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* We are interested in the general problem of
object recognition in images (2D or 3D);

¢ Objects are often recognised by both their

content and their contours;

'« Assuming the content of an object 1s
semantically describable, their may exist a
metric describing this content, constant
within the object.




So we need to 1dentity

1.A measure of similarity for the content of the
objects, from which we derive a metric ;

2.An optimisation methodology for the
placement of the contours.

3.Identifications require a-priori high-level

knowledge.




an MRI slice Contours

Here, the similarity measure 1s simply the grey-level.
Contours are estimated by a gradient. Pb: the gradient

may be weak, etc.




NECESSARY KNOWLEDGE

P,

High-level knowledge can be obtained manually or

automatically : seed placement in this case based on

anatomical knowledge on lungs.
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¢ Based on contours

2 Contour detection (Marr, Canny)

2

¢ Active contours (snakes)
Based on regions

“t Watershed, region growing, some LS

formulations

Al

¢ Optimisation : level sets, graph cuts




SOAP BUBBLES

¢ A soap bubble 1s a minimal surface. Surface

tension physically maximises the soap
thickness.




CONTENT OF THE TALK

* We are not going to talk about content

similarity measures (but we'll use a
metric);

\

* We worry about the optimisation of the
contour placement;

KA

2« This 1s so because content similarity 1s

problem-dependent (texture signatures,
etc)




Al

¢ Contour placement can be performed in many

ways (hundreds of published methods).

2

¢ Optimisation from semantics to mathematics :

using a numerical methodology.

Many ways exist to optimise a cost function,
not all equivalent.

A suitable cost function 1s not so obvious.




Sy

¢ A classic formulation 1s the following : let I be
an 1mage, V I 1ts gradient. We look for the

contour or surface that minimises

/ g(s)ds

¢ With s a measure and g a metric, e.g, s=1 and

1
S INT T2

g(s)




Ultrasound image Magnitude of the

of a prostate gland  gradient of the image




APPEARANCE OF THE METRIC

An X-ray radiography Associated metric

The metric has low values (black) near

the contours of the image.
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* How to perform the optimisation

1.Variational methods
2.Graph-based methods

3.Continuous maxium flows




VARIATIONAL METHODS
‘¢ Based on the study of the first variation

b
/ Lix elx) eir e

r = arg min L(r)

¢ Solved by derivation : NNSC Euler-
Lagrange

or Oor dx

SL(r) oL d (ac)zo

or ..




Fesistance at 30 knots with optimization trace.

2000

Mcire

To find the minimum, follow the path of steepest

descent.
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Al

¢ The previous expression 1s a derivative, that
vanishes at an extremum.

Al

¢ A gradient descent 1s obtained by considering
a time variable:

Ors == 0 L)

Bf = o i

‘¢ A contour can be represented explicitely

(Lagrangian method) or implcitely (Eulerian
method).




« With the equation we gave in the beginning,
the EL/GD formulation 1s :

Vg
Vol

= div (g

¢ To simplify the expression, the contour
(surface) 1s implicitely represented by the
zero-level-set of a function .

/A

¢ Thas 1s the evolution equation of the geodesic
active contours (GAC).




LOCAL MINIMA

Gradient descent generally only optimises locally

Local optimum Global optimum




Gradient descent generally only optimises locally

Local optimum Global optimum




Gradient descent generally only optimises locally

Local optimum Global optimum




GRAPH-BASED METHODS

Al

“¢ The initial varational problem can be
seen 1n 2D as a minimal path problem.

S

% In 3D (and more), it can be formalized
as a maxtlow problem ;

Al

2 Max-flow / min-cut can be solved on

graph representations.




»- 0 9 @

-0 9 0

Typical graph used in image analysis




't Let G be a graph with weighted edges

Rea— Vi V. s

“¢so that : G A Vipa, il
U Vo=V V, AV = ifor iy
Vi:el'a

Al

¢ The cost of a partition 1s the sum of the edges that
cross a partition :

Gl — 5 Crlek

ecE*
¢ The cut £*1s the set of shared edges.




It G 1s a graph with costs reinterpreted as
capactlieds,

2 A flow F' trom the source s to the sink ¢ has
the following properties :

1.Flow conservation : the flow entering an

edge 1s the same as that exiting that edge;

2.Capacity constraint :
Vee E, F(e) <Cgl(e)
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EXAMPLES OF MAX FLOWS

st Capacity graph:




The cut 1s the set of edges separating the

partitions ;

Al

¢ The min cut 1s the cut of minimal cost (sum of
all the capacities of the cut) ;

Al

¢ The solution to the problem with one source
and sink has been known since Ford &

Fulkerson (1962) ;

Al

 The general problem with S sources and T
sinks 1s NP-hard.




“ An edge along which the flow 1s equal to the

flow 1s said to be vaturated ;

¢ A max flow 1in a weighted graph G maximises
the flow through the network from s to t.

F&F showed that calculating the maxtlow s-t
1s equivalent to computing the mincut s-t.

'« The mincut s-t 1s a minimal path in 2D and a
minimal surface in 3D (in a suitable dual

graph).




A network for which capacities are illustrated by edge width.

The saturated edges separate s from t and are of minimal cost.
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PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.

Dz




PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION

6/8 o710
- =

v 4 \ 3’ : y 02 5/5
\ 7/a

q‘ -EVRn q‘}z

uxxx V, L  0/5 H?E ‘xh 05 ﬁ;
L N R N <Y 12,

® 9 -0 @

Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION
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PATH AUGMENTATION
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PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION
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Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION

Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.
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PATH AUGMENTATION

Path augmentation was the first algorithm proposed. It works
by finding paths from s to t and saturating the flow along.

Dz




CONTINUOUS MAXIMUM FLOWS

S
7}

KA
N3

A
Z7I\J

Discrete maxflows can find ! minimal
surfaces efthciently, but are biased by
the grid. The result can show

metrication artifacts.

To avoid this, we seek a solution that 1s
2 . . o )

an [.* minimal surface (a “proper’,

Fuclidean minimal surtace)

Contribution: algorithm.




2 Ir (1979) and Strang (1982) studied this

problem 1n the continuous domain.
1. The graph 1s replaced by a field
2. The tlow becomes a vector ﬁ

3.Flow conservation 1s expressed by N i)

4.Capacity constraints are expressed |ﬁ L
with g a scalar field (tensor field
formulation 1s possible).

5.Same concept of source and sink.
29




A
7

< Let S _be as simple, regular, closed surface,
with [V the normal to the surface at each
point. We write V. I the total flow exiting the
source. If S contains s, then

V.ﬁsz/ﬁ.ﬁdsg/gds
S S

s¢ All the surfaces S limit the flow from above.

surfaces S are limited from below by the tlow
exiting the source.




Al
K\

Al
N

Every surface S 1s a bottleneck for the source
tlow, which must be less than the capacity, or

weighted area of S.

The maximum flow exiting s 1s limited by all
possible surfaces, which must be less than the

tflow corresponding to the surtace with

minimal weighted area.

¢ Ir1 showed the existence of a maximal How
under very general conditions, that
corresponds to the saturation of this minimal
weighted surface.




i Neither Strang nor Ir1 (nor others AFAWK)

proposed a method for computing this
maximum flow.

\I2

* We have proposed to compute the flow
numerically. However in the continuous
domain, it 1s not possible to consider
numerically the set of all paths leading from s
to t. Therefore simulating F&F or any path

augmentation algorithm seems impossible.

* However, Push-Relabel (Golberg & Tarjan,

1987) algorithms are interesting to consider.
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¢ Pretflow-push propagation. A pre-tflow 1s a relaxed form of a
flow F, with the following characteristics :

1. The flow entering an edge can be greater or equal to the
exiting flow.

2. An edge with non-zero difference 1s called active. The
difference 1s called exceso.

3. The algorithm propagates the excess toward the sink,
helped by a height function H, which depends on the

shortest path from the edge to the sink via unsaturated

edges.
4. Source and sink have fixed height, with H(t) = 0. The sink

is never active (it can receive an infinite flow).

¢ The algorithm 1s purely local in its operations.




WA

¢ In continuous terms, one can assimilate the
excess to a pressure P.

elementary fluid model, linking the pressure

P and the speed F':

OP 2
e X
Ot =
OF

Rt L e
ot 3




A

To simulate constraints, we introduce the

field g, such that :
|Fll2 < g

[.imit conditions are: s=1,t =0

35



2¢ As 1n Push-Relabel, E 1s no longer
incompressible:  V.F' #£ (

A

¢ The held Prepresents the excess.

VA

*We can show that Pis conserved in any

region that does not contain s or .

Al

* We can show that the system 1s dissipative :
oscillations must vanish and the system
converges to a steady state.




Al

't Let A be a sourceless region (neither
including s nor ?).

0P, 0P
L e S
5 Lo

:—/divﬁdA

A

:_7{ F. Nysd (9A).
0A

=()

* P1s conserved 1n any such regions.




\
A

‘¢ At convergence, temporal derivatives vanish, so
the system becomes :

V.F =0,
VP:{O

M with A >0

 The simulated fluid become incompressible. The
tflow lines are aligned with the pressure. Pis
constant wherever F'is not saturated. PP decreases
monotonically from s to .




* P1s monotonically decreasing because,

wherever Pis defined,

Ne2 B

A

¢ In an incompressible fluid, flow lines can only
originate at the source and terminate at the
sink, therefore Phas no local extremum.

 We can consider any region A defined by
thresholding P.




\\/

‘¢ At convergence, we can consider any region

where P > p>0, (p constant). Due to
monotonicity, this region contains s, and the

border of S 1s saturated because P 1s non-
Zero.

2¢On the border of S, we have:

V.ﬁsz/ﬁ.NdSZ/gds
o) S

2 We have tound both the maxtlow and the
minimal surface.







ANALYTIC SOLUTION




CMF SOLUTION

Mean error ~ 0.1 pixel.
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2¢ Due to the nature of the equation we

minimize, small regions are favoured.

A solution 1s to weigh the metric




ISSUES

-+ Convergence

2t Complexity

s¢ Dithicult cases

S Implementations

¢ Stability




OB <
= v
oF

ot === —VP—aPG*(QS,P)

1 0P
et) == | |Z—|2 + |divP|?
(©)= 5 | 157+ IdivPda

oP 0P
o 0% ,G*(x, P
/Q(PP (33‘7 )8t’6t>dx

dampen.



2 Dithcult to express. Oscillation dampen
reasonably quickly in a small number of
passes ~ b X max(nz,ny,nz)

5¢ This works out to O(DB/ 2) in 2D, however

convergence may not necessarlly be achieved
after dampening.




Finite differences implemented on a staggered

erid, explicit in time and space.

components. g 1s enforced after each timestep.

v v
"">Pi—1,j—1 Pi,j—l L




2« Conservation equation

P = P — AL((FRy  —Fry )+ (B, — BT

’L—I—%,j,ZB t—35,],% Z)j+§’y

A

 Driving equation

F/n—f—l oy Fn

fohi 1
Z+§7.]7:U ’L—|—§,j,$

F/’n,—|—1 i Fn

7’7j+%7y 7’7j—|_%7y

2 At(PiTE,lj e Pi?jﬂ)

— G e B

A

¢ The magnitude constraint 1s applied

immediately following the update of the flow
hield




¢ Implementation 1s simple, but making 1t fast 1s

hard(ish) :

1.Keep a tight inner loop : decompose the

problem into runlengths (cache reasons)

2.Parallel implementation 1s readily teasible.

* We have two implementations (C/C++) with
similar performances. One 1s completely free
(contact us).

3¢ Pertormance similar to GC:

3D image 256° 30s on Core Duo 2GHz




' The scheme 1s explicit, describes an
hyperbolic wave equation with constraints.

« lgnoring the constraints, stablhty 1s obtained

by a CFL condition:

At <

ta
VN

5¢ N 1s the number of dimension

AL

Al

¢ The constraint does not perturb the condition
as 1t does not change the wave velocity.




APPLICATIONS




LUNG SEGMENTATION

Original Gradient Metric
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MEDICAL IMAGING

[terative Discrete Graph Continuous

variationnal cut max flow

(GAC) 4




ULTRASOUND PROSTATE
SEGMENTATION

CMF with

Original tensor

constraint




MATERIALS

Electron nanotomography, results in
anisotropic 3D 1mage acquisition
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Without shape  With shape

prior

Original

3D result




CONCLUSION

“* We have proposed a new continuous
formulation of maxtlow/mincut.

¢ The result 1s an explicit numerical
scheme that computes a binary
indicator tunction, the 1solevels of
which correspond to minimal surfaces.

¢ The result 1s globally optimal.
Compared to GCs, metrication errors
are limited.

¢ Optimality does not solve the problem
of segmentation.




