The Ergodic Theory of Traffic Jams

LAWRENCE GRAY
Mathematics Department
University of Minnesota
Minneapolis MN 55455
gray@math.umn.edu
http://www.math.umn.edu/~gray/

DAVID GRIFFEATH
Mathematics Department
University of Wisconsin
Madison WI 53706
griffeat@math.wisc.edu
http://psoup.math.wisc.edu
(http://psoup.math.wisc.edu/traffic/)

Traffic mystery:

traffic jams with no visible means of support

Cars are basically interacting particles that try to repel each other. Yet sometimes they form large clumps (traffic jams) that:

- -- Have a distinct spatial location
- -- Are amazingly persistant in time
- -- Are associated with no apparent external cause

Problem: Find a particle-hopping model that captures this phenomenon.

- -- Traffic jams should be precisely defined within context of model.
- -- Model should be fun to play with and exhibit a variety of possible behaviors.
- -- Model should be simple enough so that there is some hope of proving jams exist.

Nagel and Schreckenberg (1992) introduced a model satisfying first two criteria. Their model is slightly complicated, due to particles having velocities.

(time moves downward)

transition type	(x-1)	\boldsymbol{x}	(x+1)	(x+2)	jump probability
accelerating	1	1	0	0	α
braking	0	1	0	1	β
congested	1	1	0	1	γ
driving	0	1	0	0	δ

Cars move one way in a single lane, with no on- or off-ramps, no passing, no collisions. Space and time are discrete, with synchronous updating. Jump probabilities correspond to velocities.

Initial conditions are determined by coin-flips with parameter p.

Basic notions and terminology

Slow-to-start: $\alpha < \delta$ Cruise-control limit: $\delta = 1$ Particle-hole symmetry: $\gamma = \delta$

Ansatz: For each value of ρ , system converges to an equilibrium probability distribution ν_{ρ} .

$$\theta(\rho)$$
 = throughput in equilibrium ν_{ρ}

The "fundamental diagram" is the graph of $\theta(\rho)$

The following terminology applies to the cruise-control case ($\delta = 1$).

The "critical concentration" is denoted by

$$\rho_* = \sup \{ \rho : \theta(\rho) = \rho \}$$

When $\rho \leq \rho_*$, the system enters "free-flow". For such ρ , ν_{ρ} is called a "free-flow state".

These are the equilibria in which all cars are traveling at speed $\delta = 1$.

"Critical free-flow" is denoted by ν_* .

Ergodic (pure or unmixed) equilibria that are not free-flow states are called "jam states". Let

$$\rho^* = \inf \{ \rho : \nu_{\rho} \text{ is a jam state} \}$$

The "critical jam" is denoted by ν^*

The phenomenon of interest occurs when ν_{ρ} is not ergodic, and instead, consists of a mixture of a free-flow state and a jam state. This will occur if $\rho_* < \rho < \rho^*$. Presumably in this case,

$$\nu_{\rho} \quad c\nu_* + \mathbf{1} \quad c)\nu^*$$
 where $c \quad (\rho^* \quad \rho \ / (\rho^* \quad \rho_*$

The main problem is to prove that $\rho_* < \rho^*$

What is known?

If $\alpha = \beta = \gamma = \delta = q$, we have the "Synchronous totally asymmetric exclusion process" (STASEP). This is not slow-to-start. For the STASEP, it is known that

$$heta(
ho) = rac{1-\sqrt{1-4q
ho(1-
ho)}}{2} \; ext{ for all } q ext{ and }
ho.$$

The remaining results apply to cruise-control.

If $\beta = 1$, we can prove that

$$\rho_* = \frac{\alpha}{1+2\alpha-\gamma}$$

and

$$\theta(\rho) = \frac{(1-\rho)\alpha}{1+\alpha-\alpha}$$
 for $\rho > \rho_*$.

If $\beta = 0$, we can prove that $\rho_* = \frac{1}{3}$ and

$$\theta(\rho) = 1 - 2\rho$$
 for $\frac{1}{3} \le \rho \le \frac{1}{2}$.

If $\alpha = 0$, it is trivial to see that $\rho_* = \rho^* = 0$.

If $\alpha = 1$, we can prove that $\rho_* = \frac{1}{3}$.

$$\alpha = .2$$
 (slow-to-start),
 $\beta = \gamma = .5$ (moderate tailgaiting),
 $\delta = 1$ (cruise-control),
18% cars (light traffic)

Traffic jams in initial state dissolve relatively quickly. This is slightly below the critical concentration.

$$lpha = .2$$
 (slow-to-start),
 $eta = \gamma = .5$ (moderate tailgaiting),
 $\delta = 1$ (cruise-control),
82% cars (heavy traffic)

Traffic congeals into one large jam. Note transient short stretches of free-flow, typical of many jam states.

$$\alpha = .2$$
 (slow-to-start),
 $\beta = \gamma = .5$ (moderate tailgaiting),
 $\delta = 1$ (cruise-control),
50% cars (moderate traffic)

Minimal traffic jam state covers a portion of space, surrounded by free-flow. Intervals of free-flow inside jam are typical of minimal jam state

 $\alpha = \beta = \gamma = \delta = .9$ (discrete-time version of asymmetric exclusion), 18% cars (light traffic)

 $\alpha = \beta = \gamma = \delta = .9$ (discrete-time version of asymmetric exclusion), 50% cars (moderate traffic)

Note obvious lack of clustering. This model is monotone (cars repel each other) and hence does not have the slow-to-start feature.

 α γ 1 slow-to-start), β 5 moderate tailgaiting), δ 1 cruise-control). 34% cars (moderate traffic)

When α is less than β the jams have a tendency to be fairly solid.

$$\alpha = \gamma = .6$$
 (moderate acceleration),
 $\beta = .5$ (moderate tailgaiting),
 $\delta = 1$ (cruise-control),
34% cars (moderate traffic)

With $\alpha > \beta$, jam is not solid and contains relatively large intervals of free-flow.

 $\alpha = \beta = .9, \ \gamma = \delta = 1$ (close to asymmetric exclusion), 34% cars (moderate traffic)

This model is just barely slow-to-start, yet clustering is still quite evident just above the critical concentration. Throughput inside jam state is higher than in free-flow, as evidenced by

the forward-moving jam.

A strange, very + n J state

d B 85 8- 8

S 335

 $\alpha = 01$ very ow to tart 99 riou ta ga ting $\gamma = \delta$ 1 (symmetric cru e contro) 50% cars (moderate to heavy traffic)

A pure jame tate with an interesting tructure.

The particle hole ymmetry nice yillustred

$$\alpha = .11, \ \beta = .05, \ \gamma = \delta = .9$$

25% cars (moderate traffic)

Possible Type-3 clustering. This is not the cruise-control case, so the free-flow state is nontrivial. Note nucleation and quick disappearance of small jam in the middle of the free-flow. Simulations of systems with up to 20,000 lattice sites, running for a day or two, show complete clustering.

he part that 5x < 5*