
De Lathauwer, De Moor &
Vandewalle, SIMAX 21, 1253 (2000);
Kolda, SIMAX 23, 243 (2001);
Zhang & Golub,

SIMAX 23, 543 (2001).

mRNA expression from
cell cycle time courses
under different conditions
of oxidative stress
Shapira, Segal & Botstein,

MBC 15, 5659 (2004);
Spellman et al., MBC 9, 3273 (1998).



Mathematical Reformulation of the HOSVD
The data tensor is a superposition
of all rank-1 “subtensors,” i.e.,
outer products of an eigenarray,
an x- and a y-eigengene,

!!

€ 

T ≡ Rabc
c=1

M

∑
b=1

L

∑
a=1

LM

∑ S(a,b,c).

The significance of a subtensor is
defined by the corresponding
“fraction,” computed from the
higher-order singular values,
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Pabc ≡Rabc
2 Rabc
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c=1
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The complexity of the data tensor
is defined by the “normalized entropy,”

!!
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0 ≤ d =
−1

2 log(LM )
Pabc

c=1

M

∑
b=1

L

∑
a=1

LM

∑ log(Pabc ) ≤1

“Degenerate subspace rotation” replaces two subtensors !!

€ 

Rabc = Rkbc  with
a unique rank-1 subtensor !!

€ 

Ra+k ,b,cS(a+ k,b,c) =RabcS(a,b,c)+RkbcS(k,b,c).



Math Variables Æ Biology
Significant subtensors Æ
independent biological
programs or experimental
phenomena:

1,1,1 70% >0
Steady State

2,1,2 6% <0
2,2,1 3.3% >0
2,2,2 1% >0

Oxidative Stress in
Time and Across

Conditions
4,2+3,1 1.6% >0

3,2,2 1.4% <0
3,1,2 1% <0

Pheromone Responses



Math Operations Æ Biology

5+2,1,3 0.9% >0
8+2,4,3 0.75% >0
3+7,2,3 0.6% >0
HP vs. MD-Induced Expression

Flattery-O’Brien & Dawes,
J. Biol. Chem. 273, 8564 (1998).

Classification identifies genes
significant in terms of the information
that they capture in each subtensor Æ
global picture of time-dependence of
HP vs. MD-induced expression:
The conserved genes YKU70, MRE11,
AIF1 and ZWF1, and the processes of
retrotransposition, apoptosis and the
oxidative pentose phosphate cycle that
they are involved in, play significant,
yet previously unrecognized, roles in
the differential effects of HP and MD
on cell cycle progression.



Equivalent Global Correlation Between DNA
Replication and RNA Expression is Revealed
Overexpression of the binding targets of the replication initiation
proteins correlates with that of oxidative stress activators-bound genes.

Cocker et al., Nature 379, 180 (1996);  Blanchard et al., MBC 13, 1536 (2002).



Analysis of Synchronized Cdc6−/45− Cultures
where DNA Replication Initiation is Prevented

without Delaying Cell Cycle Progression
Omberg, Meyerson, Kobayashi, Drury, Diffley & Alter, MSB 5, 312 (2009);

http://alterlab.org/verification_of_prediction/

Gerke, Chen & Cohen, Genetics 174, 985 (2006).   



HOSVD Detection and Removal of Artifacts
Reconstructing the data tensor of 4,270 genes ¥ 12 time points, or x-
settings ¥ 8 time courses, or y-settings, filtering out “x-eigengenes” and
“y-eigengenes” that represent experimental artifacts.

Batch-of-
hybridization

Culture batch,
microarray
platform and
protocols

Swinnen, Van Huffel, Van Loven & Jacobs, Med Biol Eng Comput 38, 297 (2000).



Uncovering Effects of Replication and Origin
Activity on mRNA Expression with HOSVD

1,1,1 72% >0
Steady State

First, ~88% of mRNA expression is
independent of DNA replication.
Orlando et al., Nature 453, 944 (2008).

2,2,1 9% >0 ­ M/G1 <2·10-33 Ø S/G2 <7·10-16

3,3,1 7% >0 ­ G1/S <2·10-77 Ø G2/M <3·10-36

Unperturbed Cell Cycle



Replication-Dependent Perturbations
4,1,2 2.7% >0 ­ ARSs 3’ ~10-2 Ø histones <10-12

7,3,2 0.8% >0 ­ histones <5·10-4

DNA replication increases time-averaged
and G1/S expression of histones.

Histones are overexpressed in the control
relative to the Cdc6− condition, and to a
lesser extent also relative to the Cdc45−
condition (a P-value ~2·10-15).

Second, the requirement of DNA
replication for efficient histone gene
expression is independent of conditions
that elicit DNA damage checkpoint
responses.
Lycan, Osley & Hereford, MCB 7, 614 (1987).



Origin Binding-Dependent Perturbations
5+6,1,3 1.9% >0 ­ histones <2·10-8 Ø ARSs 3’ <2·10-3

8,3,3 0.7% >0 Ø ARSs 3’ <7·10-4

Origin binding decreases time-averaged and G2/M expression of genes
with ARSs near their 3’ ends. These genes are overexpressed in the Cdc6−
relative to the Cdc45− condition, and to a lesser extent also relative to the
control (a P-value <4·10-7) Æ Third, origin licensing decreases expression
of genes with origins near their 3’ ends, revealing that downstream origins
can regulate the expression of upstream genes.



Experimental Verification of the
Computationally Predicted Mechanism

Omberg, Meyerson, Kobayashi, Drury, Diffley & Alter, MSB 5, 312 (2009);
http://dx.doi.org/10.1038/msb.2009.70

Æ These experimental results reveal that downstream origins can
regulate the expression of upstream genes.

Æ These experimental results verify the computationally predicted
mechanism of regulation that correlates binding of the licensing
proteins Mcm2–7 with reduced expression of adjacent genes during
the cell cycle stage G1.
Alter & Golub, PNAS 101, 16577 (2004);
Alter, Golub, Brown & Botstein, Proc MNBWS 15 (2004).

Æ These experimental results are also in agreement with the equivalent
correlation between overexpression of binding targets of Mcm2–7
and expression in response to oxidative stress.
Omberg, Golub & Alter, PNAS 104, 18371 (2007);
Cocker, Piatti, Santocanale, Nasmyth & Diffley, Nature 379, 180 (1996);
Blanchard et al., MBC 13, 1536 (2002).

Æ This demonstrates that mathematical modeling of DNA microarray
data can be used to correctly predict biological mechanisms.



Mode-1 HOSVD Predicts Evolutionary
Convergence and Divergence Modes and

Correlations with Structural Motifs in rRNA
Muralidhara, Gross, Gutell & Alter, PLoS One 6, e18768 (2011);  http://alterlab.org/rRNA/

Even on the level of a single rRNA
molecule, an organism’s evolution is
composed of multiple pathways due to
concurrent forces that act independently
upon different rRNA degrees of freedom.
Mode-1 HOSVD uncovers patterns of
similar and dissimilar nucleotide frequency
variation across the taxonomic groups,
consistent between 16S and 23S rRNAs.



Corresponding Nucleotide-Specific Variations
Across the Positions Map Out Known and New

Insertions and Deletions of Substructure

P-value <4·10-131

Eukarya gaps on Bacteria
P-value <10-93

Bacteria gaps on Eukarya



Nucleotide-Specific Variations Across the
Positions Enriched in Unpaired Adenosines

Adenosines, unpaired in the
rRNA secondary structure,
participate in tertiary structure
interactions and are involved in
rRNA folding and function.

All 50 unpaired adenosines
conserved exclusively in
Bacteria are significant in
differentiating Bacteria from
Eukarya (a P-value ~10-82).

The crystal structure of the
bacterium Thermus thermophilus
reveals that 28 of these are
involved in tertiary interactions.



Two Novel Coexsiting Subgenic Relationships
between Archaea and Microsporidia

Archaea and Microsporidia share gaps that map out substructures and are
enriched in unpaired adenosines, also missing in Metazoan Mitochondria,
relative to Bacteria. Deletions and insertions of substructures and unpaired
adenosines distinguish Archaea from Microsporidia 16S and 23S rRNAs.



Higher-Order GSVD for Comparison of
mRNA Expression from Multiple Organisms

Ponnapalli, Saunders, Van Loan & Alter, PLoS One 6, e28072 (2011);  http://alterlab.org/HO_GSVD/
Ponnapalli, Golub & Alter, Stanford University and Yahoo! Research Workshop on Algorithms for

Modern Massive Datasets (June 21–24, 2006, Stanford, CA).

Yeast Spellman et al. MBC 9, 3273 (1998).

The number of high-
dimensional datasets recording
multiple aspects of a single
phenomenon is increasing in
many areas of science.
This is accompanied by a need
for mathematical frameworks
that can compare multiple
large-scale matrices with
different row dimensions.
The only such framework to
date, the GSVD, is limited to
two matrices.

Human Whitfield et al. MBC 13, 1977 (2002).
Alter, Brown & Botstein, PNAS 100, 3351 (2003).



Math Variables Æ Biology
Genelets of almost equal significance in both datasets
Æ processes common to both genomes:

Common Cell Cycle Subspace

Genelets of almost no significance in one dataset
relative to the other Æ genome exclusive processes:

Exclusive Synchronization
Responses Subspaces

¨ Saccharomyces cerevisiae Human Æ



Math Operations Æ Biology
Data reconstruction in two subspaces Æ experimental
observation of differential expression of a genome in
the two cellular programs these subspaces represent:

Differential Expression in Yeast
During Mating and Cell Cycle

Pheromone Synchronization Response Subspace:
KAR4 is required for CIK1 induction during mating

Common Cell Cycle Subspace: Mitotic expression of
CIK1 during S/G2 is independent of KAR4

Kurihara, Stewart, Gammie & Rose, MCB 16, 3990 (1996).



Mathematical Definition of a Novel HO GSVD
Ponnapalli, Golub & Alter, Stanford University and Yahoo! Research Workshop on Algorithms for

Modern Massive Datasets (June 21–24, 2006, Stanford, CA).

Assumption:    !!

€ 

Di ∈R
mi ×n

Definition:

€ 

Di =UiΣiV
T , Σi = diag(σ i,k )

SV =VΛ

S ≡ 1
N (N−1) (AiAj

−1 + AjAi
−1)

j>i

N

∑
i=1

N

∑

= 2
N (N−1) Sij

j>i

N

∑
i=1

N

∑

Ai = Di
TDi , Sij = 1

2 (AiAj
−1 + AjAi

−1)
The matrix V, identical in all factorizations, is obtained from the balanced
eigensystem of S, which does not depend upon the ordering of Di.



Mathematical Properties of the HO GSVD
Ponnapalli, Saunders, Van Loan & Alter, PLoS One 6, e28072 (2011);  http://alterlab.org/HO_GSVD/

This exact decomposition extends to higher orders all of the mathematical
properties of the GSVD except for complete orthogonality of Ui for all i.
Supplementary Theorems 1–5:

For N=2, our HO GSVD leads algebraically to the GSVD.
Theorem 1: S has n independent eigenvectors, and the eigenvectors and

eigenvalues of S are real.
Theorem 2: The eigenvalues of S satisfy λk≥1.
Theorem 3: The common HO GSVD subspace. An eigenvalue satisfies

λk=1 if and only if the corresponding right basis vector vk is
of equal significance in all matrices Di and Dj, i.e., σi,k /σj,k=1
for all i and j, and the corresponding left basis vector ui,k is
orthonormal to all other left basis vectors in Ui for all i.

Corollary 1: An eigenvalue satisfies λk=1 if and only if the corresponding
right basis vector vk is a generalized singular vector of all
pairwise GSVD factorizations of the matrices Di and Dj with
equal corresponding generalized singular values for all for all
i and j.

Supplementary Theorem 6 and Conjecture 1:
A role in iterative approximation algorithms.



Math Variables Æ Biology
Genelets of almost equal significance in all datasets Æ

processes common to all genomes:

Approximately Common HO GSVD Subspace

In a comparison of global cell cycle mRNA expression from S. pombe, S.
cerevisiae and human, the approximately common HO GSVD subspace
represents the cell cycle mRNA expression oscillations, which are similar
among the datasets.
Simultaneous reconstruction in the common subspace, therefore, removes
the experimental artifacts, which are dissimilar, from the datasets.



Math Operations Æ Biology
Simultaneous classification in the common HO GSVD subspace Æ
biological similarity in the regulation of the cellular programs that are
conserved across the species:

Common Cell Cycle Subspace
Schizosaccharomyces pombe
Rustici et al. Nat. Genet. 36, 809 (2004).

Saccharomyces cerevisiae
Spellman et al. MBC 9, 3273 (1998).

Human
Whitfield et al. MBC 13, 1977 (2002).



Simultaneous Classification
Independent of Sequence Similarity

Genes of highly conserved sequences
across the three organisms but
significantly different cell cycle peak
times are correctly classified.

ABC Transporter Superfamily Genes

Phospholipase B-Encoding Genes and
B Cyclin-Encoding Genes



GSVD for Comparison of Patient-Matched
Tumor and Normal Genomic Profiles

Lee,* Alpert,* Sankaranarayanan & Alter, PLoS One 7, e30098 (2012);
http://alterlab.org/GBM_prognosis/

The number of large-scale datasets recording multiple aspects of a single
phenomenon is increasing in many areas, e.g., personalized medicine.



 Copy-Number Variations (CNVs)
Common to the GBM Tumor and Normal Brain
GSVD identifies CNVs that occur in the normal human genome and are
preserved in the GBM tumors, e.g., female-specific X chromosome
amplification, without a-priori knowledge of these variations.

Notice of the National Human Genome Research Institute’s Interest in Receiving Applications to
Analyze and Develop Methods for X Chromosome Genome-wide Association (GWA) Data;
http://grants.nih.gov/grants/guide/notice-files/NOT-HG-11-021.html



Experimental Variations
Exclusive to the Tumor or Normal Profiles

GSVD identifies experimental variations, e.g., in tissue batch, genomic
center, hybridization date and scanner.



Global Pattern of Tumor-Exclusive Aberrations
Predicts Drug Targets

Lee & Alter, 60th Annual Meeting of the ASHG (Washington, DC, November 2–6, 2010).

The pattern includes most known GBM-associated changes in chromosome
numbers and focal CNAs, as well as several previously unreported CNAs in
>3% of the patients: the biochemically putative drug target, cell cycle-
regulated serine/threonine kinase-encoding T L K 2 , the tRNA
methyltransferase METTL2A, and the cyclin E1-encoding CCNE1.



Global Predictor of GBM Survival
The global pattern is
correlated with, and
possibly causally related
to, brain cancer survival.

The GBM survival
phenotype is the outcome
of its global genotype.

Despite recent large-scale
profiling efforts, the best
prognostic predictor of
GBM prior to the
discovery of this pattern
was the patient’s age at
diagnosis.

T h e  p a t t e r n  i s
independent of age, and
combined with age,
makes a predictor better
than age alone.



Patterns Underlie Principles of Nature:
Statistics to Processes

Æ Brownian motion.
Einstein, Ann Phys 17, 549 (1905).

Æ Bacterial sensitivity and resistance to viruses.
Luria & Delbrück, Genetics 28, 491 (1943).



SVD Identifies Transcript Length Distribution
Functions from DNA Microarray Data
Alter & Golub, PNAS 103, 11828 (2006);  http://alterlab.org/harmonic_oscillator/

Hurowitz et al., PLoS One 2, e460 (2007);  Hurowitz & Brown, Genome Biology 5, R2 (2003).



Transcript Length Distribution Functions are
“Asymmetric” Coherent States

Æ  The profile of a single
transcript fits an asymmetric
Gaussian.

Æ  The distribution of the
peaks of the transcript
profiles fits an asymmetric
Gaussian.



Transcript Length Distribution Functions are
“Asymmetric” Coherent States

Prediction:
The asymmetry of the profile
of a single transcript might be
due to an asymmetry in the
Brownian motion or thermal
broadening of a moving
rather than a stationary band
of identical transcripts.
Æ Modeling of genomic data
can be used to predict
physical principles.

Hypothesis:
Two competing evolutionary
forces determine transcript
lengths in the manner of the
restoring force of the
harmonic oscillator.



Conserved Relations between a Gene’s
Metabolic Ontology and its Transcript’s Length

Drake & Alter, Rao Conference at the Interface between Statistics and the Sciences
(December 30, 2009 – January 2, 2010, Hyderabad, India), Rao Best Poster Prize.

Transcripts involved in protein synthesis or mitochondrial metabolism are
significantly shorter than typical, and in particular, significantly shorter than
those involved in glucose metabolism.



GBM Tumors Maintain Normal Brain
Overexpression of Short Transcripts but

Suppress Longer, Normally Overexpressed Ones
Bertagnolli, Drake, Tennessen & Alter, PLoS One 8, e78913 (2013);

http://alterlab.org/GBM_metabolism/.



Global Relations among Transcript Length,
Cellular Metabolism and Tumor Development

GBM tumors maintain normal
brain overexpression of short
transcripts, involved in protein
synthesis and mitochondrial
metabolism, but suppress longer,
normally overexpressed transcripts,
involved in glucose metabolism
and brain activity.



Global Mode for Tumor and Normal Cells to
Differentially Regulate Metabolism in a
Transcript Length-Dependent Manner

Hanahan & Weinberg, Cell 100, 57 (2000);
Shermoen & O’Farrell, Cell 67, 303 (1991).

Æ This shows that the functioning of a cell can be inferred from the
lengths of over- and underexpressed genes, independent of the
sequences of the genes.

Æ A previous hypothesis from mathematical modeling of
evolutionary forces that act upon transcript length in the manner of
the restoring force of the harmonic oscillator is supported.
Alter & Golub, PNAS 103, 11828 (2006).

Æ A previous prediction of asymmetry in the gel electrophoresis
thermal broadening (or Brownian motion) of a moving, rather than
a stationary, band of identical mRNA molecules is also supported.
Duke & Viovy, Phys Rev Lett 68, 542 (1992);
Slater, Electrophoresis 14, 1 (1993);
Tinland, Pernodet & Pluen, Biopolymers 46, 201 (1998).



The interplay between mathematical modeling and experimental
measurement is at the basis of the “effectiveness of mathematics” in
physics. Wigner, Commun Pure Appl Math 13, 1 (1960).



Mathematical modeling of large-scale molecular biological data can
lead beyond classification of genes and cellular samples to the
discovery and ultimately also control of molecular biological
mechanisms. Alter, PNAS 103, 16063 (2006).

Andrews & Swedlow, Nikon Small World (2002).

Our models bring physicians a step closer to one day being able to
predict and control the progression of cancers as readily as NASA
engineers plot the trajectories of spacecraft today.
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