
Tree-reweighted max-product and LP relaxation:

Algorithmic connections and probabilistic analysis

Martin Wainwright

Department of Electrical Engineering and Computer Science

Department of Statistics

UC Berkeley, CA

Email: wainwrig@{eecs,stat}.berkeley.edu

Based on joint papers with:

Tommi Jaakkola, Alan Willsky (MIT)

Vladimir Kolmogorov (UCL)

Costis Daskalakis, Alex Dimakis, Richard Karp (UC Berkeley)

Introduction

• message-passing: now standard method in various fields (coding,

physics, computer vision, learning, computational biology....)

• linear programming (LP) relaxation: standard method in

theoretical computer science, operations research, math

programming etc.

• fruitful connections between these two frameworks

• some useful features of LP relaxation:

– certificates of correctness

– hierarchies of relaxations (guaranteed improvement; increased cost)

• some useful features of message-passing:

– cheap, scalable algorithms; distributed in nature

– easy to implement (both in software and hardware)

– finite convergence for LP solving

MAP optimization in undirected graphical models

PSfrag replacements

θst(xs, xt)

θs(xs)θt(xt)
• undirected graph G = (V, E)

• Xs ≡ random variable at node s

taking values xs ∈ Xs

• θs(xs) ≡ observation term

• θst(xs, xt) ≡ coupling term

• overall distribution decomposes additively on graph cliques:

p(x; θ) ∝
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

• mode or maximum a posteriori (MAP) estimate:

x∗ ∈ arg max
x∈Xn

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

.

Outline

1. From ordinary to reweighted max-product

(a) Deficiencies of ordinary max-product

(b) Reweighted max-product

(c) Connection to LP relaxation

2. Probabilistic analysis of LP relaxation

(a) Motivation: worst-case versus average-case analysis

(b) Graphical models and LP relaxations for decoding

(c) Probabilistic guarantees on performance

3. Open directions/questions

Standard message-passing algorithms: On trees

Exact for trees, but approximate for graphs with cycles.

PSfrag replacements
Tt

Tu

Tv

Tw

t

w

u

v

s

t
Mut

Mwt

Mvt

Mts

Mts ≡ message from node t to s

N (t) ≡ neighbors of node t

Sum-product: for marginals

(generalizes α − β algorithm; Kalman filter)

Max-product: for MAP configurations

(generalizes Viterbi algorithm)

Update: Mts(xs) ← max
x′

t∈Xt

n

exp
h

θst(xs, x
′
t) + θt(x

′
t)
i

Q

v∈N (t)\s

Mvt(xt)
o

.

Standard message-passing algorithms: With cycles

Exact for trees, but approximate for graphs with cycles.

PSfrag replacements
Tt

Tu

Tv

Tw

t

w

u

v

s

t
Mut

Mwt

Mvt

Mts

Mts ≡ message from node t to s

N (t) ≡ neighbors of node t

Sum-product: for marginals

Max-product: for modes

Update: Mts(xs) ← max
x′

t∈Xt

n

exp
h

θst(xs, x
′
t) + θt(x

′
t)
i

Q

v∈N (t)\s

Mvt(xt)
o

.

Some previous theory on ordinary max-product

• well-known to be optimal on trees

• analysis of graphs with large girth (Gallager, 1963; many others, 1990s

onwards)

• single-cycle graphs (Aji & McEliece, 1998; Horn, 1999; Weiss, 1998)

• local optimality guarantees:

– “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)

– strengthened optimality results and computable error bounds

(Wainwright et al., 2003)

• max. weight bipartite matching (Bayati, Shah & Sharma, 2005)

Standard analysis via computation tree

• standard tool: computation tree of message-passing updates

(Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)

PSfrag replacements

1

2 3

4

PSfrag replacements

11

11

1

222

2

2

2

3 33

3

3

3

44

4 4

(a) Original graph (b) Computation tree (4 iterations)

• level t of tree: all nodes whose messages reach the root (node 1)

after t iterations of message-passing

Illustration: Non-exactness of standard max-product

Intuition:

• max-product solves (exactly) modified problem on computation tree

• edge/nodes not equally weighted ⇒ incorrectness of max-product

PSfrag replacements

1

2 3

4

PSfrag replacements

11

11

1

222

2

2

2

3 33

3

3

3

44

4 4

(a) Diamond graph Gdia (b) Computation tree (4 iterations)

• for example: asymptotic node fractions in this computation tree:
h

f(1) f(2) f(3) f(4)
i

=
h

0.2393 0.2607 0.2607 0.2393
i

A whole family of non-exact examples

• consider the following integer program on Gdia:

PSfrag replacements

1

2
3

4

α

α

β

β

θs(xs)

8

<

:

αxs if s = 1 or s = 4

βxs if s = 2 or s = 3

θst(xs, xt) =

8

<

:

−γ if xs 6= xt

0 otherwise

• for γ sufficiently large, optimal solution is always either

04 = [0 0 0 0] or 14 = [1 1 1 1].

• max-product and optimum give different decision boundaries:

Optimum boundary: x̂ =





14 if 0.25α + 0.25β ≥ 0

04 otherwise

Max-product boundary: x̂ =





14 if 0.2393α + 0.2607β ≥ 0

04 otherwise

Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t∈Xt

(

exp
hθst(xs, x

′
t)

ρst
| {z }

+ θt(x
′
t)
i

Q

v∈N (t)\s

z }| {
ˆ
Mvt(xt)

˜ρvt

ˆ
Mst(xt)

˜(1−ρts)

| {z }

)

.

reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.

TRW max-product never “lies”

Set-up: A fixed point ν∗ satisfies strong tree agreement (STA) if there

exists a configuration x∗ = (x∗
1, . . . , x

∗
n) such that

x∗
s ∈ arg max

xs

ν∗
s (xs),

︸ ︷︷ ︸
(x∗

s, x
∗
t) ∈ arg max

xs,xt

ν∗
st(xs, xt)

︸ ︷︷ ︸
Node optimality Edge-wise optimality

Theorem 1: For “suitable” edge weights ρst: (Wainwright et al., 2003):

(a) Any STA configuration x∗ is provably MAP-optimal for the graph

with cycles.

(b) Any STA fixed point is a dual-optimal solution to a certain

“tree-based” linear programming relaxation.

Hence, TRW max-product acknowledges failure by lack of strong tree

agreement.

Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

PSfrag replacements

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G). (Edmonds, 1971)

Basic idea: convex combinations of trees

Observation: Easy to find its MAP-optimal configurations on trees:

OPT(θ(T)) :=
˘
x ∈ Xn | x is MAP-optimal for p(x; θ(T))

¯
.

Idea: Approximate original problem by a convex combination of trees.

ρ = {ρ(T)} ≡ probability distribution over spanning trees

θ(T) ≡ tree-structured parameter vector

PSfrag replacementsPSfrag replacementsPSfrag replacementsPSfrag replacements

∗ θ∗ = ρ(T 1)θ(T 1) + ρ(T 2)θ(T 2) + ρ(T 3)θ(T 3)

† OPT(θ∗) ⊇ OPT(θ(T 1)) ∩ OPT(θ(T 2)) ∩ OPT(θ(T 3)).

Dual perspective: linear programming relaxation

• Upper bound maintained by reweighted message-passing:

max
x∈XN

〈θ∗, φ(x)〉 ≤
∑

T∈T

ρ(T) max
x∈XN

〈θ(T), φ(x)〉

• Dual of finding optimal upper bound ≡ tree-based LP relaxation:

max
x∈XN

〈θ∗, φ(x)〉 ≤ max
µ∈LOCAL(G)

〈µ, φ(x)〉

• TRW-MP algorithm fixed points specify LP optimum:

– whenever strong tree agreement holds (WaiJaaWil05)

– for any binary problem (KolWai05)

–but TRW-MP not solving LP in general! (Kol05)

Various connections and extensions

• edge-based updates and max-sum diffusion (Schlesinger et al., 1960s)

• binary QPs: roof duality equivalent to relaxation using LOCAL(G)

(Hammer et al., 1984; Boros et al., 1990)

• natural hierarchy of LP relaxations based on treewidth:

MARG(G) = LOCALt(G) ⊂ LOCALt−1(G) ⊂ . . . ⊂ LOCAL1(G)

• treewidth hierarchy: equivalent to Boros et al. (1990) and

Sherali-Adams (1990) hierarchies for binary problems

• other approaches with links to first-order LOCAL(G) LP relaxation:

– sequential TRW and conv. guarantees (Kolmogorov, 2005)

– convex free energies (Weiss et al., 2007)

– sub-gradients (Feldman et al, 2003; Komodakis et al., 2007)

– proximal projections (Ravikumar et al., 2008)

§2. Probabilistic analysis of LP relaxation

Classical complexity theory:

• worst-case or adversarial in nature

• problem class is “hard” if there exists some instance that is difficult

to solve

• concern: how relevant are hard instances to practical applications?

Average-case analysis:

• consider random ensembles of instances

• natural ensembles in many application domains: statistical physics,

communication, signal processing, vision, machine learning

• Goal: show that a method succeeds with high probability for a

randomly chosen instance

Motivation: Reliable communication under noisy

conditions

• consider two “people” (Alice and Bob) who would like to

communicate (i.e., transmit information)

• channel: any mechanism by which Alice and Bob can communicate

SENDER
(Alice)

RECEIVER
CHANNEL
NOISY

(Bob)

Fundamental question: How can Alice transmit information reliably

to Bob over an unreliable channel?

Wide range of applications: satellite communication; wireless networks;

product barcodes; computer hard drives; neural communication

Error-control: Binary linear codes

• information represented by bit strings x ∈ {0, 1}n

• Alice introduces redundancy into transmission by sending only a

subset C of all possible 2n binary strings

– Example: parity checks: require subsets of bits to be even parity

x1 ⊕ x7 ⊕ x8 = 0.

• a binary linear code C is the null space of parity check matrix

C := {x ∈ {0, 1}n | Hx = 0}

where H ∈ {0, 1}m×n is the parity check matrix

• information rate R = 1 − m
n

, since parity check matrix reduces

degrees of freedom by m

(Shannon, 1940s)

Factor graph representation

Example: Parity check matrix: H =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1




PSfrag replacements

x1 x2 x3 x4 x5 x6 x7

fA fB fC

• square nodes ¥ represent parity checks (rows of H)

• circular nodes ◦ represent code bits (columns of H)

Error-control decoding

• observe a corrupted version of each transmitted bit:

yi =





xi with probability 1 − p

1 − xi with probability p

• optimal decoding corresponds to finding the nearest codeword

x∗ = arg min
x∈{0,1}n

‖y − x‖1 H x = 0

• can be formulated as an (intractable) LP over codeword polytope:

x∗ = arg min
µ∈CH(C)

n∑

i=1

γiµi

where

γi =





log p
1−p

if yi = 1

− log p
1−p

if yi = 0

• optimal decoding NP-complete in general (Berlekamp et al., 1978)

Codeword polytope

Definition: The codeword polytope CH(C) ⊆ [0, 1]n is the convex hull

of all codewords

CH(C) =
{
µ ∈ [0, 1]n | µs =

∑

x∈C

p(x) xs

}

000

110

101

011

100

001

111

000

010

000

110

101

011

000

111

(a) Uncoded (b) One check (c) Two checks

• the codeword polytope is always contained within the unit

hypercube [0, 1]n

• vertices correspond to codewords

First-order relaxation for decoding

PSfrag replacements

µ1

µ2

µ3
µ4

µ5

µ6

µ1

µ2

µ2

µ3 µ4
µ4

µ5

µ6

µ6

• each parity check a ∈ C defines a local codeword polytope

LOCAL1(a)

• first-order relaxation obtained by imposing all local constraints:

LOCAL1(C) := ∩a∈C LOCAL1(a).

(Feldman, Wainwright & Karger, 2003)

Illustration of fractional vertex (pseudocodeword)

Check A:
2

6

6

6

6

6

4

0

1
2
1
2

1

3

7

7

7

7

7

5

=
1

2

2

6

6

6

6

6

4

0

1

0

1

3

7

7

7

7

7

5

+
1

2

2

6

6

6

6

6

4

0

0

1

1

3

7

7

7

7

7

5

Check B:
2

6

6

6

6

6

4

1
2
1
2

0

0

3

7

7

7

7

7

5

=
1

2

2

6

6

6

6

6

4

1

1

0

0

3

7

7

7

7

7

5

+
1

2

2

6

6

6

6

6

4

0

0

0

0

3

7

7

7

7

7

5

PSfrag replacements

0

1
2

1
2

1

0 0 1
2

fA

fB fC

The pseudocodeword is locally-consistent for each check =⇒ it belongs

to the first-order relaxed polytope LOCAL1(C).

Codes based on expander graphs

• previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)

• graph expansion: yields stronger results beyond girth-based analysis

PSfrag replacements

|S| ≤ α|V |

|C(S)| ≥ ρ|S|

• Definition: Let α ∈ (0, 1). A factor graph G = (V, C, E) is a

(α, ρ)-expander if for all subsets S ⊂ V with |S| ≤ α|V |, at least ρ|S|

check nodes are incident to S

Worst-case constant fraction for expanders

Theorem: Let C be an LDPC described by a factor graph

G with regular variable (bit) degree dv. Suppose that G is an

(α, δdv)-expander, where δ > 2/3 + 1/(3dv) and δdv is an integer.

Then the LP decoder can correct any pattern of 3δ−2
2δ−1 (αn) bit flips.

(FelMalSerSteWai, ISIT-04)

Comments:

• key technical device: notice of dual witness for LP success

– LP succeeds when 0n sent ⇐⇒ primal optimum p∗ = 0

– suffices to construct dual optimal solution with q∗ = 0

• caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)

• potential gaps in the analysis

– analysis adversarial in nature

– dual witness relatively weak

Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
X

i∈V

θiµi s.t.

8

>>>><

>>>>:

µa,J ≥ 0
P

J∈C(a)

µa,J = 1

P

J∈C(a),Jv=1

µa,J = µv

Dual LP: Vars. {va, a ∈ F} {τia, (i, a) ∈ E} unconstrained

max.
X

a∈F

va s.t.

8

><

>:

P

i∈S

τia ≥ va for all a ∈ C, J ⊆ C(a), |J | even

P

a∈N(i)

τia ≤ θi for all i ∈ V

Dual witness to zero-valued primal solution

• assume WLOG that 0n is sent: suffices to construct a dual

solution with value q∗ = 0

• dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers {τia, (i, a) ∈ E} such that

τia + τja ≥ 0 ∀ a ∈ C, and i, j ∈ N(a)
X

a∈N(i)

τia < θi for all i ∈ V

• random weights θi ∈ R defined by channel; e.g., for binary

symmetric channel

θi =





1 with prob. 1 − p

−1 with prob. p

Probabilistic analysis with random bit-flips

Consider an ensemble of LDPC codes with rate R, regular vertex degree

dv, and blocklength n. Suppose that the code is a (ν,
(

p
dv

)
dv) expander.

Theorem: For each (R, dv, n), we specify fractions α > 0 and error

exponents c > 0 such that the LP decoder succeeds with probability

1 − exp(−cn) over the space of bit flips ≤ bαnc. (DasDimKarWai07)

Remarks:

• the correctable fraction α is always larger than the worst case

guarantee
3 p

dv
−2

2 p

dv
−1ν.

• concrete example: rate R = 0.5, degree dv = 8 and p = 6 yields a

correctable fraction α = 0.002.

Hyperflow-based dual witness

(DasDimKarWai07)

A hyperflow is a collection of weights

{τia, (i, a) ∈ E} such that:

(a) for each check a ∈ F , exists some γa ≥ 0

and privileged neighbor i∗ ∈ N(a) such that

τia =

8

<

:

−γa for i = i∗

+γa for i 6= i∗.
.

(b)
P

a∈N(i)

τia < θi for all i ∈ V .

Proposition: A hyperflow exists ⇐⇒

∃ a dual feasible point with zero value.

X
1 X

2 X
3

+

X
4

X
5

X
6

X
7

X
8

+ +

+ +

X
4

0.6

0.6
0.6

0.5

0.5
0.5

0.5 0.5
0.5

0.4

0.40.4

Hyperflow (epidemic) interpretation:

• each flipped bit adds 1 unit of “poison”; each clean bit absorbs at most 1 unit

• each infected check relays poison to all of its neighbors

Naive routing of poison may fail

overloaded bit

PSfrag replacements

D

Dirty checks N(D)

Dc

• need to route 1 unit of poison away from each flipped bit

• each unflipped bit can neutralize at most one unit

• naive routing of poison can lead to overload

Routing poison via generalized matching

PSfrag replacements

D

Dirty checks N(D)

Dc

Definition: A (p, q)-matching is defined by the conditions:

(i) every flipped bit i ∈ D is matched with p distinct checks.

(ii) every unflipped bit j ∈ Dc matched with max{Zj − (dv − q), 0} checks

from N(D), where Zj = |N(j) ∩ N(D)|.

Generalized matching implies hyperflow

Lemma: Any (p, q) matching with 2p + q > 2dv can be used

to construct a valid hyperflow.

Proof:

• construct hyperflow with each flipped bit routing γ ≥ 0 units to

each of p checks

• each flipped bit can receive at most (dv − p)γ units from other

dirty checks (to which it is not matched)

• hence we require that −pγ + (dv − p)γ < −1, or γ > 1/(2p− dv)

• each unflipped bit receives at most (dv − q)γ units so that we

need γ < 1/(dv − q)

High-level overview of key steps

1. Randomly constructed LDPC is “almost-always” expander

with high probability (w.h.p.)

• weaker notion than classical expansion: holds for larger sizes

• proof: union bounds plus martingale concentration

2. Prove that an “almost-always” expander will have a

generalized matching w.h.p.

• requires concentration statements

• generalized Hall’s theorem

3. Generalized matching guarantees existence of hyperflow.

4. Valid hyperflow is a dual witness for LP decoding succcess.

Generalized matching and Hall’s theorem

PSfrag replacements D
S1 S2

N(D)

Dc

N(D) ∩ N(S2)

N(S1)

• by generalized Hall’s theorem, (p, q)-matching fails to exist if

only if there exist subsets S1 ⊆ D and S2 ⊆ Dc that contract :

|N(S1) ∪ [N(S2) ∩N(D)]|
| {z }

≤ p|S1|+
X

j∈S2

max {0, q − (dv − Zj)} .

| {z }

available matches total # requests

Analysis over a simpler random ensemble

• analysis in standard ensemble: complicated due to coupling

between N(D) and number of requests from Dc

• consider simplified (but equivalent) ensemble:

– each node in Dc chooses Zj ∼ Bin(dv,
|N(D)|

m
)

– chooses a subset from N(D) of size Zj

• LP error prob. (over random subset D) bounded by probability

of existing contractive subsets S1 ⊆ D and S2 ⊆ Dc:

P

h

∃ S1 ⊆ D, S2 ⊆ D
c | |N(S1) ∪ [N(S2) ∩N(D)]| ≤ p|S1|+

X

j∈S2

Rj

i

• argument establishes existence of “almost-always expanders”

(with parameters much larger than worst-case sense)

Summary

• fruitful connections between two frameworks

– message-passing in graphical models

– LP relaxations for integer programs

• probabilistic analysis of LP relaxations

– dual witness as certifiate of optimality

– algorithmic correctness reduced to combinatorial analysis

• various open directions:

– average-case analysis for other problems, ensembles?

– guarantees on treewidth approximation hierarchies?

Related papers

1. M. J. Wainwright, T. Jaakkola and A. Willsky (2005). Exact MAP

estimates via agreement on (hyper)trees: Linear programming and

message-passing. IEEE Trans. Info. Theory 51:11 pp. 3697–3717.

2. V. Kolmogorov and M. J. Wainwright (2005). On optimality

properties of tree-reweighted max-product. Proceedings of UAI.

3. C. Daskalakis, A. G. Dimakis, R. M. Karp and M. J. Wainwright

Probabilistic Analysis of Linear Programming Decoding. IEEE

Trans. Info. Theory, To appear.

4. M. J. Wainwright and M. I. Jordan (2003). Graphical models,

exponential families, and variational methods. UC Berkeley, Dept.

of Statistics, Tech. Report 649.

