Tree-reweighted max-product and LP relaxation: Algorithmic connections and probabilistic analysis

Martin Wainwright Department of Electrical Engineering and Computer Science Department of Statistics UC Berkeley, CA Email: wainwrig@{eecs,stat}.berkeley.edu

Based on joint papers with:

Tommi Jaakkola, Alan Willsky (MIT)

Vladimir Kolmogorov (UCL)

Costis Daskalakis, Alex Dimakis, Richard Karp (UC Berkeley)

Introduction

- **message-passing:** now standard method in various fields (coding, physics, computer vision, learning, computational biology....)
- linear programming (LP) relaxation: standard method in theoretical computer science, operations research, math programming etc.
- **fruitful connections** between these two frameworks
- some useful features of LP relaxation:
 - certificates of correctness
 - hierarchies of relaxations (guaranteed improvement; increased cost)
- some useful features of message-passing:
 - cheap, scalable algorithms; distributed in nature
 - easy to implement (both in software and hardware)
 - finite convergence for LP solving

MAP optimization in undirected graphical models

- undirected graph G = (V, E)
- $X_s \equiv$ random variable at node staking values $x_s \in \mathcal{X}_s$
- $\theta_s(x_s) \equiv \text{observation term}$
- $\theta_{st}(x_s, x_t) \equiv \text{coupling term}$
- overall distribution decomposes additively on graph cliques:

$$p(x;\theta) \propto \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

• mode or maximum a posteriori (MAP) estimate:

$$x^* \in \arg \max_{x \in \mathcal{X}^n} \Big\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \Big\}.$$

Outline

- 1. From ordinary to reweighted max-product
 - (a) Deficiencies of ordinary max-product
 - (b) Reweighted max-product
 - (c) Connection to LP relaxation
- 2. Probabilistic analysis of LP relaxation
 - (a) Motivation: worst-case versus average-case analysis
 - (b) Graphical models and LP relaxations for decoding
 - (c) Probabilistic guarantees on performance
- 3. Open directions/questions

Standard message-passing algorithms: On trees

Exact for trees, but approximate for graphs with cycles.

 M_{ts} T_w $\mathcal{N}(t)$ acements T_t S M_{wt} M_{ts} tU T_u T_v

message from node t to s \equiv

neighbors of node t \equiv

Sum-product: for marginals (generalizes $\alpha - \beta$ algorithm; Kalman filter) Max-product: for MAP configurations (generalizes Viterbi algorithm)

Update:
$$\mathbf{M}_{\mathbf{ts}}(\mathbf{x_s}) \leftarrow \max_{x'_t \in \mathcal{X}_t} \left\{ \exp \left[\theta_{st}(x_s, x'_t) + \theta_t(x'_t) \right] \prod_{v \in \mathcal{N}(t) \setminus s} \mathbf{M}_{\mathbf{vt}}(\mathbf{x_t}) \right\}$$

Standard message-passing algorithms: With cycles

Exact for trees, but approximate for graphs with cycles.

Some previous theory on ordinary max-product

- well-known to be optimal on trees
- analysis of graphs with large girth (Gallager, 1963; many others, 1990s onwards)
- single-cycle graphs (Aji & McEliece, 1998; Horn, 1999; Weiss, 1998)
- local optimality guarantees:
 - "tree-plus-loop" neighborhoods (Weiss & Freeman, 2001)
 - strengthened optimality results and computable error bounds (Wainwright et al., 2003)
- max. weight bipartite matching

(Bayati, Shah & Sharma, 2005)

Standard analysis via computation tree

• standard tool: computation tree of message-passing updates (Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)

• level t of tree: all nodes whose messages reach the root (node 1) after t iterations of message-passing

Illustration: Non-exactness of standard max-product Intuition:

- max-product solves (exactly) modified problem on computation tree
- edge/nodes *not equally weighted* \Rightarrow incorrectness of max-product

• for example: asymptotic node fractions in this computation tree:

 $\begin{bmatrix} f(1) & f(2) & f(3) & f(4) \end{bmatrix} = \begin{bmatrix} 0.2393 & 0.2607 & 0.2607 & 0.2393 \end{bmatrix}$

A whole family of non-exact examples

• consider the following integer program on G_{dia} :

replacements

$$2 \xrightarrow{\alpha} \xrightarrow{\alpha} \xrightarrow{\beta} 3 \xrightarrow{\beta} 0$$

$$\theta_s(x_s)$$

$$\theta_s(x_s)$$

$$\theta_s(x_s)$$

$$\theta_s(x_s)$$

$$\theta_s(x_s, x_t) = \begin{cases} \alpha x_s & \text{if } s = 1 \text{ or } s = 4 \\ \beta x_s & \text{if } s = 2 \text{ or } s = 3 \\ 0 & \text{otherwise} \end{cases}$$

- for γ sufficiently large, optimal solution is always either $0^4 = [0\,0\,0\,0]$ or $1^4 = [1\,1\,1\,1]$.
- max-product and optimum give *different* decision boundaries:

Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

$$M_{ts}(x_s) \leftarrow \kappa \max_{x'_t \in \mathcal{X}_t} \left\{ \exp\left[\frac{\theta_{st}(x_s, x'_t)}{\rho_{st}} + \theta_t(x'_t)\right] \frac{\prod_{v \in \mathcal{N}(t) \setminus s} \left[M_{vt}(x_t)\right]^{\rho_{vt}}}{\left[M_{st}(x_t)\right]^{(1-\rho_{ts})}} \right\}$$

reweighted edge opposite message

Properties:

- 1. Modified updates remain *distributed* and *purely local* over the graph.
 - Messages are reweighted with $\rho_{st} \in [0, 1]$.
- 2. Key differences: Potential on edge (s, t) is rescaled by $\rho_{st} \in [0, 1]$.
 - Update involves the reverse direction edge.
- 3. The choice $\rho_{st} = 1$ for all edges (s, t) recovers standard update.

TRW max-product never "lies"

Set-up: A fixed point ν^* satisfies strong tree agreement (STA) if there exists a configuration $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ such that

 $x_{s}^{*} \in \arg \max_{x_{s}} \nu_{s}^{*}(x_{s}), \qquad (x_{s}^{*}, x_{t}^{*}) \in \arg \max_{x_{s}, x_{t}} \nu_{st}^{*}(x_{s}, x_{t})$ Node optimality Edge-wise optimality

Theorem 1: For "suitable" edge weights ρ_{st} : (Wainwright et al., 2003):

- (a) Any STA configuration \mathbf{x}^* is provably MAP-optimal for the graph with cycles.
- (b) Any STA fixed point is a dual-optimal solution to a certain "tree-based" linear programming relaxation.

Hence, TRW max-product acknowledges failure by *lack of strong tree* agreement.

Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ ?

The vector $\rho_e = \{ \rho_e \mid e \in E \}$ must belong to the spanning tree polytope, denoted $\mathbb{T}(G)$. (Edmonds, 1971)

Basic idea: convex combinations of trees

Observation: Easy to find its MAP-optimal configurations on trees:

 $OPT(\theta(T)) := \{ \mathbf{x} \in \mathcal{X}^n \mid \mathbf{x} \text{ is MAP-optimal for } p(\mathbf{x}; \theta(T)) \}.$

Idea: Approximate original problem by a convex combination of trees. $\rho = \{\rho(T)\} \equiv$ probability distribution over spanning trees $\theta(T) \equiv$ tree-structured parameter vector

Dual perspective: linear programming relaxation

• Upper bound maintained by reweighted message-passing:

$$\max_{\mathbf{x}\in\mathcal{X}^N}\langle\theta^*,\,\phi(\mathbf{x})\rangle \leq \sum_{T\in\mathfrak{T}}\rho(T)\max_{\mathbf{x}\in\mathcal{X}^N}\langle\theta(T),\,\phi(\mathbf{x})\rangle$$

• Dual of finding optimal upper bound \equiv tree-based LP relaxation:

$$\max_{\mathbf{x}\in\mathcal{X}^N}\langle\theta^*,\,\phi(\mathbf{x})\rangle \leq \max_{\mu\in\mathrm{LOCAL}(G)}\langle\mu,\,\phi(\mathbf{x})\rangle$$

- TRW-MP algorithm fixed points specify LP optimum:
 - whenever strong tree agreement holds (WaiJaaWil05)
 - for any binary problem
 -but TRW-MP not solving LP in general!

(KolWai05)

(Kol05)

Various connections and extensions

- edge-based updates and max-sum diffusion (Schlesinger et al., 1960s)
- binary QPs: roof duality equivalent to relaxation using LOCAL(G)(Hammer et al., 1984; Boros et al., 1990)
- natural hierarchy of LP relaxations based on treewidth:

 $MARG(G) = LOCAL_t(G) \subset LOCAL_{t-1}(G) \subset \ldots \subset LOCAL_1(G)$

- treewidth hierarchy: equivalent to Boros et al. (1990) and Sherali-Adams (1990) hierarchies for binary problems
- other approaches with links to first-order LOCAL(G) LP relaxation:
 - sequential TRW and conv. guarantees (Kolmogorov, 2005)
 - convex free energies (Weiss et al., 2007)
 - sub-gradients (Feldman et al, 2003; Komodakis et al., 2007)
 - proximal projections (Ravikumar et al., 2008)

§2. Probabilistic analysis of LP relaxation

Classical complexity theory:

- worst-case or adversarial in nature
- problem class is "hard" if there *exists some instance* that is difficult to solve
- concern: how relevant are hard instances to practical applications?

Average-case analysis:

- consider random ensembles of instances
- natural ensembles in many application domains: statistical physics, communication, signal processing, vision, machine learning
- **Goal:** show that a method succeeds with high probability for a randomly chosen instance

Motivation: Reliable communication under noisy conditions

- consider two "people" (Alice and Bob) who would like to communicate (i.e., transmit information)
- <u>channel</u>: any mechanism by which Alice and Bob can communicate

Fundamental question: How can Alice transmit information *reliably* to Bob over an *unreliable* channel?

<u>Wide range of applications</u>: satellite communication; wireless networks; product barcodes; computer hard drives; neural communication

Error-control: Binary linear codes

- information represented by bit strings $x \in \{0, 1\}^n$
- Alice introduces redundancy into transmission by sending *only* a subset \mathbb{C} of all possible 2^n binary strings
 - Example: parity checks: require subsets of bits to be even parity

 $x_1 \oplus x_7 \oplus x_8 = 0.$

• a binary linear code $\mathbb C$ is the null space of parity check matrix

 $\mathbb{C} := \{x \in \{0,1\}^n \mid Hx = 0\}$

where $H \in \{0, 1\}^{m \times n}$ is the parity check matrix

• information rate $R = 1 - \frac{m}{n}$, since parity check matrix reduces degrees of freedom by m

(Shannon, 1940s)

Factor graph representation

- square nodes \blacksquare represent parity checks (rows of H)
- circular nodes \circ represent code bits (columns of H)

Error-control decoding

• observe a corrupted version of each transmitted bit:

$$y_i = \begin{cases} x_i & \text{with probability } 1-p \\ 1-x_i & \text{with probability } p \end{cases}$$

• optimal decoding corresponds to finding the nearest codeword

$$x^* = \arg \min_{x \in \{0,1\}^n} \|y - x\|_1$$
 H x = 0

• can be formulated as an (intractable) LP over codeword polytope:

$$x^* = \arg \min_{\mu \in CH(\mathbb{C})} \sum_{i=1}^n \gamma_i \mu_i$$

where

$$\gamma_i = \begin{cases} \log \frac{p}{1-p} & \text{if } y_i = 1\\ -\log \frac{p}{1-p} & \text{if } y_i = 0 \end{cases}$$

• optimal decoding NP-complete in general (Berlekamp et al., 1978)

Codeword polytope

Definition: The codeword polytope $CH(\mathbb{C}) \subseteq [0,1]^n$ is the convex hull of all codewords

$$CH(\mathbb{C}) = \left\{ \mu \in [0,1]^n \mid \mu_s = \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) \; x_s \right\}$$

- the codeword polytope is always contained within the unit hypercube $[0,1]^n$
- vertices correspond to codewords

First-order relaxation for decoding

- each parity check $a \in C$ defines a local codeword polytope LOCAL₁(a)
- first-order relaxation obtained by imposing all local constraints:

$$\operatorname{LOCAL}_1(\mathbb{C}) := \cap_{a \in C} \operatorname{LOCAL}_1(a).$$

(Feldman, Wainwright & Karger, 2003)

Illustration of fractional vertex (pseudocodeword)

The pseudocodeword is locally-consistent for each check \implies it belongs to the first-order relaxed polytope $LOCAL_1(\mathbb{C})$.

Codes based on expander graphs

- previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)
- graph expansion: yields stronger results beyond girth-based analysis

Definition: Let α ∈ (0, 1). A factor graph G = (V, C, E) is a
 (α, ρ)-expander if for all subsets S ⊂ V with |S| ≤ α|V|, at least ρ|S|
 check nodes are incident to S

Worst-case constant fraction for expanders

Theorem: Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_v . Suppose that G is an $(\alpha, \delta d_v)$ -expander, where $\delta > 2/3 + 1/(3d_v)$ and δd_v is an integer.

Then the LP decoder can correct any pattern of $\frac{3\delta-2}{2\delta-1}(\alpha n)$ bit flips. (FelMalSerSteWai, ISIT-04)

Comments:

- key technical device: notice of dual witness for LP success
 - LP succeeds when 0^n sent \iff primal optimum $p^* = 0$
 - suffices to construct dual optimal solution with $q^* = 0$
- caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)
- potential gaps in the analysis
 - analysis adversarial in nature
 - dual witness relatively weak

Proof technique: Construction of dual witness

Primal LP: Vars. $\{\mu_i, i \in V\}, \{\mu_{a,J}, a \in F, J \subseteq N(a), |J| \text{ even}\}$

min.
$$\sum_{i \in V} \theta_i \mu_i \quad \text{s.t.} \begin{cases} \mu_{a,J} \ge 0 \\ \sum_{J \in \mathbb{C}(a)} \mu_{a,J} = 1 \\ \sum_{J \in \mathbb{C}(a), J_v = 1} \mu_{a,J} \end{cases} = \mu_v$$

Dual LP: Vars. $\{v_a, a \in F\}$ $\{\tau_{ia}, (i, a) \in E\}$ unconstrained

$$\max \sum_{a \in F} v_a \quad \text{s.t.} \begin{cases} \sum_{i \in S} \tau_{ia} \ge v_a \text{ for all } a \in C, J \subseteq C(a), |J| \text{ even} \\ \\ \sum_{a \in N(i)} \tau_{ia} \le \theta_i & \text{ for all } i \in V \end{cases}$$

Dual witness to zero-valued primal solution

- assume WLOG that 0^n is sent: suffices to construct a dual solution with value $q^* = 0$
- dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers $\{\tau_{ia}, (i, a) \in E\}$ such that $\tau_{ia} + \tau_{ja} \geq 0 \quad \forall a \in C, \text{ and } i, j \in N(a)$ $\sum_{a \in N(i)} \tau_{ia} < \theta_i \quad \text{for all } i \in V$

• random weights $\theta_i \in \mathbb{R}$ defined by channel; e.g., for binary symmetric channel

$$\theta_i = \begin{cases} 1 & \text{with prob. } 1-p \\ -1 & \text{with prob. } p \end{cases}$$

Probabilistic analysis with random bit-flips

Consider an ensemble of LDPC codes with rate R, regular vertex degree d_v , and blocklength n. Suppose that the code is a $\left(\nu, \left(\frac{p}{d_v}\right) d_v\right)$ expander.

Theorem: For each (R, d_v, n) , we specify fractions $\alpha > 0$ and error exponents c > 0 such that the LP decoder succeeds with probability $1 - \exp(-cn)$ over the space of bit flips $\leq \lfloor \alpha n \rfloor$. (DasDimKarWai07)

Remarks:

- the correctable fraction α is always larger than the worst case guarantee $\frac{3\frac{p}{d_v}-2}{2\frac{p}{d_v}-1}\nu$.
- concrete example: rate R = 0.5, degree $d_v = 8$ and p = 6 yields a correctable fraction $\alpha = 0.002$.

Hyperflow-based dual witness

(DasDimKarWai07)

A hyperflow is a collection of weights $\{\tau_{ia}, (i, a) \in E\}$ such that: (a) for each check $a \in F$, exists some $\gamma_a \ge 0$ and privileged neighbor $i^* \in N(a)$ such that

$$\tau_{ia} = \begin{cases} -\gamma_a & \text{for } i = i^* \\ +\gamma_a & \text{for } i \neq i^*. \end{cases}$$

(b)
$$\sum_{a \in N(i)} \tau_{ia} < \theta_i$$
 for all $i \in V$.

Proposition: A hyperflow exists \iff \exists a dual feasible point with zero value.

Hyperflow (epidemic) interpretation:

- each flipped bit adds 1 unit of "poison"; each clean bit absorbs at most 1 unit
- each infected check relays poison to all of its neighbors

Generalized matching implies hyperflow

Lemma: Any (p,q) matching with $2p + q > 2d_v$ can be used to construct a valid hyperflow.

Proof:

- construct hyperflow with each flipped bit routing $\gamma \ge 0$ units to each of p checks
- each flipped bit can receive at most $(d_v p)\gamma$ units from other dirty checks (to which it is not matched)
- hence we require that $-p\gamma + (d_v p)\gamma < -1$, or $\gamma > 1/(2p d_v)$
- each unflipped bit receives at most $(d_v q)\gamma$ units so that we need $\gamma < 1/(d_v q)$

High-level overview of key steps

- 1. Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)
 - weaker notion than classical expansion: holds for larger sizes
 - proof: union bounds plus martingale concentration
- 2. Prove that an "almost-always" expander will have a generalized matching w.h.p.
 - requires concentration statements
 - generalized Hall's theorem
- 3. Generalized matching guarantees existence of hyperflow.
- 4. Valid hyperflow is a dual witness for LP decoding success.

Analysis over a simpler random ensemble

- analysis in standard ensemble: complicated due to coupling between N(D) and number of requests from D^c
- consider simplified (but equivalent) ensemble:
 - each node in D^c chooses $Z_j \sim \text{Bin}(d_v, \frac{|N(D)|}{m})$
 - chooses a subset from N(D) of size Z_j
- LP error prob. (over random subset D) bounded by probability of existing contractive subsets $S_1 \subseteq D$ and $S_2 \subseteq D^c$:

 $\mathbb{P}\Big[\exists S_1 \subseteq D, S_2 \subseteq D^c \mid |N(S_1) \cup [N(S_2) \cap N(D)]| \le p|S_1| + \sum_{j \in S_2} R_j$

• argument establishes existence of "almost-always expanders" (with parameters much larger than worst-case sense)

Summary

- fruitful connections between two frameworks
 - message-passing in graphical models
 - LP relaxations for integer programs
- probabilistic analysis of LP relaxations
 - dual witness as certifiate of optimality
 - algorithmic correctness reduced to combinatorial analysis
- various open directions:
 - average-case analysis for other problems, ensembles?
 - guarantees on treewidth approximation hierarchies?

Related papers

- 1. M. J. Wainwright, T. Jaakkola and A. Willsky (2005). Exact MAP estimates via agreement on (hyper)trees: Linear programming and message-passing. *IEEE Trans. Info. Theory* 51:11 pp. 3697–3717.
- 2. V. Kolmogorov and M. J. Wainwright (2005). On optimality properties of tree-reweighted max-product. *Proceedings of UAI*.
- C. Daskalakis, A. G. Dimakis, R. M. Karp and M. J. Wainwright Probabilistic Analysis of Linear Programming Decoding. *IEEE Trans. Info. Theory*, To appear.
- M. J. Wainwright and M. I. Jordan (2003). Graphical models, exponential families, and variational methods. UC Berkeley, Dept. of Statistics, Tech. Report 649.