Next-generation sequence characterization of complex genome structural variation

Can Alkan

Department of Genome Sciences, University of Washington Seattle, WA, USA

Size range of genetic variation

- Single nucleotide (SNPs)
- Up to ~50bp (small indels, microsatellites)
- >50bp to several megabases (structural variants):
 - Deletions
 - Insertions

CNVs

- Novel sequence
- Mobile elements (*Alu*, L1, SVA, etc.)
- Segmental Duplications
 - Duplications of size \geq 1 kbp and sequence similarity \geq 90%
 - Tandem or Interspersed
- Inversions
- Translocations
- Chromosomal changes

Human genome structural variation

Kidd et al., Nature, 2008

Duplications and CNV hotspots

Bailey et al., Science, 2002

CNVs and disease

- 17q21.31 Deletion (Sharp et al. Nat Gen 2006)
 - ~1% mental retardation in European populations
- 15q24.1 Deletion (Sharp et al. HMG 2007)
 - autism spectrum disorder/MR/growth deficiency
- 17q12 Deletion (Mefford et al. AJHG 2007)
 - 20% of patients with renal disease due to hypodysplastic kidneys and 36% of children with MODY-5
- 1q21.1 Deletion (Mefford et al. NEJM 2008)
 - 0.4% of mental retardation and 0.3% schizophrenia.

Multi-copy CNP and disease

CNP	SD/SV (kb / % identity)	Variation	Disease/Effect	
C4A/C4B	32.8 / 99.1	decrease	lupus	Yang, 2007
DEFB4.103,104	310 / 99.4	increase	psoriasis	Hollox, 2008
		decrease	Crohn's disease	Fellerman, 2006
CCL3L1	64 / 99.8	decrease	HIV susceptibility	Gonzalez, 2005
FCGR3B	**	decrease	glomeruloneprhitis	Aitman, 2006; Fanciulli, 2008
IRGM	**	deletion	Crohn's disease	McCarroll, 2008
			alternative splicing	Bekpen, 2009

** correspond to more ancient primate segmental duplications

- Previous work largely array based
 - Biased against duplicated regions due to signal saturation
 - Limited to CNVs (no balanced events)
 - Give only (relative) copy number
 - No information on variant sequence or organization
- Goal: systematically discover and characterize genomic structural variation and *copy*, *content*, and *structure* of segmental duplications.

Genome-wide SV Discovery Approaches

Hybridization-based

- lafrate et al., 2004, Sebat et al., 2004
- SNP microarrays: McCarroll *et al.*, 2008, Cooper *et al.*, 2008, Itsara *et al.*, 2009
- Array CGH: Redon *et al.* 2006, Conrad *et al.*, 2010, Park *et al.*, 2010, WTCCC, 2010

Single molecule analysis

 Optical mapping: Teague et al., 2010

Sequencing-based

- Read-depth: Bailey et al, 2002
- Fosmid ESP: Tuzun *et al.* 2005, Kidd *et al.* 2008
- Sanger sequencing: Mills et al., 2006
- Next-gen sequencing: Korbel *et al.* 2007, Yoon *et al.*, 2009, Alkan et al., 2009, Hormozdiari *et al.* 2009, Chen *et al.* 2009,
 - 1000 Genomes Project

Detection diversity

Gains & Losses > 5 Kbp in the same 5 individuals

Resequencing Genomes

Sequence signatures of structural variation

- Read pair analysis
 - Deletions, small novel insertions, inversions, transposons
 - Size and breakpoint resolution dependent to insert size
- Read depth analysis
 - Deletions and duplications only
 - Relatively poor breakpoint resolution
- Split read analysis
 - Small novel insertions/deletions, and mobile element insertions
 - Ibp breakpoint resolution
- Local and *de novo* assembly
 - SV in unique segments
 - 1bp breakpoint resolution

SV callers in the 1000 GP

Read Pair

U. Washington: VariationHunter (Illumina) WUGSC: BreakDancer (Illumina) ABI/LifeTech: Corona Light (SOLiD) Yale: PEMer (Roche/454) Wellcome-Trust: (unnamed) (Illumina) BGI: (unnamed) (Illumina)

Read Depth

U. Washington: WSSD (Illumina) Yale: CNVnator (Illumina) UCSD/CSHL: EWT/RDXplorer (Illumina) AECOM: (unnamed) (Illumina

Split Read

Leiden/WTSI: Pindel (Illumina) Yale: (unnamed) (Roche/454) <u>Read Pair + Depth</u>

Boston College: Spanner (Illumina) Broad: Genome STRiP (Illumina)

Assembly

U. Washington: NovelSeq (Illumina) BGI: SOAPdenovo (Illumina) EBI: Cortex (Illumina)

Breakpoint assembly WUGSC: TIGRA (Illumina)

Upcoming from 1000Genomes: Delly/Invy (EMBL Heidelberg) + updates to the above Non-1000G: MoDIL, MOGuL, CommonLAW, CNVer + GASV + HYDRA + *many more See Alkan et al., Nat Rev Genet, 2011, Mills et al. Nature 2011, and Medvedev et al., Nat Methods, 2009*

Challenges and algorithms for NGS

- Short read mapping artifacts:
 - Discard non-unique: lose sensitivity and detection power.
 - □ Try to utilize all information: higher sensitivity, less specificity.
 - micro-read Fast Alignment Search Tools

[mr(s) | dr]FAST algorithms

- *mr(s)FAST*: Designed for reads generated with the Illumina platform
 - mrFAST: Small indels up to 4 bp are supported
 - mrsFAST: Mismatch-only version for increased mapping speed
- *drFAST:* Di-base (color-space) read version for the SOLiD platform (Hamming distance only)
- Guaranteed sensitivity within user-specified edit (Hamming for mrsFAST and drFAST) distance threshold d:
 - □ d ≤ (read_length / k) 1; [k=12]
- Iterative search: All locations and underlying sequence variation are returned
 - "best" mapping option for single-location mapping available; minimize edit distance & paired-end span size closest to median

http://mrfast.sourceforge.net http://drfast.sourceforge.net

Alkan et al., Nature Genetics 2009; Hach et al., Nature Methods 2010; Hormozdiari et al., Bioinformatics 2011

Multiple vs. unique mapping

Modified from Chiang & McCarroll, Nat Biotech, 2009

1) Read depth - copy number correlation

Personal duplication maps

Next-gen specific error correction (GC% normalization, resolving repeats)

Individual	#WGS Reads	Read Length Technology	/
Jim Watson	74,198,831	266bp* 454 FLX	Wheeler 2008
HapMap NA18507 (YRI)	1,776,928,308	36bp Illumina	Bentley 2008
YH (Han Chinese)	1,315,249,404	35bp Illumina	Wang 2008

* Rendered into 509,667,772 reads of length 36bp

- Copy numbers predicted in 1kb non-overlapping windows
- 3.8% (662/17601) genes show a difference of at least one copy
 - 113/662 validated with arrayCGH
 - Most others are in high-copy regions, biased against aCGH
- Absolute copy number counts and characterization of the content of duplications made possible for the first time

Personal duplication maps chr17: Duplications of >1000 Bases of Non-RepeatMasked Sequence Segmental Dups Celera WSSD Celera WSSD /enter Depth Cove 100 Venter (Sanger) 150 200 250 -300 400 100 150 Watson (454) 200 250 -300 NA12878 Depth Coverage 1000 1588 2000 NA12878 (Solexa) CNP#2 NA12891 Depth Coverage 1000 1500 NA12891 (Solexa) 2000 3000 NA12892 Depth Coverage 1000 NA12892 (Solexa) 3000 4000 NA12878 1t826 NA12878_1t826

•Two known ~70 kbp CNPs, CNP#1 duplication absent in Venter but predicted in Watson and NA12878, CNP#2 present mother but neither father or child

FISH: defensin

Associated with psoriasis and Crohn's disease

FISH validation: NPEPPS

FISH: Morpheus gene family

Primate-specific duplication

Scaling up: 1000 Genomes and more

Individuals sequenced in Pilot 2

Histogram of Pilot 1 Illumina effective coverage

ID	Effective Coverage	Population
NA19240	24	YORUBA
NA19239	19	YORUBA
NA19238	13	YORUBA
NA12891	21	CEPH
NA12892	18	СЕРН
NA12878	22	СЕРН

Other Genomes

ID	Effective Coverage	Population	
YH-1	22	HAN CHINESE°	
NA18507	29	YORUBA [⊯]	
NA18506	30	YORUBA *	
NA18508	25	YORUBA *	
KOREAN	12	KOREAN *	

Sudmant, Kitzman, et al., Science, 2010

Increased CCL3L1 CN in Africans

Smaller LPA structure in Africans

LPA Kringle IV repeat region

More copies: protective against coronary heart disease

Sudmant, Kitzman, et al., Science, 2010

Signal

Peptide

Differentiating Paralogous Genes

Singly Unique Identifiers (SUNs)

- Copy 1 ATACTAGGCATATAATATCCGACGATATACATATAGATGTTAG
- Copy 2 ATGCTAGGCATGTAATATCCGACGACATACATATACATGTTAG
- Copy 3 ATACTAGGCATATAACATCCGACGATATACATATACATGTTAG
- Copy 4 ATGCTACGCATATAATATCCCACGATATACATATACATGTTAG
- Copy 5 ATGCTACGCATATAATATCCGACGATATACATATACATGATAG
- Copy 6 ATACTAGGCATGTAATATCCGACGATATAC- ATACATGTTAG

B

2A

2B

2) Read pair analysis: VariationHunter

 VariationHunter: Maximum parsimony approach; using all discordant map locations; finds an optimal set of SVs through a combinatorial (greedy) algorithm based on approximation to set-cover

http://variationhunter.sourceforge.net (coming soon)

Definitions

Paired-end read $PE:=(PE_1, PE_R)$ **PE-Alignment** (PE, L(PE), R(PE), O(PE)) O(PE): mapping orientation: "+/-": normal □ "+/+" or "-/-": inversion □ "-/+": tandem duplication $SV = (P_I, P_R, L_{min}, L_{max})$

Mathematical model

Let L_{min} , L_{max} be minimum and maximum size of the predicted variant

A Structural Variation is defined by event:

 $SV = (P_L, P_R, L_{min}, L_{max})$

A PE-Alignment APE=(PE, L(PE), R(PE), O(PE)) supports an insertion $SV = (P_L, P_R, L_{min}, L_{max})$ if: $L(PE) \le P_L$ $R(PE) \ge P_R$ $L_{min} \ge \Delta_{min} - (R(PE) - L(PE))$ $L_{max} \le \Delta_{max} - (R(PE) - L(PE))$

Valid clusters

A set of PE-Alignments that support the same structural variation event SV

A cluster **C** is a *valid cluster* supporting insertions if:

 $\exists loc, \forall APE \in C : L(APE) < loc < R(APE) \\ \exists InsLen, \forall APE \in C : \Delta \min - (R(APE) - L(APE)) < InsLen < \Delta \max - (R(APE) - L(APE)) \\ \end{cases}$

Valid clusters

A set of PE-Alignments that support the same structural variation event SV

A cluster **C** is a *valid cluster* supporting insertions if:

 $\exists loc, \forall APE \in C : L(APE) < loc < R(APE)$ $\exists InsLen, \forall APE \in C : \Delta \min - R(APE) + L(APE) < InsLen < \Delta \max - R(APE) + L(APE)$

Maximal Valid Clusters for Insertions

A *Maximal Valid Cluster* is a valid cluster that no additional APE can be added without violating the validity of the cluster

- 1. Find all the Maximal sets of overlapping paired-end alignments
- 2. For each maximal set S_k found in Step 1, find all the maximal subsets s_i in S_k that the insertion size (*InsLen*) they suggest is overlapping
- 3. Among all the sets s_i found in Step 2, remove any set which is a proper subset of another chosen set

Problem: Among all the maximal valid clusters, which ones are correct? **Aim:** Assign a single PE-Alignment to all paired-end reads

Maximum Parsimony Structural Variation

- Find a *minimum* number of SVs such that all the paired-end reads are covered
 - Similar to SET-COVER problem
 - Greedy algorithm. Approximation factor **O(log(n))**

Case Study: NA18507

- NA18507: Yoruba male, sequenced with the Illumina Genome Analyzer
 - 42X sequence coverage
 - Read length: 36bp; average insert size: 208bp, standard deviation: 8.25bp

Case Study: NA18507

1000 Genomes: Validation

YRI trio: NA19238, NA19239, NA19240 Deletion calls with Illumina read pair analysis Validation: arrayCGH and PCR

- Higher sensitivity than unique-location based methods
- Higher false discovery rate
 - Assumes complete reference genome
 - Paralogous variants that do not exist in the reference genome will be invalidated

VariationHunter for Alu insertions

- 8 high-depth genomes
 - One trio (YRI: NA18506, NA18507, NA18508)

Individual	Population	Seq. Coverage	Phys. Coverage	#Alu	Novel
NA18506	YRI	40.1x	255x	1,720	1,280
NA18507	YRI	27.1x	157x	1,579	1,144
NA18508	YRI	37x	214x	1,744	1,293
NA10851	CEU	22x	160x	1,282	781
AK1	Korean	22.5x	49x	909	582
YH	Han Chinese	11.4x	27x	1,160	698
KB1	Khoisan	21x	25x	457	313
HGDP01029	Khoisan	4x	12x	307	214
Non Redundant Total				4,342	3,432

- 63/64 (98%) sites tested with PCR are validated.
- 1,437/4,342 (33.1%) map within genes (RefSeq May 2010)

MEI sequence signature

TE Consensus (Alu, L1, etc.)

- Strand rules: MEI-mapping "+" reads and MEI mapping "-" reads should be in different orientations:
 - +/- and -/+ clusters; or +/+ and -/- clusters (inverted MEI)
- Span rules: A=(A1, A2); B=(B1, B2); C=(C1, C2); D=(D1, D2)
 - |A1-B1| ~ |A2-B2| and |C1-D1| ~ |C2-D2| (simplified; we have 8 rules)
- Location and 2-breakpoint rule:

 $\exists loc, \forall PE : RightMost(+) < loc < LeftMost(-)$

Alu subfamilies

Familial transmission of <u>Alus</u>

Common Alus

Alu polymorphism

- *in silico* genotyping with 1000GP:
 - 10.5% (21/201; chr1) are significantly stratified (Fst>0.2),
 - □ \rightarrow ~400 markers for population genetics analyses
 - 18/21 show increased allele frequency in the YRI when compared to either the ASN or CEU populations
- PCR genotyping of 3 Alu insertions in 1,058 individuals from 52 populations (HGDP)

Finding "novel" sequences

- DNA sequences that have no representation in the reference genome assembly
 - Excludes duplications & common repeats
- Two major NGS-based methods:
 - Whole genome de novo assembly
 - ALLPATHS-LG, SOAPdenovo, ABySS, Cortex, Velvet, Euler, etc.
 - Compute and memory intensive
 - □ Local de novo assembly using mapping information
 - Poor man's method: Going through the trash that the mapper left

3) Local Assembly: NovelSeq

http://compbio.cs.sfu.ca/strvar.htm

Hajirasouliha et al., Bioinformatics 2010

NovelSeq: NA18507

4,154 contigs (≥200bp) Total 2.9 Mb sequence that is not in the reference assembly N50 size: 955 bp

Hajirasouliha et al., Bioinformatics 2010

No method is comprehensive

1000G Consortium, Nature 2010, Mills et al., Nature 2011

Summary

- Next-generation sequencing technologies
 - Promises to replace array based methods; but:
 - Entire spectrum of structural variation is not yet detected
 - Most current studies target only CNVs in relatively less complex areas of the genome
 - Different sequencing platforms present different error models
 - Need better methods to
 - Identify *inversions* and *translocations*
 - Discover SVs in repeat- and duplication-rich regions
 - Accurately characterize copy, content, and structure of structural variants
- Long term goal: accurate de novo assemblies to detect a broad range of variants

Acknowledgements

<u>UW</u>

Evan E. Eichler Jeffrey M. Kidd Tomas Marques-Bonet Peter Sudmant Jacob Kitzman Gözde Aksay Carl Baker Francesca Antonacci Santhosh Girirajan Farhad Hormozdiari (now at UCLA) Maika Malig Emre Karakoç

<u>SFU</u>

S. Cenk Şahinalp Fereydoun Hormozdiari Iman Hajirasouliha Faraz Hach

1000 Genomes Project Structural Variation Analysis Subgroup

<u>EBI</u>

Paul Flicek Rasko Leinonen

Baylor College of Medicine

Richard A. Gibbs

<u>NCBI</u>

Martin Shumway

HHHMI HOWARD HUGHES MEDICAL INSTITUTE

Carnegie Mellon University Onur Mutlu DEPARTMENT OF Genome Sciences school of medicine | University of Washington