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Outline
Review multi-label optimization with 
graph cuts

Exact methods
Approximate methods

Multi-label moves
1. For piecewise-smooth smoothness term

applications to image restoration, stereo 
correspondence, simulating classic mosaic

2. For order-preserving smoothness term
Applications to extracting structure from one 
image and to simple shape priors



Energy Minimization 
Standard energy formulation:

for binary labels, the energy above can be 
minimized exactly if Vpq(fp,fq) are submodular  
[Hammer, Kolmogorov]
We are interested in the multi-label case

fp fq



Exact Methods: Ishikawa’2003
Labels must be ordered
If Vpq(fp,fq) are convex, and symmetric in 
fp-fq, then can optimize energy exactly

fp- fq

Vpq(fp,fq) = ( fp - fq)2

fp- fq

Vpq(fp,fq) = | fp - fq |
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Exact Methods: Schlesinger and Flach’2006

Labels must be ordered 
Vpq(fp,fq) is submodular if for any   

α < β and   α’ < β’   
Vpq(α,α’)+Vpq(β, β’) ≤Vpq(α, β’)+Vpq(β,α’)

More general that Ishikawa’s construction, for 
example, does not require

Vpq(α, β) = Vpq(β, α) 
which is important for some applications
Submodular multi-label energy is converted to a 
submodular binary energy
Graphs are very similar to Ishikawa’s 
construction



Problems with Exact Methods
As the number of labels increases, submodular 
Vpq(fp,fq)’s are not bounded from above
Therefore  submodular Vpq(fp,fq)’s are not 
discontinuity preserving
Example: Restoration with Vpq(fp,fq) = | fp - fq |

want this get thisnoisy image



Approximate Methods

The following discontinuity preserving 
Vpq(fp,fq) are NP-hard to optimize:

Potts
for piecewise 

constant labeling

truncated linear truncated quadratic

for piecewise 
smooth labeling



Approximate Methods
For the Potts and truncated linear & quadratic 
models, we can find a local minimum with respect 
to swap moves [Boykov, Veksler, Zabih’1998]:

green-red swap move



Approximate Methods
For the Potts and truncated linear model, we can 
find a local minimum with respect to expansion 
moves [Boykov, Veksler, Zabih’1998]:

red expansion move

Local minimum wrt expansion moves is optimal 
within a factor (2 for the Potts model, worse for 
truncated linear model)



Limitations of Swap and Expansion Moves

work well for piecewise-constant labelling:
want: get:

Potts V

don’t work well for piecewise-smooth labelling:

truncated

quadratic V

want: get:



Insight
Swap and expansion moves are binary in essence

each pixel participating in a move can either stay the same or 
switch to a single “new” label
the “new” label is either the same for all pixels (for expansion move) 
or almost the same (either α or β for the swap move)

piecewise-constant labelling: 
many pixels prefer the same label
swap & expansion moves are successful because they can operate 
on large sets of pixels



Insight
piecewise-smooth labeling:

Only a small group of pixel wants the same label
swap & expansion moves operate on small sets of 
pixels, and therefore much closer to “standard 
moves” 



Key Idea
Need to develop moves that work on larger 
sets of pixels for piecewise-smooth models
must give each pixel a larger set of labels to 
switch to in a single move

Can switch to:



Multi-Label Moves

Given current labelling  f find 
a subset of pixels P and 
a set of labels Lp for each pixel p∈P
such that the restriction of the energy to P and Lp’s 
is a submodular energy (multi-label)

Vpq(fp,fq) must be submodular inside □
Vpq(fp,fq) can be arbitrary outside □

Lp = {                } p

Lq = {            } q

Lr = {               }
r

want  fp ∈ Lp
want P and Lp’s to be as large as possible 



Multi Label Moves
Energy Dependant
Will explore two major types of moves

For energies with piecewise-smooth Vpq

For energies with order-preserving Vpq

left right

top

bottom



Piecewise-Smooth Vpq: Range Moves
Based on Ishikawa construction 
[PAMI’2003]

have to assume ordered labels

Applies to truncated convex Vpq(fp,fq)
includes truncated linear and quadratic

Let  T be truncation constant, i.e. 
Vpq(fp,fq) ≤ T

Reassigns labels of pixels currently 
labelled α,α +1,…, β to labels in      
{α,α +1,…,β } in the optimal way

Restriction:  |α - β | ≤ T

Generalization (sort of) α - β swap

Ishikawa’s construction 
inside, boundary terms 
dealt with through data 

terms



P-Smooth Vpq: Generalized Range Moves

fp

fq

α-β range moves in case |α - β | < T 
all Vpq(Ο,Ο) are correct

generalized α-β range moves to case |α - β | >T 
Vpq(Ο,Ο)  and Vpq(Ο,Ο) are larger than they should be
all other Vpq(Ο,Ο) are correct
in particular, Vpq(fp, fq) is correct
old labeling f has correct energy 
all labelings not including have the same (correct) 
energy as in the construction above
any labelings involving Ο,Ο ,Ο,Ο have energy higher 
than they should

fp

fq

generalized α-β r.m.
|α - β | >T

optimal α-β r.m.
|α - β | ≤ TE( )≥ E( )



P-Smooth Vpq: Generalized Range Moves

could “augment” the construction using 
the whole label range
however, computing the best move 
becomes very expensive for little 
added benefit
in practice, augment construction by 
two labels on the top and bottom

fp

fq



P-Smooth Vpq: “Graduated non-Submodularity”

start with un-truncated Vpq
let un-truncated energy 
be Emax

global minimum f* of Emax

is found

start with f* as initial 
solution
truncate Vpq a little bit
let this energy be Emax-1

Emax-1 ( f*) ≤ Emax ( f*) 
apply range moves to 
optimize Emax-1 

continue until 
reach  
original 
truncated 
energy
works better 
than range 
moves, but 
takes a 
whiiiiiile….



P-Smooth Vpq: Generalized Expansion
can approximately find generalization of α -expansion
that is find approximately (within a factor of 3) the best 
subset of pixels to switch to labels in {α,α +1,…,β } 

fp

fq

L = {               }



P-Smooth Vpq: Restoration with Truncated 
Quadratic Vpq

original image
energy: 419,076

swap move
energy: 453,994
mean error: 1.35

range move
energy: 388,790
mean error: 0.82

original image 
with Gaussian Noise



P-Smooth Vpq: Results on Stereo

Middlebury Dataset [Scharstein & Szeliski’ IJCV2001]
Truncated Quadratic Vpq

energies

errors



P-Smooth Vpq: Results on Stereo

swap range



P-Smooth Vpq Results: Simulating Classic 
Mosaics

Given a photograph or painting, output a 
“mosaic” image

Non-photorealistic rendering

Bad TilingGood Tiling



Step 1: Generate tile orientations
NP-hard, can be done with range 
moves

P-Smooth Vpq Results: Simulating Classic 
Mosaics

Step 2: Build candidate mosaic layers

Step 3: Stitch mosaic layers together



P-Smooth Vpq Results: Simulating Classic 
Mosaics



P-Smooth Vpq Results: Simulating Classic 
Mosaics



Order-preserving Vpq

In some applications, in addition to smoothness, Vpq can 
be used to express certain ordering constraints

Geometric class labeling problem [Hoem et.al.]
Labels are “left”, “right”, “top”, “bottom”, “center”
For example, Vpq (“left”,”right”) = ∞ if pixel p is to the right  
of pixel q



Order-preserving Vpq

independent 
labelling, i.e. only 
data term is used

Vpq for smoothness 
only

Vpq for smoothness and 
order preservation



Order-preserving Vpq

We use order-preserving Vpq  added on top of the 
Potts model

Vpq (α,α) = 0
Vpq (α,β) = ∞ if assigning α to p and β to q violates 
ordering constraints
Otherwise, Vpq (α,β) = wpq

Expansion algorithm gets stuck in a local 
minimum easier when order-preserving Vpq are 
present
In fact, when order-preserving Vpq  are added to 
the Potts model, the bound of 2 no longer holds



Order-preserving Vpq

expansion after one iteration expansion after at convergence

lower energy configuration



Order-preserving Vpq

2 types of order-preserving moves: “vertical” and 
“horizontal”

horizontal move, width of the “center” is preserved

T
L
B

T
C
B

T
R
B

vertical move, height of the “center” is preserved

L,T,R

L,C,R

L,B,R



Order-preserving Vpq

Vertical and horizontal moves are alternated until 
convergence
Start with labeling “all center”



Order-preserving Vpq: Horizontal Move

All pixel participate in a move
Each pixel has a choice of 3 labels, including its old label
Construction is based on Schlesinger and Flach’2006

sort of tedious to check 
Ishikawa’s construction does not work since Vpq’s are not 
symmetric
Same comments apply to the vertical move

T
L
B

T
C
B

T
R
B



On 300 images, the energy, on average is 
about 30% smaller with order-preserving 
moves, compared to alpha-expansion

Order-preserving Vpq: Results



Order-preserving Vpq: Results



Order-preserving Vpq: Results

You can use order-preserving moves to enforce 
simple geometric shape priors, such as “rectangle” or 
a “sort of trapezoid”



Order-preserving Vpq: Results

You can use order-preserving moves to enforce 
simple geometric shape priors, such as “rectangle” or 
a “sort of trapezoid”


	Multi-Label Moves for           Multi-Label Energies
	Outline
	Energy Minimization 
	Exact Methods: Ishikawa’2003
	Exact Methods: Schlesinger and Flach’2006
	Problems with Exact Methods
	Approximate Methods
	Approximate Methods
	Approximate Methods
	Limitations of Swap and Expansion Moves
	Insight
	Insight
	Key Idea
	Multi-Label Moves
	Multi Label Moves
	Piecewise-Smooth Vpq: Range Moves
	P-Smooth Vpq: Generalized Range Moves
	P-Smooth Vpq: Generalized Range Moves
	P-Smooth Vpq: “Graduated non-Submodularity” 
	P-Smooth Vpq: Generalized Expansion
	P-Smooth Vpq: Restoration with Truncated Quadratic Vpq
	P-Smooth Vpq: Results on Stereo
	P-Smooth Vpq: Results on Stereo
	P-Smooth Vpq Results: Simulating Classic Mosaics
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Order-preserving Vpq
	Slide Number 34
	Order-preserving Vpq: Results
	Order-preserving Vpq: Results
	Order-preserving Vpq: Results
	Order-preserving Vpq: Results

