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Introduction

• message-passing: now standard method in various fields (coding,

physics, computer vision, learning, computational biology....)

• linear programming (LP) relaxation: standard method in

theoretical computer science, operations research, math

programming etc.

• fruitful connections between these two frameworks

• some useful features of LP relaxation:

– certificates of correctness

– hierarchies of relaxations (guaranteed improvement; increased cost)

• some useful features of message-passing:

– cheap, scalable algorithms; distributed in nature

– easy to implement (both in software and hardware)

– finite convergence for LP solving



MAP optimization in undirected graphical models
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θst(xs, xt)

θs(xs)θt(xt)
• undirected graph G = (V, E)

• Xs ≡ random variable at node s

taking values xs ∈ Xs

• θs(xs) ≡ observation term

• θst(xs, xt) ≡ coupling term

• overall distribution decomposes additively on graph cliques:

p(x; θ) ∝
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

• mode or maximum a posteriori (MAP) estimate:

x∗ ∈ arg max
x∈Xn

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

.



Outline

1. From ordinary to reweighted max-product

(a) Deficiencies of ordinary max-product

(b) Reweighted max-product

(c) Connection to LP relaxation

2. Probabilistic analysis of LP relaxation

(a) Motivation: worst-case versus average-case analysis

(b) Graphical models and LP relaxations for decoding

(c) Probabilistic guarantees on performance

3. Open directions/questions



Standard message-passing algorithms: On trees

Exact for trees, but approximate for graphs with cycles.
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Mts ≡ message from node t to s

N (t) ≡ neighbors of node t

Sum-product: for marginals

(generalizes α − β algorithm; Kalman filter)

Max-product: for MAP configurations

(generalizes Viterbi algorithm)

Update: Mts(xs) ← max
x′

t∈Xt

n

exp
h

θst(xs, x
′
t) + θt(x

′
t)
i

Q

v∈N (t)\s

Mvt(xt)
o

.



Standard message-passing algorithms: With cycles

Exact for trees, but approximate for graphs with cycles.
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Mts ≡ message from node t to s

N (t) ≡ neighbors of node t

Sum-product: for marginals

Max-product: for modes

Update: Mts(xs) ← max
x′

t∈Xt

n

exp
h

θst(xs, x
′
t) + θt(x

′
t)
i
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Some previous theory on ordinary max-product

• well-known to be optimal on trees

• analysis of graphs with large girth (Gallager, 1963; many others, 1990s

onwards)

• single-cycle graphs (Aji & McEliece, 1998; Horn, 1999; Weiss, 1998)

• local optimality guarantees:

– “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)

– strengthened optimality results and computable error bounds

(Wainwright et al., 2003)

• max. weight bipartite matching (Bayati, Shah & Sharma, 2005)



Standard analysis via computation tree

• standard tool: computation tree of message-passing updates

(Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)
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(a) Original graph (b) Computation tree (4 iterations)

• level t of tree: all nodes whose messages reach the root (node 1)

after t iterations of message-passing



Illustration: Non-exactness of standard max-product

Intuition:

• max-product solves (exactly) modified problem on computation tree

• edge/nodes not equally weighted ⇒ incorrectness of max-product
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(a) Diamond graph Gdia (b) Computation tree (4 iterations)

• for example: asymptotic node fractions in this computation tree:
h

f(1) f(2) f(3) f(4)
i

=
h

0.2393 0.2607 0.2607 0.2393
i



A whole family of non-exact examples

• consider the following integer program on Gdia:

PSfrag replacements

1

2
3

4

α

α

β

β

θs(xs)

8

<

:

αxs if s = 1 or s = 4

βxs if s = 2 or s = 3

θst(xs, xt) =

8

<

:

−γ if xs 6= xt

0 otherwise

• for γ sufficiently large, optimal solution is always either

04 = [0 0 0 0] or 14 = [1 1 1 1].

• max-product and optimum give different decision boundaries:

Optimum boundary: x̂ =





14 if 0.25α + 0.25β ≥ 0

04 otherwise

Max-product boundary: x̂ =





14 if 0.2393α + 0.2607β ≥ 0

04 otherwise



Tree-reweighted max-product algorithm

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t∈Xt

(

exp
hθst(xs, x

′
t)

ρst
| {z }

+ θt(x
′
t)
i

Q

v∈N (t)\s

z }| {
ˆ
Mvt(xt)

˜ρvt

ˆ
Mst(xt)

˜(1−ρts)

| {z }

)

.

reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.



TRW max-product never “lies”

Set-up: A fixed point ν∗ satisfies strong tree agreement (STA) if there

exists a configuration x∗ = (x∗
1, . . . , x

∗
n) such that

x∗
s ∈ arg max

xs

ν∗
s (xs),

︸ ︷︷ ︸
(x∗

s, x
∗
t ) ∈ arg max

xs,xt

ν∗
st(xs, xt)

︸ ︷︷ ︸
Node optimality Edge-wise optimality

Theorem 1: For “suitable” edge weights ρst: (Wainwright et al., 2003):

(a) Any STA configuration x∗ is provably MAP-optimal for the graph

with cycles.

(b) Any STA fixed point is a dual-optimal solution to a certain

“tree-based” linear programming relaxation.

Hence, TRW max-product acknowledges failure by lack of strong tree

agreement.



Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?
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(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G). (Edmonds, 1971)



Basic idea: convex combinations of trees

Observation: Easy to find its MAP-optimal configurations on trees:

OPT(θ(T )) :=
˘
x ∈ Xn | x is MAP-optimal for p(x; θ(T ))

¯
.

Idea: Approximate original problem by a convex combination of trees.

ρ = {ρ(T )} ≡ probability distribution over spanning trees

θ(T ) ≡ tree-structured parameter vector

PSfrag replacementsPSfrag replacementsPSfrag replacementsPSfrag replacements

∗ θ∗ = ρ(T 1)θ(T 1) + ρ(T 2)θ(T 2) + ρ(T 3)θ(T 3)

† OPT(θ∗) ⊇ OPT(θ(T 1)) ∩ OPT(θ(T 2)) ∩ OPT(θ(T 3)).



Dual perspective: linear programming relaxation

• Upper bound maintained by reweighted message-passing:

max
x∈XN

〈θ∗, φ(x)〉 ≤
∑

T∈T

ρ(T ) max
x∈XN

〈θ(T ), φ(x)〉

• Dual of finding optimal upper bound ≡ tree-based LP relaxation:

max
x∈XN

〈θ∗, φ(x)〉 ≤ max
µ∈LOCAL(G)

〈µ, φ(x)〉

• TRW-MP algorithm fixed points specify LP optimum:

– whenever strong tree agreement holds (WaiJaaWil05)

– for any binary problem (KolWai05)

– ....but TRW-MP not solving LP in general! (Kol05)



Various connections and extensions

• edge-based updates and max-sum diffusion (Schlesinger et al., 1960s)

• binary QPs: roof duality equivalent to relaxation using LOCAL(G)

(Hammer et al., 1984; Boros et al., 1990)

• natural hierarchy of LP relaxations based on treewidth:

MARG(G) = LOCALt(G) ⊂ LOCALt−1(G) ⊂ . . . ⊂ LOCAL1(G)

• treewidth hierarchy: equivalent to Boros et al. (1990) and

Sherali-Adams (1990) hierarchies for binary problems

• other approaches with links to first-order LOCAL(G) LP relaxation:

– sequential TRW and conv. guarantees (Kolmogorov, 2005)

– convex free energies (Weiss et al., 2007)

– sub-gradients (Feldman et al, 2003; Komodakis et al., 2007)

– proximal projections (Ravikumar et al., 2008)



§2. Probabilistic analysis of LP relaxation

Classical complexity theory:

• worst-case or adversarial in nature

• problem class is “hard” if there exists some instance that is difficult

to solve

• concern: how relevant are hard instances to practical applications?

Average-case analysis:

• consider random ensembles of instances

• natural ensembles in many application domains: statistical physics,

communication, signal processing, vision, machine learning

• Goal: show that a method succeeds with high probability for a

randomly chosen instance



Motivation: Reliable communication under noisy

conditions

• consider two “people” (Alice and Bob) who would like to

communicate (i.e., transmit information)

• channel: any mechanism by which Alice and Bob can communicate

SENDER
(Alice)

RECEIVER
CHANNEL
NOISY

(Bob)

Fundamental question: How can Alice transmit information reliably

to Bob over an unreliable channel?

Wide range of applications: satellite communication; wireless networks;

product barcodes; computer hard drives; neural communication



Error-control: Binary linear codes

• information represented by bit strings x ∈ {0, 1}n

• Alice introduces redundancy into transmission by sending only a

subset C of all possible 2n binary strings

– Example: parity checks: require subsets of bits to be even parity

x1 ⊕ x7 ⊕ x8 = 0.

• a binary linear code C is the null space of parity check matrix

C := {x ∈ {0, 1}n | Hx = 0}

where H ∈ {0, 1}m×n is the parity check matrix

• information rate R = 1 − m
n

, since parity check matrix reduces

degrees of freedom by m

(Shannon, 1940s)



Factor graph representation

Example: Parity check matrix: H =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1



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• square nodes ¥ represent parity checks (rows of H)

• circular nodes ◦ represent code bits (columns of H)



Error-control decoding

• observe a corrupted version of each transmitted bit:

yi =





xi with probability 1 − p

1 − xi with probability p

• optimal decoding corresponds to finding the nearest codeword

x∗ = arg min
x∈{0,1}n

‖y − x‖1 H x = 0

• can be formulated as an (intractable) LP over codeword polytope:

x∗ = arg min
µ∈CH(C)

n∑

i=1

γiµi

where

γi =





log p
1−p

if yi = 1

− log p
1−p

if yi = 0

• optimal decoding NP-complete in general (Berlekamp et al., 1978)



Codeword polytope

Definition: The codeword polytope CH(C) ⊆ [0, 1]n is the convex hull

of all codewords

CH(C) =
{
µ ∈ [0, 1]n | µs =

∑

x∈C

p(x) xs

}
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(a) Uncoded (b) One check (c) Two checks

• the codeword polytope is always contained within the unit

hypercube [0, 1]n

• vertices correspond to codewords



First-order relaxation for decoding
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• each parity check a ∈ C defines a local codeword polytope

LOCAL1(a)

• first-order relaxation obtained by imposing all local constraints:

LOCAL1(C) := ∩a∈C LOCAL1(a).

(Feldman, Wainwright & Karger, 2003)



Illustration of fractional vertex (pseudocodeword)
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The pseudocodeword is locally-consistent for each check =⇒ it belongs

to the first-order relaxed polytope LOCAL1(C).



Codes based on expander graphs

• previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)

• graph expansion: yields stronger results beyond girth-based analysis
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|S| ≤ α|V |

|C(S)| ≥ ρ|S|

• Definition: Let α ∈ (0, 1). A factor graph G = (V, C, E) is a

(α, ρ)-expander if for all subsets S ⊂ V with |S| ≤ α|V |, at least ρ|S|

check nodes are incident to S



Worst-case constant fraction for expanders

Theorem: Let C be an LDPC described by a factor graph

G with regular variable (bit) degree dv. Suppose that G is an

(α, δdv)-expander, where δ > 2/3 + 1/(3dv) and δdv is an integer.

Then the LP decoder can correct any pattern of 3δ−2
2δ−1 (αn) bit flips.

(FelMalSerSteWai, ISIT-04)

Comments:

• key technical device: notice of dual witness for LP success

– LP succeeds when 0n sent ⇐⇒ primal optimum p∗ = 0

– suffices to construct dual optimal solution with q∗ = 0

• caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)

• potential gaps in the analysis

– analysis adversarial in nature

– dual witness relatively weak



Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
X

i∈V

θiµi s.t.

8

>>>><

>>>>:

µa,J ≥ 0
P

J∈C(a)

µa,J = 1

P

J∈C(a),Jv=1

µa,J = µv

Dual LP: Vars. {va, a ∈ F} {τia, (i, a) ∈ E} unconstrained

max.
X

a∈F

va s.t.

8

><

>:

P

i∈S

τia ≥ va for all a ∈ C, J ⊆ C(a), |J | even

P

a∈N(i)

τia ≤ θi for all i ∈ V



Dual witness to zero-valued primal solution

• assume WLOG that 0n is sent: suffices to construct a dual

solution with value q∗ = 0

• dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers {τia, (i, a) ∈ E} such that

τia + τja ≥ 0 ∀ a ∈ C, and i, j ∈ N(a)
X

a∈N(i)

τia < θi for all i ∈ V

• random weights θi ∈ R defined by channel; e.g., for binary

symmetric channel

θi =





1 with prob. 1 − p

−1 with prob. p



Probabilistic analysis with random bit-flips

Consider an ensemble of LDPC codes with rate R, regular vertex degree

dv, and blocklength n. Suppose that the code is a (ν,
(

p
dv

)
dv) expander.

Theorem: For each (R, dv, n), we specify fractions α > 0 and error

exponents c > 0 such that the LP decoder succeeds with probability

1 − exp(−cn) over the space of bit flips ≤ bαnc. (DasDimKarWai07)

Remarks:

• the correctable fraction α is always larger than the worst case

guarantee
3 p

dv
−2

2 p

dv
−1ν.

• concrete example: rate R = 0.5, degree dv = 8 and p = 6 yields a

correctable fraction α = 0.002.



Hyperflow-based dual witness

(DasDimKarWai07)

A hyperflow is a collection of weights

{τia, (i, a) ∈ E} such that:

(a) for each check a ∈ F , exists some γa ≥ 0

and privileged neighbor i∗ ∈ N(a) such that

τia =

8

<

:

−γa for i = i∗

+γa for i 6= i∗.
.

(b)
P

a∈N(i)

τia < θi for all i ∈ V .

Proposition: A hyperflow exists ⇐⇒

∃ a dual feasible point with zero value.
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Hyperflow (epidemic) interpretation:

• each flipped bit adds 1 unit of “poison”; each clean bit absorbs at most 1 unit

• each infected check relays poison to all of its neighbors



Naive routing of poison may fail

overloaded bit
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D

Dirty checks N(D)

Dc

• need to route 1 unit of poison away from each flipped bit

• each unflipped bit can neutralize at most one unit

• naive routing of poison can lead to overload



Routing poison via generalized matching
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D

Dirty checks N(D)

Dc

Definition: A (p, q)-matching is defined by the conditions:

(i) every flipped bit i ∈ D is matched with p distinct checks.

(ii) every unflipped bit j ∈ Dc matched with max{Zj − (dv − q), 0} checks

from N(D), where Zj = |N(j) ∩ N(D)|.



Generalized matching implies hyperflow

Lemma: Any (p, q) matching with 2p + q > 2dv can be used

to construct a valid hyperflow.

Proof:

• construct hyperflow with each flipped bit routing γ ≥ 0 units to

each of p checks

• each flipped bit can receive at most (dv − p)γ units from other

dirty checks (to which it is not matched)

• hence we require that −pγ + (dv − p)γ < −1, or γ > 1/(2p− dv)

• each unflipped bit receives at most (dv − q)γ units so that we

need γ < 1/(dv − q)



High-level overview of key steps

1. Randomly constructed LDPC is “almost-always” expander

with high probability (w.h.p.)

• weaker notion than classical expansion: holds for larger sizes

• proof: union bounds plus martingale concentration

2. Prove that an “almost-always” expander will have a

generalized matching w.h.p.

• requires concentration statements

• generalized Hall’s theorem

3. Generalized matching guarantees existence of hyperflow.

4. Valid hyperflow is a dual witness for LP decoding succcess.



Generalized matching and Hall’s theorem
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S1 S2

N(D)

Dc

N(D) ∩ N(S2)

N(S1)

• by generalized Hall’s theorem, (p, q)-matching fails to exist if

only if there exist subsets S1 ⊆ D and S2 ⊆ Dc that contract :

|N(S1) ∪ [N(S2) ∩N(D)]|
| {z }

≤ p|S1|+
X

j∈S2

max {0, q − (dv − Zj)} .

| {z }

available matches total # requests



Analysis over a simpler random ensemble

• analysis in standard ensemble: complicated due to coupling

between N(D) and number of requests from Dc

• consider simplified (but equivalent) ensemble:

– each node in Dc chooses Zj ∼ Bin(dv,
|N(D)|

m
)

– chooses a subset from N(D) of size Zj

• LP error prob. (over random subset D) bounded by probability

of existing contractive subsets S1 ⊆ D and S2 ⊆ Dc:

P

h

∃ S1 ⊆ D, S2 ⊆ D
c | |N(S1) ∪ [N(S2) ∩N(D)]| ≤ p|S1|+

X

j∈S2

Rj

i

• argument establishes existence of “almost-always expanders”

(with parameters much larger than worst-case sense)



Summary

• fruitful connections between two frameworks

– message-passing in graphical models

– LP relaxations for integer programs

• probabilistic analysis of LP relaxations

– dual witness as certifiate of optimality

– algorithmic correctness reduced to combinatorial analysis

• various open directions:

– average-case analysis for other problems, ensembles?

– guarantees on treewidth approximation hierarchies?
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