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Recently, equations with very strong diffusivity attracts considerable interests in
various Þelds. For example the gradient ßow of total variations is used for removing
noise from images [13]. It is also used to describe multi-grain phenomena in material
sciences [12]. A typical form is

ut − div( ∇u|∇u|) = 0,(1)

which has a divergence structure. However, there are several interesting problems
which has no divergence structure. A typical example is the crystalline ßow equa-
tions proposed by [2] and [14]. A simplest example is

V = −divξ(n) on Γt(2)

where Γt is a closed simple curve in R2 and V is the normal velocity in the direction
of outward normal n of Γt; ξ is the gradient of γ : R2 → [0,∞) and γ is convex,
piecewise linear and homogeneous of degree one.
If the equation is a gradient system, subdifferential approach [10], [11], [7] or

nonlinear semigroup approach [1] do apply to provide reasonable notion of solutions.
However, such an approach does not apply to provide notion of solutions (consistent
with smooth problems) when the equation is not a gradient system.
To overcome these difficulties the author adjusted the theory of viscosity solutions

for general curvature ßow equation including (2) as a special example when the
diffusivity is strong so that its effect is nonlocal. Based on [3], [4] we in particular
established the level set method in [6]. To show signiÞcance of our results is this
talk we show several applications of the theory [5].
Several other phenomena can be regarded as a result of singular diffusivity. Re-

cently, a new notion of viscosity solution describing shock phenomena has been
introduced by the author under the name of proper solutions [8]. The shock can be



interpreted as a result of strong vertical diffusion [9]. Advantages of the theory over
conventional theory of conservation law is that it applies to the equation of the form

ut − a(u)|∇u| = 0,(3)

which does not have divergence structure. Here a is a given positive function and
r %→ a(r) is increasing. This equation (3) is considered as a crude model of bunchigs
in the theory of crystal growth. In this talk we brießy review the theory developed
in [8], [9].
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