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Introduction

‘There are many natural phenomena in which sharp interfaces form,
persist and propagate. . .

° Interface has energy/tension >
" = will decrease (or increase) in  area in order to lower energy

‘o Idealized models:
surface moves with a curvature dependent normal velocity




Fundamental Example: Curvature Motion

In a variety of applications, one wants to track the motion of a front
that moves with a curvature-dependent speed.

For example, consider a curve, each point of which moves with a speed
equal to 1ts curvature We want to compute the evolutlon of such a

Initial Motion " Later Region (Solid)

Figure 1: A Region Evolving According to Curvature Motion

In higher dimensions, we consider a normal velocity equal to the mean
curvature: “Motion by mean curvature’

»_,ThlS type of motion also causes the most curved parts of a surface to L
~fnove most quickly. ~ fh e i




Introduction

Several methods have been developed to study interface motion:

e Huygens’ principle: v = cn.

e Reaction-diffusion equations: u, = Au — R(u).
(Phase field, Ginzburg-Landau)

N

e Front tracking

e Level set method 7 {o(x.0=0]

e Cellular automata
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o Diffusion-generated motion by mean curvature
(Merriman, Bence, Osher 1992)
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Intuition for Diffusion-Generated Motion

Allow a sét of pomts
to “Diffuse”

Sharp corners ra.pldly
smooth out

IDEA: Diffusion moves the boundary of a set in a curvature-dependent

way. . .




Intuition for Diffusion-Generated Motion

Set \ equal to the characteristic function for the initial region

Apply “diffusion” to y -%tx = Ax

Use local polar coords with orlgm at

the center of curvature: IS s
ox lax 8?x '1'321/

= N

5 rar tor toae
Ao

radial advection radial ‘S for X
speed 1/r= X diffusion S

= Advection-diffusion equation!
= Level set 1/2 moves with speed = !

Radial view of time evolution

—3 " " = At Initially, the level set
gt \Q ¥=1/2 moves exactly
— : | with speed x=1/r
KAt ) ‘




Intuition for Diffusion-Generated Motion

Set \ equal to the characteristic function for the initial region.

Apply “diffusion” to y : Qa% = Ay

Use local polar coords with origin st zop | x=
the center of curvature: -
3}( lax X, X 62x N 1 92y e
& ,.3,. e __r2&62"_ |

A o
radial advection radial o
speed 1/r= x  diffusion "~

= Advection-diffusion equation!
= Level set 1/2 moves with speed = &!

Radial view of time evolution

————reea Initially, the level set
/' x=1/2 moves exactly
=0 N with speed x=1/r
KAt L




Diffusion-Generated Motion by Mean Curvature

The previous intuition can be used to construct an algorithm for
moving an interface by mean curvature (Merriman, Bence, Osher

1992):

1. x is set to the characteristic function for the region”®
- 1 if £ belongs to the initial region
‘ x(7,0) = { 0 otherwise.

2. Diffusion is applied for a time,

‘ Find x(Z, At) using x, = Ax.

i sy Thefuncffon, X,ls“Sh arpened”

[ 1 x( At) > )
~ ] 0 otherwise.

This gives an approximation to the interface after a time, At. To
produce an approximation to the interface over a time, nAt, we carry
out n repetitions of steps 2 and 3.
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Extension to Multiple Junctions

'An extension of the algorithm to multiple regions has also been made.

Start from an initial state over a domain, D:

Initial curve cuts space into N regions.

One step of the algorithm for multiple regions proceeds as follows:

1. X; 1s set to the characteristic function for the ith region:

X1 X2 X3

‘Characteristic functions
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2. Diffusion is applied for a time, At, independently.

X1 X2

Find (2, At) using % = Ax.

3. The regions are “Sharpened”. The “biggest x wins.”

“xl Xs

X1

LE. Set the largest x; equal to 1 and the others equal to 0 on each
point of the domain. |

The final location of the interface may then be found, o g0

e St e

[

Final curves
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Motion by Mean Curvature Algorithm

As outlined, diffusion-generated motion by mean curvature is only a
semi-discrete method. How should we discretize in space?

We could 31mply use a finite difference rnethod but thls lea.ds to several
problems some of whlch we cons;der below R A

e The time step, At, must be large enough so that the motion
of the interface over each step can be resolved by the spatial
discretization. For the case of a finite difference discretization,

- the level set 1 / 2 must move at least one grld point, otherwise the

 front will remain stationary. This produces the restriction that

(speed of motion of the interface) x At >> grid spacing.
kAt > h.

Thus a prohibitively fine grid spacing will be needed if « is small.

11 X X X 11 150 o o

11 X X X g 1 117000

11 xxxSharpcnlll"fOOO

11 X X X 11 l| 000

Initial Interface \ ,/ Final Interface
Z
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‘Motion by Mean Curvature Algorithm

‘Suppose that the above restriction can be satisfied everywhere.

‘o Diffusion-generated motion by mean curvature produces an @ ((At)2)
error in the position of the front at each step.

‘o The sharpening step produces an error in the position of the front
which is about the same size as the mesh spacing.  Thus the
sharpening step produces an O(h) error in the position of the front.

‘To preserve the overall accuracy of the method, b = © ((At)2).
= O ( B ) grid points using a uniform mesh in 2D

= O ( Bt ) operations per step

1If a banded method could be used then a significant speed-up would
occur: O ( B ) operations per step would be needed.

‘This idealized approach is still far too slow for many applications.

14




Fast Discretization (Ruuth (1996))

‘A finite difference discretization of the diffusion-generated algorithm
can be expensive, even for simple 2-dimensional applications. We now
describe a new, spectral method which is much faster than the usual
finite difference approach.

To begin, we require a method to solve the heat equatic)n,
= Ay

repeatedly over intervals of length At. This is easily accomplished
using a Fourier series. . .

Q. x is initially discontinuous. Isn’t a Fourier representation a poor
choice for such functions?

A.. The Fourier representation of x(Z,0) will contain a high frequency
error which arises from truncating the Fourier series. We are only
require y after a time At. After a time At, high frequency error

- -modes have been damped ¢ out Since the problem is linear, the various -

" modes do not interact and thus there is no need to appr(mmate the
high frequency components of \. Thus a Fourier series is an excellent
choice, because far fewer basis functions are required than might be
expected.
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A Fast Discretization

We now must carry out the thresholding step. Using the usual orthog-
onality conditions, it is easy to show that the Fourier coefficients of
the characteristic function after thresholding are

Rt

where |
1
Rt {-’B X (3’ t) 2}

is the approximation to the phase we are following.

Q. How can these integrals be evaluated?

A. It is possible to integrate exactly over rectangular regions. We may
integrate over a non-rectangular region, R , by recursively subdividing
the domain into square subregions.
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‘A Fast Discretization

We now evaluate

Cip = //exp(—27rz'j:1:)exp(—27rz'ky) dA
R

7over‘ thé following:

Y

0 & 1

‘At the finest grid subdivision, triangles are used to approximate the
small subregions.
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- problems with N basm functlons Whlch corresponds to

A Fast Discretization

1. By carrying out refinements 0 i
gradually, nonsmooth features 1 H
and corners are captured. 5 2

2. Evaluating the function, x, and the Fourier coefficients CANNOT
be done using the FFT since the mesh is unequally spaced. We use
the unequally spaced fast Fourier transform method of Beylkin (1995)
to carry out these evaluations efficiently.

This leads to O (N logZ (N ) operations in 2 dimensional, 2-phase

v" B ] e F
| 0 (E_ log (At))

operations.

An idealized finite difference discretization leads to
{1
()
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Comparison to the FD Approach

‘Test Problem: ‘
Find the area lost over
a time ¢ = 0.0125 for a
shrinking kldney-shaped
o 1nterface :

‘Note: Exact result is given
by A = -2 % 02 04 08 o5 )

Results:

At Width of Finest Cells| Error | Ezecution Time
0.003125 2-9 4% 0.45
0.00078125 - 2-1 1% 8's

‘Table 1. New, Spectral Method

0.0001 |2-7| 4% 85 s
0.00002 | 2-9| 3% 10341 s

‘Table 2. Finite Difference Discretization

19




A Two Phase Case: Mean Curvature Motion

t — 0.0000 Z t = 0.0008

A 00020 !2 G b 0.0032 Ea Y

t = 0.0064 t =0.0128




‘Multiple Junctions

Rer. § 0 dX= 0.25E--02 dT= 0.50E-04 Ker, §

20 dX= 0.25£-02 dT= 0.50E-04

7ltor. # 40 dX= 0.25E-02 dT= 0.50E-04 Wer. # 120 dX= 0.25E-02 dT= 0.50E-04

Iter. § 300 dX= 0.25E-02 gT= 0.50E-04 fter. # 600 dX= 0.25E-02 dT= 0.50E-04

"FIGURE 11. Motion of several regions under curvature




Multiple Junctions

t = 0.0000 Z t =0.0025

t =0.0220 t = 0.0260
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Multiple Junctions

t=00000 ¢ t = 0.0036

t = 0.0072

t =0.0144 t =0.0180

23




‘Generalization: Convolution Based Methods

Evolve by % ¢ = Ay

foratime At

Convolve with Gaussian
heat Eqn. kernel

K(x) ~ exp(—x2/ A.t)
YA )= X*K

‘'We may re-write the diffusion-generated motion algorithm as:

{x:yq * K(x)>1/2}

Different Kernel Functions

7 . asymmetric kernels can be

i e e
RN

s used to produce amsotropnc

@ kernels should be simple,
easy to compute with and

produce general motion

laws

‘General Thresholds: A € (0,1)
® 2=0 corresponds to constant motion
Q k—l /2 corresponds to curvature motlo

“for rotatlonally symmetnc kernels

® )=1/2+c\A t corresponds to
curvature plus a constant

@ We can also let A vary according
to the local normal to obtain a variety

of anisotropic motion laws

24




Convolution Based Methods

‘We have described a class of schemes which are computationally effi-
cient and have a great deal of unexplored flexibility. Some interesting

questions include:’

‘o Given a particular kernel, what motion law arises?
(Ishii, Pires and Souganidis 1997)

‘@ How should the kernel and thresholding be selected to derive a

desired motion law?
(Ruuth and Merriman 1998)
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Anisotropic Curvature-Dependent Motion (2D)

In 2D, general anisotropic motions of the form
v, = a(8) + b(0)x

can be derived by selecting a non-symmetric kernel and varying the
threshold accordmg to the norma.l dlrectlon. e

A —
o 4 o

(c) t = 0.02 (d)t=0.03

Figure 2: A test problem at various times, . The normal velocity is given by v, = a(6) + b(6)x where
a(8) = —|sin(8)| — | cos(8)| and b(9) = {5 + 35 sin(26).

Curiously, it is impossible to achieve v, = b(n)x in three dimensions
using a single kernel (Ishii, Pires and Souganidis 1997). This limitation
can be removed by using 2 kernels...
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Anisotropic Mean Curvature Motion: = b(n)s

't = 0.00000

t=0.00375 't =0.00575

K

t = 0.00750 't =0.00950

A normal velocity v, = (1 + /N3 +n +sin(wny )k
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Volume Preserving Mean Curvature Motion

A volume-preserving motion is derived by thresholding according to
the level that encloses the same volume as the original set.

Vo= K~

t = 0.00000

Numerically, this simple method agrees with the nonlinear evolution

model v, = Kk — &.
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Volume Preserving Mean Curvature Motion:

vV, =K—K

— e T
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‘Multi-Volume Preserving Mean Curvature Motion

‘When applied to multiple regions, this algorithm gives a means of
finding the shapes having the least surface area enclosing prescribed
volumes. '

‘A test on the 81mplest case gives the standa,rd double—bubble

~(f RALS §+€ad\; f+a f(

09

‘ ) Udume (/z

To7r

T0.6F

>0.8+
0.4+

- x w3r
L

77’ ; "f C/d[un\ e 1

0.1

) _ 1 J\(A/‘
F /:‘) ,\FJ\ é "l(% % ’0-.2 04 . Y o8 . .Fa .(e‘ a.r\ea
hinimized

A proof that this is the correct minimizer is given by Foisy, Alfaro,

mgs Schlaﬂy 1995

‘Our approach allows for many bubbles. The surface tension between
different bubbles can also be varied to obtain a minimization of the
weighted surface area enclosing prescribed volumes.
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‘Approximation of Multiphase Models

Diffusion-generated motion by mean curvature has direct extension to
the motion of multiple junctions (Merriman, Bence, Osher 1992).

‘This algorithm gives symmetric junctions. Modifications for certain
other junction conditions are given by Masca.renhas 1992 and Merri-
man, Bence and Osher 1994. E | Sl

‘A more general, diffusion-generated approach for the case

has also been developed (Ruuth 97). This method combines the
results from a number of different problems and uses a nonsymmetric
sharpening.
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Approximation of Multiphase Models

7Complicated multiphase flows are easily accommodated using this

approach:
(b) t=0.03

Figure 3: A test problem at various times, t. Here (e1, ez, e3,e4) = (0,4,1,0)

(
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‘Connection to Other Interface Methods

. Phase-Field
- Models -

Convolution

Generated
Motion

Automata Principle
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Connection to Huygens’ Principle

34

Analytic Form Geometric Form
CM Classical Huygens’ Principle
0 O Take K=char. fn. for a small disc
N T "New interface equals
S I | locus of circle centers
{x: y *K>0} placed tangent to the
’IA‘ O * old interface"
N Updated region consists of all points
T where there is no overlap of the
disc with the original region.
CM Convolution Generated
U 0 Motion
R T |Take K=char. fn. for Place disc 1/2 in
v I a small disc - and 1/2 out by area.
Tg' . The updated region is givenby: . Wi W

U T Locus of disc
R xx >l centers gives
E * curvature motion

Note that the overlap of the

old region with the disc is

1/2 by area



‘A Developmental Biology Model

Young (1984) developed a simple automaton for modeling animal coat
patterns which is based on short range activation and long range
inhibition.

Young’s model has a particularly simple convolutional form:

R "% ={x: X*K(x) > 0}

TN\

‘updated ‘char. fn. ‘kernel representing
regionof  for original  the combined effects
colored region of activator and

cells inhibitor.
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‘A Developmental Biology Model

Steady state patterns are efficiently obtained...

Initial State

‘Final State
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Amisotropic Developmental Biology Model

Anisotropy can be .speciﬁed. prémsélj

Initial State Final State

24
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‘Excitable Media

‘Excitable media arise in diverse physical, chemical and biological sys-
tems including models for nerve cells, muscle cells, cardiac function,
developmental biology, chemical reaction and star formation.

‘Automata models for excitable media often require large neighbor-
hoods in order to:

‘e qualitatively model the effects of wavefront curvature

‘@ make the speed of propagation depend on the recovery of
medium

‘o reduce lattice-based anisotropy in the motion

A variety of authors have developed automata for excitable media, including
Gerhardt, Schuster and Tyson 1990-1991
Weimar, Tyson and Watson 1992
Henze and Tyson 1996

" The main idea of these models is to evolve the excited region by
“threshold growth using a threshold level that depends on a second
variable (called the recovery variable). The recovery variable can
be treated using standard numerical PDE methods since it evolves
according to a nonstiff PDE.
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Excitable Media

Unfortunately, non-physical grid-based effects can occur with these
automata. Some specific problems include:

‘o Incorrect curvature effects = incorrect front speeds.
‘e Unwanted anisotropy:.

e Low order accurate representation of the front location (note that
each step produces an order-h error in the front location).

‘e Large neighborhoods lead to prohibitively expensive calculations.

o It is often impractical to determine the continuum limit of the
model.

Our convolution based approach gives a solution to these problems:
‘o They easily accommodate large kernels with no additional expense

‘o They give an accurate representation of the front. This eliminates
_ unwanted anisotropy and. produces. a good a,pproxnndtlon to }ugher
“order effects such as curvature.

e Since a convolution arises in the continuum limit of these automata.
our approach automatically provides an approximation of the con-
tinuum limit of the model.
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Excitable Media: Spiral Wave

= 1.500 t=1875

A spiral wave,

27




‘Excitable Media: Two Armed Spiral

t=0.000 t=0.375

1
0.0} : R R KT o9} L
» N ’ " - N - SRR . " vk % v . RS MWL .-
o e g e e L ol 0.8 ey
%3 07]
0.4 0.8
o5 05
0.4 0.4
03 0.3
02 0.
o1 01
s 2 g o8 [ 1 % 02 [X] [ 8 ]

t=1.500 t=1.875

‘A rotating two-armed spiral.
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Convolution Based Methods: A Summary

‘e Convolution generated motion gives simple
and efficient algorithms for computing
interesting curvature-dependent motions. .

‘e The method has a very natural
extension to the case of junctions.

‘e They provide a natural link
between cellular automata and their
continuum limit.

y
an
o
o
o
a
od
o
o
e
o

‘e Convolution based methods are
reminiscent of phase field models,
but do not introduce an artificial
small length scale.

ug=Au+f(u) /e

JE

‘To get more details on the subject, you are welcome to visit the
Diffusion-Generated Motion by Mean Curvature Home Page:

ww m..fA d‘fu Ca/’bfl‘au%

J\/*ov — 7‘%@ qu <x




Connection to Phase Field PDEs

Consider the phase field PDE:
Ou reaction front

Fri Au — —*u(|u|2 -1)

In the € — 0 limit:
Front moves by mean curvature!

+1

For numerics, grid must resolve
front (Az < €) or front gets “frozen.” {

ALTERNATES: Step of diffusion and Step of u — +1
Diffusion-generated motion directly obtains the ¢ — 0 hmlt
without the small scale. '

Q: Is this connection useful to obtain more general motions?
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Connection to Phase Field PDEs

Consider the complex valued Ginzbﬁrg—Lan(iau éQuaiﬁon:

.Au w 1mporta.n.t_. reaction term
inan €-nbhd - drives u=>u/lul
of the filament

V¥ filament is given by u=0

or by the center of winding of u

In the ¢ — 0 limit: Filament moves in the normal direction W1th a

speed equal to curvature!
As with the diffusion-generated motion of surfaces, the grid must be

resolved (Az < ¢) or the filament gets “frozen.”
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Connection to Phase Field PDEs

Diffusion-generated motion by mean curvature for ﬁlaments a.ltema.tes
a step of diffusion and a step of u — u/|u|.

1. “Initialize:”  x(z) = exp(i6(z)) Any angle function
Set x so that its center that winds around
of winding coincides the filament.

with the filament.
2. “Normalize:” X = X/|x|

3. “Diffuse:” Starting from y, evolve x for
a time At according to x, = V2x.

The zero contour of x gives an approximation to the interface after a
time At

For the filament case:

e Topological mergers are captured with no special a.lgonthmw pro—
cedures.

¢ Diffusion-generated motion directly obtains the ¢ = 0 limit of the
phase field model without the small scale.

o An extension to surfaces of arbitrary odimension is also available
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Filament Motion in Three Dimensions

The curvature motion of two filaments: v = kn
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Filament Motion in Three Dimensions

Large systems of filaments may also be treated.
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Connection to Cellular Automata

Cellular automata have been used to model the formation and dy-
namics of patterns in a variety of chemical, biological and ecological
‘systems.

'An important class of automata is obtained by imagining each neigh-

bor’s contribution to be a simple “vote” for or against a certain out-
come; any number of affirmative votes above a certain threshold will
yield that outcome.

7Example: 0 1
O)111 1 ‘Suppose there are 2 states:
0]0 1 1 and O
0[0]0 an
01010 0
Asumofcell's [2]4]6]6[6]4
ownvoteand 8 248191916
: : 11]13]6]8]916
neighbors is ol1131516l4
| formed. olol112]3]2
Innnne Where this sum is greater than
8 i % { i i or equal to the threshold value
ol1l1 _1_': "_1_ 1] (e.g., 3) the cell is assigned
01010101110 state 1, and state O elsewhere.
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Connection to Cellular Automata

By denoting the state of cell (j, k) at time step n by C]nk, we obtain a
simple analytic representation for the automaton.

7Set Sy equal to the sum of all I'’s in the neighborhood: :H:

J —'IS].’,kISl j_j,ak—k’

and update by thresholding at the level A:
1S, >
0 otherwise

‘More generally, each vote can be assigned some weight to produce
threshold dynamics:

Set S ik equal to the sum of all 1’s in the general neighborhood, N,
Fiieiivn  Sp= X WiuCn

‘where W is a matrix of weights.

‘The update step is carried out by thresholding at the level X:
bl = 1t S, > A
jk 0 otherwise
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Connection to Cellular Automata

In an attempt to reduce grid effects and to obtain a curvature con-
tribution to the motion, several authors have considered refining the
lattice and taking larger and larger neighborhoods.

In the limit as we refine the lattlce and take larger and larger neigh-
borhoods...

N

—- —— —_—

N=0O

the summation step leads to a convolution:

x* K(z) = [a K(z — y)x(y)dy.

Thus in the contlnuum 11m1t threshold growth becomes

Convolutlon Generated Motmn |
Find the updated region Rnew according to

Rncw = {2 5+ K(x) > A}

for some threshold value A and some convolution kernel A
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