Multi-Label Moves for Multi-Label Energies

Olga Veksler
University of Western Ontario

some work is joint with Olivier Juan, Xiaoqing Liu, Yu Liu
Outline

- Review multi-label optimization with graph cuts
 - Exact methods
 - Approximate methods
- Multi-label moves
 1. For piecewise-smooth smoothness term
 - applications to image restoration, stereo correspondence, simulating classic mosaic
 2. For order-preserving smoothness term
 - Applications to extracting structure from one image and to simple shape priors
Energy Minimization

- Standard energy formulation:

\[E(f) = \sum_{p \in \mathcal{P}} D_p(f_p) + \sum_{(p,q) \in \mathcal{N}} V_{pq}(f_p, f_q) \]

- for binary labels, the energy above can be minimized exactly if \(V_{pq}(f_p, f_q) \) are submodular [Hammer, Kolmogorov]
- We are interested in the multi-label case
Labels must be ordered

If $V_{pq}(f_p, f_q)$ are convex, and symmetric in $f_p - f_q$, then can optimize energy exactly.
Labels must be ordered

\[V_{pq}(f_p, f_q) \] is submodular if for any

\[\alpha < \beta \quad \text{and} \quad \alpha' < \beta' \]

\[V_{pq}(\alpha, \alpha') + V_{pq}(\beta, \beta') \leq V_{pq}(\alpha, \beta') + V_{pq}(\beta, \alpha') \]

More general than Ishikawa’s construction, for example, does not require

\[V_{pq}(\alpha, \beta) = V_{pq}(\beta, \alpha) \]

which is important for some applications

Submodular multi-label energy is converted to a submodular binary energy

Graphs are very similar to Ishikawa’s construction
Problems with Exact Methods

- As the number of labels increases, submodular $V_{pq}(f_p f_q)$'s are not bounded from above.
- Therefore, submodular $V_{pq}(f_p f_q)$'s are not discontinuity preserving.
- Example: Restoration with $V_{pq}(f_p f_q) = |f_p - f_q|$
The following discontinuity preserving $V_{pq}(f_p, f_q)$ are NP-hard to optimize:

- **Potts** for piecewise constant labeling
- **Truncated linear** for piecewise smooth labeling
- **Truncated quadratic** for piecewise smooth labeling
Approximate Methods

- For the Potts and truncated linear & quadratic models, we can find a local minimum with respect to swap moves [Boykov, Veksler, Zabih’1998]:

green-red swap move
Approximate Methods

- For the Potts and truncated linear model, we can find a local minimum with respect to expansion moves [Boykov, Veksler, Zabih’1998]:

 ![red expansion move]

- Local minimum wrt expansion moves is optimal within a factor (2 for the Potts model, worse for truncated linear model)
Limitations of Swap and Expansion Moves

- work well for piecewise-constant labelling:

 want: Potts V

 get:

- don’t work well for piecewise-smooth labelling:

 want: truncated quadratic

 get:
Swap and expansion moves are binary in essence

- each pixel participating in a move can either stay the same or switch to a single “new” label
- the “new” label is either the same for all pixels (for expansion move) or almost the same (either α or β for the swap move)

piecewise-constant labelling:

- many pixels prefer the same label
- swap & expansion moves are successful because they can operate on large sets of pixels
Insight

- piecewise-smooth labeling:
 - Only a small group of pixels wants the same label
 - Swap & expansion moves operate on small sets of pixels, and therefore much closer to “standard moves”
Key Idea

- Need to develop moves that work on larger sets of pixels for piecewise-smooth models
- must give each pixel a larger set of labels to switch to in a single move

Can switch to: 111 111 111
Multi-Label Moves

Given current labelling f find
- a subset of pixels P and
- a set of labels L_p for each pixel $p \in P$
- such that the restriction of the energy to P and L_p’s is a submodular energy (multi-label)
 - $V_{pq}(f_p, f_q)$ must be submodular inside □
 - $V_{pq}(f_p, f_q)$ can be arbitrary outside □

- want $f_p \in L_p$
- want P and L_p’s to be as large as possible
Multi Label Moves

- Energy Dependant
- Will explore two major types of moves
 - For energies with piecewise-smooth V_{pq}
 - For energies with order-preserving V_{pq}
Piecewise-Smooth V_{pq}: Range Moves

- Based on Ishikawa construction [PAMI’2003]
 - have to assume ordered labels

- Applies to truncated convex $V_{pq}(f_p, f_q)$
 - includes truncated linear and quadratic

- Let T be truncation constant, i.e.
 \[V_{pq}(f_p, f_q) \leq T \]

- Reassigns labels of pixels currently labelled $\alpha, \alpha + 1, \ldots, \beta$ to labels in $\{\alpha, \alpha + 1, \ldots, \beta\}$ in the optimal way
 - Restriction: $|\alpha - \beta| \leq T$

- Generalization (sort of) $\alpha - \beta$ swap
P-Smooth V_{pq}: Generalized Range Moves

- $\alpha - \beta$ range moves in case $|\alpha - \beta| < T$
- all $V_{pq}(O,O)$ are correct

- generalized $\alpha - \beta$ range moves to case $|\alpha - \beta| > T$
- $V_{pq}(O,O)$ and $V_{pq}(O,O)$ are larger than they should be
- all other $V_{pq}(O,O)$ are correct
- in particular, $V_{pq}(f_p,f_q)$ is correct
- old labeling f has correct energy
- all labelings not including have the same (correct) energy as in the construction above
- any labelings involving O,O,O,O have energy higher than they should

$$E(\text{optimal } \alpha-\beta \text{ r.m. } |\alpha - \beta| \leq T) \geq E(\text{generalized } \alpha-\beta \text{ r.m. } |\alpha - \beta| > T)$$
P-Smooth V_{pq}: Generalized Range Moves

- could “augment” the construction using the whole label range
- however, computing the best move becomes very expensive for little added benefit
- in practice, augment construction by two labels on the top and bottom
P-Smooth V_{pq}: “Graduated non-Submodularity”

- start with un-truncated V_{pq}
- let un-truncated energy be E^{max}
- global minimum f^* of E^{max} is found

- start with f^* as initial solution
- truncate V_{pq} a little bit
- let this energy be $E^{\text{max-1}}$
- $E^{\text{max-1}}(f^*) \leq E^{\text{max}}(f^*)$
- apply range moves to optimize $E^{\text{max-1}}$

- continue until reach original truncated energy
- works better than range moves, but takes a whiiiiiiile…..
P-Smooth V_{pq}: Generalized Expansion

- can approximately find generalization of α-expansion
- that is find approximately (within a factor of 3) the best subset of pixels to switch to labels in $\{\alpha, \alpha + 1, \ldots, \beta\}$
P-Smooth V_{pq}: Restoration with Truncated Quadratic V_{pq}

original image
energy: 419,076

swap move
energy: 453,994
mean error: 1.35

original image
with Gaussian Noise

range move
energy: 388,790
mean error: 0.82
P-Smooth V_{pq}: Results on Stereo

- Middlebury Dataset [Scharstein & Szeliski’ IJCV2001]
- Truncated Quadratic V_{pq}

<table>
<thead>
<tr>
<th></th>
<th>Tsukuba</th>
<th>Venus</th>
<th>Teddy</th>
<th>Cones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Algorithm</td>
<td>1,758,136</td>
<td>2,671,875</td>
<td>6,058,678</td>
<td>7,647,529</td>
</tr>
<tr>
<td>Swap</td>
<td>1,804,548</td>
<td>2,702,371</td>
<td>6,099,656</td>
<td>7,706,717</td>
</tr>
<tr>
<td>Expansion</td>
<td>1,765,386</td>
<td>2,690,970</td>
<td>6,124,697</td>
<td>7,742,709</td>
</tr>
</tbody>
</table>

energies

<table>
<thead>
<tr>
<th></th>
<th>Tsukuba</th>
<th>Venus</th>
<th>Teddy</th>
<th>Cones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Algorithm</td>
<td>6.7</td>
<td>3.25</td>
<td>15.1</td>
<td>6.79</td>
</tr>
<tr>
<td>Swap</td>
<td>7.47</td>
<td>4.04</td>
<td>15.8</td>
<td>7.64</td>
</tr>
<tr>
<td>Expansion</td>
<td>7.14</td>
<td>4.19</td>
<td>16.0</td>
<td>7.81</td>
</tr>
</tbody>
</table>

errors
P-Smooth V_{pq}: Results on Stereo

swap

range
P-Smooth V_{pq} Results: Simulating Classic Mosaics

- Given a photograph or painting, output a “mosaic” image
 - Non-photorealistic rendering

![Good Tiling](image1)
![Bad Tiling](image2)
P-Smooth V_{pq} Results: Simulating Classic Mosaics

- Step 1: Generate tile orientations
 - NP-hard, can be done with range moves

- Step 2: Build candidate mosaic layers

- Step 3: Stitch mosaic layers together
P-Smooth V_{pq} Results: Simulating Classic Mosaics
P-Smooth V_{pq} Results: Simulating Classic Mosaics
In some applications, in addition to smoothness, V_{pq} can be used to express certain ordering constraints.

- Geometric class labeling problem [Hoem et.al.]
- Labels are “left”, “right”, “top”, “bottom”, “center”
- For example, V_{pq} (“left”,”right”) = ∞ if pixel p is to the right of pixel q
Order-preserving V_{pq}

- independent labelling, i.e. only data term is used
- V_{pq} for smoothness only
- V_{pq} for smoothness and order preservation
We use order-preserving V_{pq} added on top of the Potts model

- $V_{pq}(\alpha, \alpha) = 0$
- $V_{pq}(\alpha, \beta) = \infty$ if assigning α to p and β to q violates ordering constraints
- Otherwise, $V_{pq}(\alpha, \beta) = w_{pq}$

Expansion algorithm gets stuck in a local minimum easier when order-preserving V_{pq} are present.

In fact, when order-preserving V_{pq} are added to the Potts model, the bound of 2 no longer holds.
Order-preserving V_{pq}

expansion after one iteration

expansion after at convergence

lower energy configuration
Order-preserving V_{pq}

- 2 types of order-preserving moves: “vertical” and “horizontal”
 - horizontal move, width of the “center” is preserved
 - vertical move, height of the “center” is preserved
Order-preserving V_{pq}

- Vertical and horizontal moves are alternated until convergence
- Start with labeling “all center”
Order-preserving V_{pq}: Horizontal Move

- All pixel participate in a move
- Each pixel has a choice of 3 labels, including its old label
- Construction is based on Schlesinger and Flach’2006
 - sort of tedious to check
- Ishikawa’s construction does not work since V_{pq}’s are not symmetric
- Same comments apply to the vertical move
On 300 images, the energy, on average is about 30% smaller with order-preserving moves, compared to alpha-expansion.
Order-preserving V_{pq}: Results
Order-preserving V_{pq}: Results

- You can use order-preserving moves to enforce simple geometric shape priors, such as “rectangle” or a “sort of trapezoid”
Order-preserving V_{pq}: Results

- You can use order-preserving moves to enforce simple geometric shape priors, such as “rectangle” or a “sort of trapezoid”