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Motivation

We are interested in the general problem of 
object recognition in images (2D or 3D);

Objects are often recognised by both their 
content and their contours;

Assuming the content of an object is 
semantically describable, their may exist a 
metric describing this content, constant 
within the object.
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Segmentation

So we need to identify

1.A measure of similarity for the content of the 
objects, from which we derive a metric ;

2.An optimisation methodology for the 
placement of the contours.

3.Identifications require a-priori high-level 
knowledge.
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A simple model

an MRI slice Contours

Here, the similarity measure is simply the grey-level. 
Contours are estimated by a gradient. Pb: the gradient 
may be weak, etc.
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Necessary knowledge

Illustration

Original Final

GDR MSPC – ENS 29/11/2005 – p.3/62

Illustration

Original Final

GDR MSPC – ENS 29/11/2005 – p.3/62

High-level knowledge can be obtained manually or 
automatically : seed placement in this case based on 
anatomical knowledge on lungs.
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Optimisation methods

Based on contours

Contour detection (Marr, Canny)

Active contours (snakes)

Based on regions

Watershed, region growing, some LS 
formulations

Optimisation : level sets, graph cuts
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Soap bubbles
A soap bubble is a minimal surface. Surface 
tension physically maximises the soap 
thickness.
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Content of the talk

We are not going to talk about content 
similarity measures (but we’ll use a 
metric);

We worry about the optimisation of the 
contour placement;

This is so because content similarity is 
problem-dependent (texture signatures, 
etc)
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Optimisation for segmentation

Contour placement can be performed in many 
ways (hundreds of published methods).

Optimisation from semantics to mathematics : 
using a numerical methodology.

Many ways exist to optimise a cost function, 
not all equivalent. 

A suitable cost function is not so obvious. 
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Formulation

A classic formulation is the following : let I be 
an image,       its gradient. We look for the 
contour or surface that minimises 

With s a measure and g a metric, e.g, s=I and 

∇I

∫
g(s)ds

g(s) =
1

1 + ‖∇I‖2
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Image gradient

(a) (b)

Figure 12: A magnetic resonance image of a prostate and its (intensity) gradient. (a) A prostate.
(b) The absolute gradient.

(a) (b)

Figure 13: A magnetic resonance image of a prostate and the radial gradient about its centre. (a)
A prostate. (b) The radial gradient.

Arguments

• image — The input image. Must be of type IM.DOUBLE.

• (cx, cy, . . .) — The coordinate of the point about which the radial gradient is computed.
Extra components are unused.

Example

To compute the radial gradient of a circular level set, let ‘image’ be a 2-D image whose dimensions
we borrow. Type:

levelset <- imlsinitsphere(image, 0, 100, 100)
gradient <- imradgrad(levelset, 100, 100)

The resulting image is approximately unity everywhere except at (100, 100) where it is undefined
and defaults to 0. See Figure 13.
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Ultrasound image 
of a prostate gland

Magnitude of the 
gradient of the image
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Appearance of the metric

An X-ray radiography
(a) (b)

Figure 14: An x-ray image of a lung and the associated metric. (a) The original image. (b) The
metric.

immetrify

VoiR Prototype

metricimage ← immetrify(gradientimage, normalisation = 1, p = 1, epsilon = 0)

Description

Converts a gradient image into a metric image using the equation g = 1
1+(|∇I|/N)p +ε often applied

in geodesic active contours.

Arguments

• gradientimage — The absolute gradient image (non-negative), more generally any image
which is high on object edges. Must be of type IM.DOUBLE.

• normalisation — The soft significance threshold for gradients.

• p — The power to which the gradient is raised. p must be either 1 or 2.

• epsilon — The surface area penalty coefficient.

Example

To create a metric from a greyscale image ‘image’, type:

metric <- immetrify(imabsgrad(imaosblur(image, 0.5)))

See Figure 14 for an example.

imdiffusivity

VoiR Prototype

diffusivitymap ← imdiffusivity(gradientimage, lambda)
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Associated metric

The metric has low values (black) near 
the contours of the image.
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how to optimise?

How to perform the optimisation 

1.Variational methods

2.Graph-based methods

3.Continuous maxium flows
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Variational methods
Based on the study of the first variation

Solved by derivation : NNSC Euler-
Lagrange

L(r) =
∫ b

a
L(x, r(x), rx(x))dx

r̄ = arg min
r

L(r)

δL(r)
δr

=
∂L
∂r
− d

dx

(
∂L
∂rx

)
= 0
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Gradient descent

To find the minimum, follow the path of steepest 
descent.
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variation and descent

The previous expression is a derivative, that 
vanishes at an extremum.

A gradient descent is obtained by considering 
a time variable:

A contour can be represented explicitely 
(Lagrangian method) or implicitely (Eulerian 
method).

δr

δt
=

δL(r)
δr
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Contours actifs géodésiques
With the equation we gave in the beginning, 
the EL/GD formulation is :

To simplify the expression, the contour 
(surface) is implicitely represented by the 
zero-level-set of a function    .

This is the evolution equation of the geodesic 
active contours(GAC).

ϕt = div
(

g
∇ϕ

|∇ϕ|

)
|∇ϕ|

ϕ
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Local minima
Gradient descent generally only optimises locally

Local optimum Global optimum
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Graph-based methods

The initial variational problem can be 
seen in 2D as a minimal path problem.

In 3D (and more), it can be formalized 
as a maxflow problem ;

Max-flow / min-cut can be solved on 
graph representations.
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Example of graphs
28 Literature Review

Figure 2.1: A typical graph encountered in image analysis.

assignment of value P [i] to index i of the sequence. Edges connect vertices at adjacent

indices according to the set of transitions allowed between sequential elements of the

sequence. Figure 2.2 shows an example of a trellis structure. In this example the sequential

elements of the sequence may differ by at most 1, i.e. |P [i]− P [i + 1]| ≤ 1.

2.3.2 Shortest paths

The computation of shortest paths is a fundamental problem in graph theory with numer-

ous efficient solutions. Shortest paths are used in a wide variety of applications including

network analysis, transportation, robotics and image analysis. Within image analysis

they have found application to segmentation [Coh01], stereo matching [Llo86], tracking

and optical flow [Sun02a].

A shortest path is defined as a path of minimum total cost between two vertices in a

graph with associated vertex and edge costs. The structure of the graph and the choice of

vertex and edge costs are defined according to the application, allowing many problems

to be transformed into the computation of a shortest path. Shortest path algorithms

typically rely upon a labelling method [GP88].

Shortest path algorithms may be applied to delineating curvilinear features such as

Typical graph used in image analysis
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Flots maximaux dans les graphes

Let G be a graph with weighted edges

so that : 

The cost of a partition is the sum of the edges that 
cross a partition :

The cut E* is the set of shared edges.

ΓG = {V1, V2, . . .}
⋃

Vi∈ΓG

Vi = V, Vi ∩ Vj = ∅ for i #= j.

C (ΓG) =
∑

e∈E∗

CE (e) .
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Maximum flows

If G is a graph with costs reinterpreted as 
capacities,  

A flow    from the source s  to the sink t has 
the following properties :

1.Flow conservation : the flow entering an 
edge is the same as that exiting that edge;

2.Capacity constraint : 

∀e ∈ E, F (e) ≤ CE(e)

F
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Examples of max flows
Capacity graph:

Two possible solutions:

IN302 - Graphes et algorithmes - TD 5 - Michel Couprie

Éléments de correction

Une propriété de l’algorithme de Ford et Fulkerson

1. Indications : Exécuter “à la main” l’algorithme en repérant les posssibilités alternatives à celles
choisies.
Réponse :

4

3

2

6

3
1

2
4

4

3

3

6

2
2

1
4

2. Indications : Les valeurs du flot ne sont pas forcément entières.
Réponse :

4

3

2.5

6

2.5
1.5

1.5
4

3. Indications : Recenser les opérations effectuées au cours de l’algorithme.
Réponse : Le seules opérations effectuées par l’algorithme de Ford et Fulkerson sont des additions, des
soustractions et des min. Si les données de départ sont entières, les résultats seront donc entiers.

Gala de l’ESIEE

Indications : Pour résoudre notre problème grâce à un algorithme de flot maximum, il faut définir un
réseau de transport, tel que le trouver le flot maximum sur ce réseau soit équivalent à résoudre le problème
d’origine.
Réponse : On considère le réseau suivant :

g1

g2

g3

g4

g5

f1

f2

f3

f4

f5

s p
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Cut
The cut is the set of edges separating the 
partitions ;

The min cut is the cut of minimal cost (sum of 
all the capacities of the cut) ; 

The solution to the problem with one source 
and sink has been known since Ford & 
Fulkerson (1962) ;

The general problem with S sources and T 
sinks is NP-hard.
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Min cut
An edge along which the flow is equal to the 
flow is said to be saturated ;

A max flow in a weighted graph G maximises 
the flow through the network from s to t. 
F&F showed that calculating the maxflow s-t 
is equivalent to computing the mincut s-t.

The mincut s-t is a minimal path in 2D and a 
minimal surface in 3D (in a suitable dual 
graph).
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Minimal cut
Illustration maxflow/mincut

Figure 1: (a) A graph with source s and sink t. Edge

capacities are depicted by their thickness. (b) An s-t

maximum flow. Mincut edges are saturated.

Minsurf–IWI 27/06/2005 – p.45/69

A network for which capacities are illustrated by edge width. 
The saturated edges separate s from t and are of minimal cost.
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Path augmentation

Path augmentation was the first algorithm proposed. It works 
by finding paths from s to t and saturating the flow along.
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Continuous Maximum flows

Discrete maxflows can find L1 minimal 
surfaces efficiently, but are biased by 
the grid. The result can show 
metrication artifacts.

To avoid this, we seek a solution that is 
an L2 minimal surface (a “proper”, 
Euclidean minimal surface)

Contribution: algorithm.
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Surface/flow duality
Iri (1979) and Strang (1982) studied this 
problem in the continuous domain.

1.The graph is replaced by a field

2.The flow becomes a vector 

3.Flow conservation is expressed by

4.Capacity constraints are expressed              , 
with g a scalar field (tensor field 
formulation is possible).

5.Same concept of source and sink.

!F

∇.!F = 0

|!F | ≤ g
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Flow through a surface

Let S be as simple, regular, closed surface, 
with     the normal to the surface at each 
point. We write          the total flow exiting the 
source. If S contains s, then

All the surfaces S limit the flow from above.

Equivalently, the g-weighted area for all 
surfaces S are limited from below by the flow 
exiting the source.

!N
∇.!Fs

∇.!Fs =
∫

S

!F . !Nds ≤
∫

S
gds
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Continuous flows properties

Every surface S is a bottleneck for the source 
flow, which must be less than the capacity, or 
weighted area of S.

The maximum flow exiting s is limited by all 
possible surfaces, which must be less than the 
flow corresponding to the surface with 
minimal weighted area.

Iri showed the existence of a maximal flow 
under very general conditions, that 
corresponds to the saturation of this minimal 
weighted surface.
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Computing the flow
Neither Strang nor Iri (nor others AFAWK) 
proposed a method for computing this 
maximum flow.

We have proposed to compute the flow 
numerically. However in the continuous 
domain, it is not possible to consider 
numerically the set of all paths leading from s 
to t. Therefore simulating F&F or any path 
augmentation algorithm seems impossible.

However, Push-Relabel (Golberg & Tarjan, 
1987) algorithms are interesting to consider. 
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Push-relabel (G&T)
Preflow-push propagation. A pre-flow is a relaxed form of a 
flow F, with the following characteristics : 

1. The flow entering an edge can be greater or equal to the 
exiting flow.

2. An edge with non-zero difference is called active. The 
difference is called excess.

3. The algorithm propagates the excess toward the sink, 
helped by a height function H, which depends on the 
shortest path from the edge to the sink via unsaturated 
edges. 

4. Source and sink have fixed height, with H(t) = 0. The sink 
is never active (it can receive an infinite flow).

The algorithm is purely local in its operations.
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Continuous propagation
In continuous terms, one can assimilate the 
excess to a pressure P. 

To simulate a propagation, one an use an 
elementary fluid model, linking the pressure 
P and the speed F      :

∂P

∂t
= −∇."F

∂ "F

∂t
= −∇P
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Constraint and propagation

By derivation one gets a standard wave 
equation :

To simulate constraints, we introduce the 
field g, such that :

Limit conditions are : s ≡ 1, t ≡ 0 

‖!F‖2 ≤ g

∇2 !F − ∂2 !F

∂t2
= 0
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System properties

As in Push-Relabel, F is no longer 
incompressible: 

The field P represents the excess.

We can show that P is conserved in any 
region that does not contain s or t. 

We can show that the system is dissipative : 
oscillations must vanish and the system 
converges to a steady state.

∇.!F "= 0

36



Conservation of potential
Let A be a sourceless region (neither 
including s nor t).

P is conserved in any such regions.

∂PA

∂t
=

∫

A

∂P

∂t
dA

=−
∫

A
div "FdA

=−
∮

∂A

"F · "N∂Ad (∂A) .

=0



System at convergence
At convergence, temporal derivatives vanish, so 
the system becomes :

The simulated fluid become incompressible. The 
flow lines are aligned with the pressure. P is 
constant wherever F is not saturated. P decreases 
monotonically from s to t.

∇.!F = 0,

38

∇P =
{

0 if‖!F‖2 < g
−λ!F with λ ≥ 0 if‖!F‖2 = g



System at convergence
P is monotonically decreasing because, 
wherever P is defined, 

In an incompressible fluid, flow lines can only 
originate at the source and terminate at the 
sink, therefore P has no local extremum.

We can consider any region A defined by 
thresholding P.

∇P · !F ≤ 0.



At convergence (ii)
At convergence, we can consider any region 
where P ≥ p   >0, (p constant). Due to 
monotonicity, this region contains s, and the 
border of S is saturated because P is non-
zero.

On the border of S, we have:                 

We have found both the maxflow and the 
minimal surface.

∇.!Fs =
∫

S

!F . !Nds =
∫

S
gds
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Back to the soap bubbles
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Analytic solution

42



CMF solution
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Mean error ~ 0.1 pixel.



Illustrations
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Bias toward small regions

Due to the nature of the equation we 
minimize, small regions are favoured.

A solution is to weigh the metric



Issues

Convergence

Complexity

Difficult cases

Implementations

Stability
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Convergence
Reformulate (Chambolle) 

Energy :

Lyapunov :

This term is always negative until oscillation 
dampen.

∂P

∂t
= −∇."F

∂ "F

∂t
= −∇P − ∂P G∗(x, P )

ε(t) =
1
2

∫

Ω
|∂P

∂t
|2 + |divP |2dx

ε′(t) = −
∫

Ω

(
∂2

PP G∗(x, P )
∂P

∂t
,
∂P

∂t

)
dx



Complexity
Difficult to express. Oscillation dampen 
reasonably quickly in a small number of 
passes ~ 

This works out to O(n3/2) in 2D, however 
convergence may not necessarily be achieved 
after dampening.

5×max(nx, ny, nz)



Implementation
Finite differences implemented on a staggered 
grid, explicit in time and space.

P is stored on nodes and F on edges, by 
components. g is enforced after each timestep.

Pi−1,j−1 P P

PPP

P P P

i+1,j−1i,j−1

i−1,j i,j i+1,j

i−1,j+1 i+1,j+1i,j+1

F

F

Fi+1/2,j,xFi−1/2,j,x

i,j−1/2,y

i,j+1/2,y



finite differences scheme
Conservation equation

Driving equation

The magnitude constraint is applied 
immediately following the update of the flow 
field

Pn+1
i,j = Pn

i,j −∆t
(
(Fn

i+ 1
2 ,j,x − Fn

i− 1
2 ,j,x) + (Fn

i,j+ 1
2 ,y − Fn

i,j− 1
2 ,y)

)
,

F ′n+1
i+ 1

2 ,j,x
= Fn

i+ 1
2 ,j,x −∆t(Pn+1

i+1,j − Pn+1
i,j )

F ′n+1
i,j+ 1

2 ,y
= Fn

i,j+ 1
2 ,y −∆t(Pn+1

i,j+1 − Pn+1
i,j ).



Implementation (ii)
Implementation is simple, but making it fast is 
hard(ish) : 

1.Keep a tight inner loop : decompose the 
problem into runlengths (cache reasons) 

2.Parallel implementation is readily feasible.

We have two implementations (C/C++) with 
similar performances. One is completely free 
(contact us).

Performance similar to GC: 
3D image 2563 30s on Core Duo 2GHz



Stability
The scheme is explicit, describes an 
hyperbolic wave equation with constraints.

Ignoring the constraints, stability is obtained 
by a CFL condition:

N is the number of dimension

The constraint does not perturb the condition 
as it does not change the wave velocity.

∆t ≤ 1√
N



Applications

Medical imaging

Materials science
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Lung segmentation

Original Gradient Metric

GAC Graph Cut CMF
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Medical imaging

Iterative 
variationnal 

(GAC)

Discrete Graph 
cut

Continuous
max flow
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Ultrasound prostate 
Segmentation
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Original CMF
CMF with 

tensor 
constraint



Materials
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Electron nanotomography, results in 
anisotropic 3D image acquisition 



Materials
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Original
Without shape

prior
With shape 

prior

3D result



Conclusion
We have proposed a new continuous 
formulation of maxflow/mincut.

The result is an explicit numerical 
scheme that computes a binary 
indicator function, the isolevels of 
which correspond to minimal surfaces.

The result is globally optimal. 
Compared to GCs, metrication errors 
are limited.

Optimality does not solve the problem 
of  segmentation.


