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Problem Statement

* Given sparse input data, generate
— Regions, curves, junctionsin 2-D
— Volumes, surfaces, curves, junctionsin 3-D
— N-k varietiesin N-D

» Without models

* In the presence of outlier noise

| ssues

» Representation: need to express
— Geometric entities (points, curves, surfaces,...)
— Handle arbitrary topology
— Uncertainty
— Constraints (continuity, discontinuities)
» Computational model:
— Explicit vs. implicit optimization
— Initial conditions, convergence, ...




Constraints

Matter is cohesive

!

Smoothness
But not everywhere!

Examples

How can we impI ement it? 2-D curves 2-D regions 3-D surfaces
Approaches Approaches
¢ Regularization
— ill-posed problem cast into a scalar, functional * Clustering
optimization
— iterative

— issues: choice of optimization functional, initialization,

convergence...

« Consistent labeling
— either a smooth feature, discontinuity, or outlier

— relaxation (discrete, continuous, stochastic)
— iterative

— formation of compact groups
— issue: initialization
* Robust methods
— parametric model fitting from noisy data set
— need to specify what we look for
— iterative
* Artificial neural networks
— scaars only (Grossherg-Mingolla)




Computational Approach

Grouping/Matching
Optimization

Constraints/Evaluation Criteria

Tensor Voting
 Representation: 2nd order symmetric T ensor

— shape: orientation certainty
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— gize: feature saliency
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Tensor Voting

 Congtraint Representation: Voting fields
— tensor fields
— encode smoothness criteria

» Communication: Voting
— norviterative
—no initialization

Our approach in a nutshell

» Eachinput site propagatesitsinformation in
aneighborhood

» Each site collects the information cast there

 Salient features correspond to local extrema




Properties of Tensor Voting Overview

o Introduction atriaiies
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Efficient

—O(2) for parallel computation

2-D Tensor Voting

* Representation: 2-D Tensor

» Congtraints: 2-D Voting fields

» Data communication: Voting




2-D Tensor Decomposition & Interpretation

* ° and — are extreme cases of atensor * in2-D % is3numbers! .. | mins O
* | ... represents orientation uncertainty
 Conversely, any tensor can be expressed as
% S o~ . O o (I o | min) rEpresents orientation saliency

Fundamental Stick Voting Field

Design of Voting Field




2-D Ball Field

2D Voting Fields

Each input site propagates its infor mation in a neighbor hood
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Vote Collection

Each site collects the information cast there
By tensor addition :

Vote Interpretation

Sali_ent features correspond to local extrema
At each site
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Feature Extraction 2-D Feature Inference

* Curves are loca maxima of Cmap

* Junctions are local maxima of Jmap

» performed by alocal marching process




2-D Feature Inference
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2-D Region Inference

« vote with ball voting field
* collect vector sum to infer polarity

RVaN

2-D Region Inference




2-D Region Inference

* Produces Boundariness Map
* Local extrema are boundary elements

 Regular (2" order tensor )voting generates
boundary curve and junctions.

Results

input points region boundariness curve and junctions
Results Results
Eo-

input points region boundariness curve




2-D system demo

3-D Tensor Voting

* Representation: 3-D Tensor
» Congtraints: 3-D Voting fields

» Data communication: Voting

3-D Tensor

Input may consist of
o — s

point curvel surfel
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3-D Tensor = Ellipsoid

SMOOTH SURFACE £

+ POINT JUNCTION

— ELLIPSOID
(TENSOR)

L
+  CURVE JUNCTION 5
@

Decomposition

3 eigenvaues

(1 el el i)

3 eigenvectors
(Vmax Vi Vimin)

Interpretation
Saliency Direction
Surface I max = | mid Vimax = noOrmal
Curve I i = 1 min V.in = tangent
Junction I in arbitrary

3-D Voting Fields

Derived from the Fundamental 2-D Stick Field

R Stick kernel é
Plate kernel o
VED
N Ball kernel
P
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3-D Stick Voting Field

3-D Plate Voting Field

max ~ ' mid
l mid ~ l min

3-D Ball Voting Field

* Isotropic tensor field
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Féalure Extraction : . -

v v v
junction curve surface
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Elliptic point  Saddle point

Scadle

3-D System

3-D Feature Inference
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noisy input

Results

two views of output surface

noisy input

two views of output surface

Introduction

Salient feature inference

Applications

Perspectives

Overview

issues
difficulties

dental, medical
Ishape from shading
shape from stereo
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Shock Wave Extraction

input velocity field

[Hung and Bunning, 84]

Vortex Extraction

vortex gloreas )
maxim; ocit
stack spatio-temporal vortex slices (‘ I\»V )

\E kS
—_
vorticity lines
T~ spatial (tl'a' ectory)

[Wereley and Lueptow, 98]

Terrain Visualization

digital terrain map

[NOAA National Geophysical
Data Center]

crestline

Dental Model Inference

noisy 3-D dental data

grooves,
preparation line

=

surface
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Femur reconstruction

* Reconstructing the proximal bone of lower
limb

MRI/CT Segmentation
(with C.-K. Tang)
Intensity thresholding
Vote for bounding surfaces
Multiple scales
* Votefor surfaces

Data Sets

* Thorax
12 CT dlices
(courtesy of Washington Health Science Ctr)

* Brain
McGill Brainweb

Thorax

w e e
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CSF Boundary

Gray Matter Boundary

White Matter Boundary
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Cortex Boundary

Inner Cortex Surface

Outer Cortex Surface
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Low-level vision

« Shape from shading

¢ Stereo

* Motion

Renault Pair

Results
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Results

Flower Garden Sequence

Layered Segmentation

of the

Flower Garden Sequence

Flower Garden Sequence Layers

Overview

issues

Introduction Y ificuties

Salient feature inference

dental, medical
Ishape from shading
shape from stereo

Applications

Perspectives
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Conclusion

Unified framework
Applicable to many problems
Non-iterative optimization
Promising results

Issues ...

Perspectives

Stronger mathematical validation
1% and 2" order Voting Integration
Multiple scales Integration

N-D extensions
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