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Energy Functions

Pairwise

• Pairwise Energy Functions

Unary

Markov 
Random Field

• Efficient Algorithms for 
Minimization

• Restricted Expressive 
Power!



Energy Functions

• Higher Order Energy Functions

Unary Pairwise Higher 
order

More expressive 
than pairwise

FOE: Field of ExpertsMarkov 
Random Field (Roth & Black CVPR05)
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Images Courtesy: Lan et al. ECCV06



Energy Functions

• Higher Order Energy Functions

Unary Pairwise Higher 
order

• Computationally expensive to minimize!
• Exponential Complexity  O(LN)

• L = Number of Labels
• N = Size of Clique



Energy Functions

• Higher Order Energy Functions

Unary Pairwise Higher 
order

Efficient BP in Higher Order MRFs
ECCV06 (Lan, Roth, Huttenlocher, Black)
• 2x2 cliques learned using FOE model
• Approximation methods to make BP feasible
• Search a restricted state space
• 16 minutes per iteration



Energy Functions

• Higher Order Energy Functions

Unary Pairwise Higher 
order

• Our Method
• Can handle cliques of thousand of variables
• Extremely Efficient ( works in  seconds)
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Optimization Algorithms

• General Energy Functions
• NP-hard to minimize
• Algorithms for Approximate Minimization

• Easy energy functions 
• Global minima in polynomial time
• Tree topology 
• Submodular functions



Submodular functions
• All projections on two variables are submodular.
• Any function f : {0,1}2 → R is submodular if:

• In certain cases minimization equivalent to a 
st-mincut problem:

t

s

Graph CutMinimization Problem

st-mincut



Approximate Energy Functions

Message Passing 
Algorithms

Move making 
Algorithms

Belief Propagation (BP) α−Expansion

Tree Reweighted (TRW) αβ−Swap
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Move Making Algorithms
Current Solution

Search 
Neighbourhood
Optimal Move
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Move Making Algorithms

• Moves using graph cuts 
[Boykov, Veksler, Zabih] PAMI 2001

• Algorithm
• Encode move by vector t
• Transformation function T(x,t) → x`
• Move Energy

• Optimal move t*

Submodular



Expansion Move

Characteristics
• Move

• Variables take label α or retain current label

• Algorithm
• Make a move for all α in L



Expansion Move

Tree

Initialize with Tree
Status:
Expand GroundExpand HouseExpand Sky Ground

House
Sky



Expansion Move

Characteristics
• Neighbourhood Size

• 2N where N is the number of variables

• Guarantee
• Move energy is submodular for all 

metric energy functions. [Boykov, Veksler, Zabih] 
PAMI 2001



Swap Move

Characteristics
• Move

• Variables labeled α, β can swap their labels

• Algorithm
• Make a move for all α, β in L



Swap Move

Tree
GroundSwap Sky, House
Sky
House



Swap Move

Characteristics
• Neighbourhood Size

• 2N where N is the number of variables

• Guarantee
• Move energy is submodular for all  

semi-metric energy functions. [Boykov, Veksler, 
Zabih] PAMI 2001
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Moves for Higher Order Cliques

• Form of the Higher Order Potentials

• Sum Form

• Max Form



Theoretical Results: Swap

• Move energy is always submodular if

non-decreasing 
concave.

See paper for proofs



Theoretical Results: Expansion

• Move energy is always submodular if

increasing 
linear

See paper for proofs
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PN Potts Model

• Generalization of the Potts Model:



Solving the PN Potts Model
• Computing the optimal swap move

v1 v2 vn

Ms

Mtti = 0 vi ∈ Source
tj = 1 vj ∈ Sink

Source

Sink
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• Computing the optimal swap move

Cost: 

v1 v2 vn

Ms

Mt

Source

Sink

Case 3: ti = 0,1 (xi = α,β)
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• Computing the optimal expansion move
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Solving the PN Potts Model
• Computing the optimal expansion move

Cost: 

Source

Sink

v1 v2 vn

Ms

Mt

Case 1: all ti = 0 (xi = xi )



Solving the PN Potts Model
• Computing the optimal expansion move

Cost: 

v1 v2 vn

Ms

Mt

Source

Sink

Case 2: all ti = 1 (xi = α)



Solving the PN Potts Model
• Computing the optimal expansion move

Cost: 

v1 v2 vn

Ms

Mt

Source

Sink

Case 3: ti = 0,1 (xi = xi , α)
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Experimental Results

Pairwise Higher Order

Original Swap (3.2 sec) Swap (4.2 sec)

Ground Truth Expansion  
(2.5 sec)

Expansion    
(3.0 sec)



Experimental Results

Pairwise Higher Order

Original Swap (4.7 sec) Swap (5.0 sec)

Ground Truth Expansion 
(3.7sec)

Expansion    
(4.4 sec)



Conclusions & Future Work

• Efficient minimization of certain higher 
order energies

• Can handle very large cliques 

• Useful for many Computer Vision 
problems

• Explore other interesting family of 
potential functions



Thanks

• Questions?


