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lllumina Sequencing Technology

DNA
(0.1-1.0 ug)

Library preparation: fragmentation,

end repair, A-tailing, adaptor ligation,

size selection (melting) and PCR

Image acquisition

Cluster growth
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Adapted from a slide of G Schroth, Ijlumina




GC matters: Hiller et al, Nat Meth 2008

Av coverage/bp: 200bp (amplicon)

C. elegans
lllumina (then
Solexa) data
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GC bias: Dohm et al NAR 2008
1kb bins
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The GC bias is non-linear in human data

(5 kb bins below, but it looks similar for all bin sizes)

~ Data —D. Chiang

N Data —M. Robinson ﬁ Data — P. Spellman
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# reads in 10kb bin

Another view: part of a human chr 2
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Position of 10 kb bin on forward strand of g-arm of chr 2

The ups and downs reflect changes in GC content
(trust me: data not shown, but see later)




Let’s begin with the question: whose GC?

(>300 kb in size, see slide 52)
ne local region around the read (how much?)
the fragment itself

the itself
near the read ends (how much?)

the fragment breakpoints

none, some or all of the above
Your views?




Our main data for today

Two samples of DNA from an ovarian patient: one from
the , the other from their white blood cells.

Each sample was turned into two separate fragment
libraries, differing in fragment length distribution.

Fragments were sequenced to 75bp at both ends using
the standard lllumina procedure.

Each sequenced read pair was mapped back to the
human reference genome using bwa (version0.4.9 -




Most of the time we present results
for just one chromosome, for

it doesn’t matter




GC loess curves for
chromosomes 1-5, 10kb bins
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Is the GC-bias specific to a lab, protocol, sample,
library preparation, sequencing machine,....?

E.g. can we adjust binned tumor counts by those of a
matched normal sample, or, in a ChlP-seq experiment,
|IP-counts by input of other control counts?




Normal libraries 1 and 2 (10 kb bins)  Tumor and normal library 1 (10kb bins)
A ‘ | B
. . —+— Mormal Lib . . —+— MNormal Lik1
E ] - & Normal Lib2 E ] ’ —o  Tumor Lib1
. I I : I I
0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6
GC GC

Conclusion from more of the same: anything can matter.




Is there a right bin size?
People have used 100bp, 5 kb, 10 kb, 20 kb, 100 kb.




Variation about the smooth curve
for different bin sizes

Loess bin size (kb) 10
Library 1 (MAD) 49.1

Library 2 (MAD) 26.0

Answer: the smaller the better, until we lose it.




Digression: mappability

« Some % of reads not mapped due to ambiguity
(depends on read length & mapping criteria)

« Mappability = the probability that a read
beginning in region can be successfully mapped.

» Can take a simple 0-1 approach (as here), and
bin.




Avoiding binning: single position analyses

We work with 10M genome locations
denoted by x.

We assign to the 5’ end on the + strand.

The fragment count at location x may depend on the
GC content of the window length /, offset a relative to x:
W, , = [x+a, x+a+l),

whose GC we will denote by gc = GC(x+a,l).




In symbols,

Let N, be the total number of x’s whose window
W,, has GC=gc, and let F . be the total number of
fragments mapping to such x’s. The GC-stratified
rate A, and the overall rate A of fragments mapping

to such x’s are estimated by

Apologies for omitting this slide and messing up this explanation in the lecture. 18




Rate vs GC curve: a=0, I=32
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What'’s interesting about these
read rate vs GC-content curves
as we vary window size and location?

Superficially: their shape, that is, their deviation
from flatness, which is GC-independence.

More interestingly, their
in read depth. We return to this later.

Let’s keep it superficial for now, and measure
deviation from flatness.




TV distance from GC independence.
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TV distance = a weighted average of the brown lengths




In symbols,

1l N, ~ 4
TVIW, )=—= Y —1A - Al
! Zkgzon s

where W, is the window [x +a,x +a+1),
and n is the total number of x's.

Next we look at some TV values. We can vary a
and /, and we do so, separately here, for simplicity.

22




Varying the window size from a fixed point
(here the 5’-end of the fragment)

TV of models from fragment 5' end

[/ F ragment Lengths

200

GC window length (1)




Varying the window size from a fixed point
(here the 5’-end of the fragment)

TV of models from fragment 5' end GC Curve for best window (a=2, |=176)
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Varying the location of a fixed size window
(here 50 bp; library 1)

TV Scores, stratified by GC windows of 50 bp

TV scores

GO windows




Varying the location of a fixed size window
(here 50 bp; library 1)

GC before fragment GC overlaps read GC at fragment center

A B TV = 0.20 C TV = 0.29

I
00 02 04 06 0F 10 0o 0.2
TV Scores, stratified by GC windows of 50 bp

TV scores

GO windows

Fragmant
| |

-400 -300




Interim conclusion from many such plots

The best interval is in the middle of the fragment,
excluding the bits at the very ends.




Forward and reverse strands behave similarly
TV Scores of each strand (50 bp windows)
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Forward and reverse strands behave similarly

TV Scores of each strand (50 bp windows)

GC curve of each strand
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Stratifying by fragment size s




L
e
o
C
Qo
e
c
)
S
(@)
©
S
L

Fragment size matters

Rates by fragment length and GC Single length GC curves
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Conclusion: GC bias is not simply determined by the
ratio GC count/fragment length: there is an interaction.



And now for some predictions




Predicted rates at a given mappable position

/\ AS
lux = CE )\’GC(x+a,s—m)
)

Here cis a scaling constant to equalize the predicted and the
observed median. From now on, our window is the fragment
minus 2 bp at each end, i.e. a=2, |=s-2.




Predicted and observed bin

counts for bins of different sizes
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black = predicted, blue= observed
lowess lines are based on the observed points.

Conclusion: the predictions seem to be working.




Some other biases/models




Breakpoint effects

A Fragment rate by dinucleotide at breakpoint
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Fragment Rate

GC before fragment GC overlaps read GC at fragment center
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Slight AT preference

Two ends model: uses GC(x,)+GC(x+s-1,1).
We use s=180, I=30 below. 37




Some other predictions

(all aggregated to 1kb bins)

—— Read model —— — Two-end model — Fragmentation model
‘g_ _ vl T, D g _ v, e E § _ L. e F

Conclusion: These predictions don’t work too well.
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How well does our correction work?

Practice




Copy number: corrections to normal samples

Observed counts 1 kb {(normalized) Histogram

—— Median
— Loess
— Fragment

Slight improvement
over loess.




How well does our correction work?

Theory




Spread of observed counts around predictions

Quantiles 0.1 and 0.9

Mappability Only
Loess

Fragment
Poisson Dist
- Mean-line
— A

Observed Counts

Predicted Counts

Conclusion: we don’t “explain” everything...




Crude corrections to tumor samples

Tumor observed counts (1 kb)

More work to be
done here.




ChlP-seq data (A. thaliana)

Here two initially incompatible technical replicates

Uncorrected ratios GC curves (a=2, [=122) Corrected ratios
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Problem mainly solved (cf Cheung et al, 2011)




Other examples and phenomena




Plots for a BrCa tumor
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Plots for ChiP-seq sample rep 1, A. thaliana

GC effect TV of models from fragment 5" end
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Typical (?) Pacific Biosciences result

GC content vs Coverage in Arabidopsis thaliana chromosome 1

r=-0.175

Reads filtered
to be > 1kb,
>85% accurate
Bin size: 10kb

Coverage

Bottom and top
2.5% omitted

GC content

Thanks to Malinka Jansson & Jim Bullard, PacBio




Summary

We seem to have parts of the
fragment as producing the GC bias.

Similarly we seem to have ruled out GC content on a scale more
global than just the fragment.

Base composition (not just GC-content) around the two fragment

break points plays a noticeable role, but not enough to explain
everything.

Speculation over causes is left for another day. There now
seems little doubt that PCR amplification bias of the fragment
accounts for the majority, as shown in a beautiful recent paper
by D. Aird et al (2011) in the Feb 21 issue of Genome Biology.

All of the above and more can be found in Tech Report #804 50
http://www.stat.berkeley.edu/25
With luck it will appear in NAR soon. An R package GCcorrect is almost ready (11/3/11)




Many thanks to

Yuval Benjamini

Oleg Mayba, Pierre
& Su Yeon Kim

Paul Spellman and MarkSROBIR: fordata
Leath Tonkin for discussions on the bias =~
The whole Berkeley NGS group” '

« NIHNCITCGA

And to you...




An illustration of the spatial distribution of GC content of
non-overlapping 1,024-bp windows along a fragment,
approximately 1.4 Mb in length, from human chromosome 19
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2514,000 Kb 14,500 Kb 15,000 Kb

15,500 Kb
Location along chromosome 19

Cohen N et al. Mol Biol Evol 2005;22:1260-1272
The isochores probably don’t exist paper.

Biology and Evolution. All rights reserved. For permissions, please e-mail: MOLECULAR BIQ:!@GY
journals.permissions@oupjournals.org o EVOLUTION




counts

S. cerevisae GC curve (1kb bins

count_vs GC 1kb
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Our library prep is a bit different from the lllumina protocol, for one of the steps,
we used a heat inactivation step to the stop the enzyme (after the polyadenylation
step) instead of using the column or beads to purify the library prep again. (Lin Gen)




Procedure to get a Rate vs GC curve

Random sample 710M uniquely mappable
locations x

Stratify by the GC-value of the window
W, = [x+a, x+a+l),

Count # reads in each GC-stratified window
Compute Rate = # reads / # locations

Plot and smooth the Rate vs GC curve




Our overall goals

To study the nature of the GC content effect,
Find how best to correct for it in all contexts
Perhaps identify designs that minimize it.

Try to understand relation between the effect
and study design, i.e. its causes

Analyzing and minimizing PCR amplification bias in lllumina
sequencing libraries. Aird D, Ross MG, Chen WS, Danielsson M,
Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Genome
Biol. 2011 Feb 21;12(2):R18.

Systematic bias in high-throughput sequencing data and its
correction by BEADS. Cheung MS, Down TA, Latorre |, Ahringer J.
Nucleic Acids Res. 2011 Jun 6. [Epub ahead of print]




A) Random sample locations  B) Partition by GC window C) Count reads and read-rate
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