Multi-Label Moves for Multi-Label Energies

Olga Veksler University of Western Ontario some work is joint with Olivier Juan, Xiaoqing Liu, Yu Liu

Outline

- Review multi-label optimization with graph cuts
 - Exact methods
 - Approximate methods
- Multi-label moves
 - 1. For piecewise-smooth smoothness term
 - applications to image restoration, stereo correspondence, simulating classic mosaic
 - 2. For order-preserving smoothness term
 - Applications to extracting structure from one image and to simple shape priors

Energy Minimization

 $f_{\rm p} f_{\rm q}$

Standard energy formulation:

$$E(f) = \sum_{p \in \mathcal{P}} D_p(f_p) + \sum_{(p,q) \in \mathcal{N}} V_{pq}(f_p, f_q)$$

- for binary labels, the energy above can be minimized exactly if $V_{pq}(f_p,f_q)$ are submodular [*Hammer*, *Kolmogorov*]
- We are interested in the multi-label case

Exact Methods: Ishikawa'2003

- Labels must be ordered
- If $V_{pq}(f_p,f_q)$ are *convex*, and symmetric in f_p - f_q , then can optimize energy exactly

Exact Methods: Schlesinger and Flach'2006

- Labels must be ordered
- $V_{pq}(f_p, f_q)$ is submodular if for any $\alpha < \beta$ and $\alpha' < \beta'$ $V_{pq}(\alpha, \alpha') + V_{pq}(\beta, \beta') \le V_{pq}(\alpha, \beta') + V_{pq}(\beta, \alpha')$
- More general that Ishikawa's construction, for example, does not require

$$V_{pq}(\alpha, \beta) = V_{pq}(\beta, \alpha)$$

which is important for some applications

- Submodular multi-label energy is converted to a submodular binary energy
- Graphs are very similar to Ishikawa's construction

Problems with Exact Methods

- As the number of labels increases, submodular V_{pq}(f_p,f_q)'s are not bounded from above
- Therefore submodular $V_{pq}(f_p,f_q)$'s are not discontinuity preserving
- Example: Restoration with $V_{pq}(f_p, f_q) = |f_p f_q|$

noisy image

want this

get this

Approximate Methods

Approximate Methods

 For the Potts and truncated linear & quadratic models, we can find a local minimum with respect to swap moves [Boykov, Veksler, Zabih'1998]:

Approximate Methods

 For the Potts and truncated linear model, we can find a local minimum with respect to expansion moves [Boykov, Veksler, Zabih'1998]:

 Local minimum wrt expansion moves is optimal within a factor (2 for the Potts model, worse for truncated linear model)

Limitations of Swap and Expansion Moves

work well for piecewise-constant labelling:

 don't work well for piecewise-smooth labelling: want:

Insight

- Swap and expansion moves are binary in essence
 - each pixel participating in a move can either stay the same or switch to a single "new" label
 - the "new" label is either the same for all pixels (for expansion move) or almost the same (either α or β for the swap move)
- piecewise-constant labelling:
 - many pixels prefer the same label
 - swap & expansion moves are successful because they can operate on large sets of pixels

Insight

- piecewise-smooth labeling:
 - Only a small group of pixel wants the same label
 - swap & expansion moves operate on small sets of pixels, and therefore much closer to "standard moves"

Key Idea

- Need to develop moves that work on larger sets of pixels for piecewise-smooth models
- must give each pixel a larger set of labels to switch to in a single move

Multi-Label Moves

- Given current labelling f find
 - a subset of pixels P and
 - a set of labels L_p for each pixel $p \in P$
 - such that the restriction of the energy to P and L_p's is a submodular energy (multi-label)
 - $V_{pq}(f_p, f_q)$ must be submodular inside
 - $V_{pq}^{r}(f_p,f_q)$ can be arbitrary outside
- want $f_p \in L_p$
- want P and L_p 's to be as large as possible

Multi Label Moves

- Energy Dependant
- Will explore two major types of moves
 - For energies with piecewise-smooth V_{pq}

• For energies with order-preserving V_{pq}

Piecewise-Smooth V_{pq}: Range Moves

- Based on Ishikawa construction [PAMI'2003]
 - have to assume ordered labels
- Applies to truncated convex $V_{pq}(f_p, f_q)$
 - includes truncated linear and quadratic
- Let T be truncation constant, i.e.

 $V_{pq}(f_p, f_q) \leq T$

- Reassigns labels of pixels currently labelled α, α +1,..., β to labels in {α, α +1,..., β} in the optimal way
 - Restriction: $|\alpha \beta| \leq T$
- Generalization (sort of) α β swap

Ishikawa's construction inside, boundary terms dealt with through data terms

P-Smooth V_{pa}: Generalized Range Moves

- α - β range moves in case $|\alpha \beta| < T$
- all $V_{pq}(\mathbf{0},\mathbf{0})$ are correct

- generalized α - β range moves to case $|\alpha \beta| > T$
 - $V_{pq}(\mathbf{0},\mathbf{0})$ and $V_{pq}(\mathbf{0},\mathbf{0})$ are larger than they should be
- all other $V_{pq}(\mathbf{O}, \mathbf{O})$ are correct in particular, $V_{pq}(f_p, f_q)$ is correct
- old labeling f has correct energy
- all labelings not including have the same (correct) energy as in the construction above
- any labelings involving **O**, **O**, **O**, **O** have energy higher than they should

 $E(\begin{array}{c} \text{optimal } \alpha - \beta \text{ r.m.} \\ |\alpha - \beta| \leq T \end{array}) \geq E(\begin{array}{c} \text{generalized } \alpha - \beta \text{ r.m.} \\ |\alpha - \beta| > T \end{array})$

P-Smooth V_{pq}: Generalized Range Moves

- could "augment" the construction using the whole label range
- however, computing the best move becomes very expensive for little added benefit
- in practice, augment construction by two labels on the top and bottom

P-Smooth V_{pq}: "Graduated non-Submodularity"

- start with un-truncated V_{pa}
- let un-truncated energy be E^{max}
- global minimum f* of E^{max} is found

- start with *f** as initial solution
- truncate V_{pq} a little bit
- let this energy be Emax-1
- $E^{max-1}(f^*) \le E^{max}(f^*)$
- apply range moves to optimize E^{max-1}

- continue until reach original truncated energy
- works better than range moves, but takes a whiiiiiile....

P-Smooth V_{pq} : Generalized Expansion

- can approximately find generalization of α -expansion
- that is find approximately (within a factor of 3) the best subset of pixels to switch to labels in {α, α +1,...,β}

P-Smooth V_{pq} : Restoration with Truncated Quadratic V_{pq}

original image energy: 419,076

swap move energy: 453,994 mean error: 1.35

original image with Gaussian Noise

range move energy: 388,790 mean error: 0.82

P-Smooth V_{pq} : Results on Stereo

- Middlebury Dataset [Scharstein & Szeliski' IJCV2001]
- Truncated Quadratic V_{pq}

	Tsukuba	Venus	Teddy	Cones
Our Algorithm	1,758,136	2,671,875	6,058,678	7,647,529
Swap	1,804,548	2,702,371	6,099,656	7,706,717
Expansion	1,765,386	2,690,970	6,124,697	7,742,709

energies

	Tsukuba	Venus	Teddy	Cones
Our Algorithm	6.7	3.25	15.1	6.79
Swap	7.47	4.04	15.8	7.64
Expansion	7.14	4.19	16.0	7.81

errors

P-Smooth V_{pq} : Results on Stereo

swap

- Given a photograph or painting, output a "mosaic" image
 - Non-photorealistic rendering

Good Tiling

Bad Tiling

- Step 1: Generate tile orientations
 - NP-hard, can be done with range moves

Step 2: Build candidate mosaic layers

Step 3: Stitch mosaic layers together

• In some applications, in addition to smoothness, V_{pq} can be used to express certain ordering constraints

- Geometric class labeling problem [Hoem et.al.]
- Labels are "left", "right", "top", "bottom", "center"
- For example, V_{pq} ("left","right") = ∞ if pixel p is to the right of pixel q

independent labelling, i.e. only data term is used

V_{pq} for smoothness only

V_{pq} for smoothness and order preservation

- We use order-preserving V_{pq} added on top of the Potts model
 - $V_{pq}(\alpha, \alpha) = 0$
 - $V_{pq}(\alpha,\beta) = \infty$ if assigning α to p and β to q violates ordering constraints

• Otherwise,
$$V_{pq}(\alpha,\beta) = w_{pq}$$

- Expansion algorithm gets stuck in a local minimum easier when order-preserving V_{pq} are present
- In fact, when order-preserving V_{pq} are added to the Potts model, the bound of 2 no longer holds

expansion after one iteration

expansion after at convergence

lower energy configuration

- 2 types of order-preserving moves: "vertical" and "horizontal"
 - horizontal move, width of the "center" is preserved

vertical move, height of the "center" is preserved

- Vertical and horizontal moves are alternated until convergence
- Start with labeling "all center"

Order-preserving V_{pq} : Horizontal Move

- All pixel participate in a move
- Each pixel has a choice of 3 labels, including its old label
- Construction is based on Schlesinger and Flach'2006
 - sort of tedious to check
- Ishikawa's construction does not work since V_{pq}'s are not symmetric
- Same comments apply to the vertical move

 On 300 images, the energy, on average is about 30% smaller with order-preserving moves, compared to alpha-expansion

 You can use order-preserving moves to enforce simple geometric shape priors, such as "rectangle" or a "sort of trapezoid"

 You can use order-preserving moves to enforce simple geometric shape priors, such as "rectangle" or a "sort of trapezoid"

