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Disclaimers

+ This is a retrospective
— | have not worked actively on this topic for some time
— | suspect that this work is not widely known
— | suspect the method has some general applicability

- It is a personal view, describing things I’'ve been associated with
— Itis NOT a balanced history of implicit PIC

- Implicit multiscale PIC works, but unanswered questions remain;
among them:

— How to achieve efficiency on problems that are not “embarassingly
multiscale” (large “macro” regions, small “micro” regions)

— Relationship of implicit multiscale PIC to other methods

Thanks to my collaborators on direct-implicit and multiscale work: Bruce
Langdon, Bruce Cohen, Scott Parker, Ned Birdsall, Scott Ray
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1. Direct
Implicit
PIC

Implicit PIC is motivated by desire for large At
(and large Ax)

- Kinetic effects are important to many plasma phenomena, even those
associated with low frequencies

In such cases, would like to use a large At; but explicit movers such as
leapfrog are unstable for large steps, e.g., w,At > 2-ish

- Routes to large At

— Eliminate high frequency modes from governing equations, e.g., fluid
models, quasineutral models

— Capitalize on separation of scales - projection methods, etc.

— Use implicit advance for stability with respect to under-resolved
physics that is “unimportant,” e.g., in localized regions of high density

Usually want “low-pass filter” to damp away the under-resolved
degrees of freedom

Damping is possible in explicit schemes, too, but does not increase
allowable At



Direct-implicit algorithm is conceptually very simple*

A general difference scheme can be written as:
Tptl = Tnil + J E,L+1Af2 = Tpni1 + 0
Pn+1 — pn-{-l({ L n-}—l}) + ()/)({()T})

where the correction OX is relative to the free-streaming “tilde” position.
From the continuity equation:

op(x) = =V - [ppi1(x)dx(z)] = =V - [x() E,p1(2)]

where

y(z) = 3 /)n+1( AT = e (@b
The field equation is thus:
Vs E-n+1('7:) — /)n+1< ) — /)IH—I(I) = V'3 [X(:II)E.,L+1(:IJ)]

* A. Friedman, A. B. Langdon, and B. |. Cohen, “A Direct Method for Implicit Particle-in-Cell
Simulation,” Comments on Plasma Physics and Controlled Fusion 6, 225 (1981).



This implementation of implicit “d1” advance uses a “final
push” to x followed by a “pre-push” to an approximate x__,

It uses integer time levels, allowing changes of At “between steps”
“Final push”:

(1) T=mxp 1+ At v,_1

(2) a=lg/m)E:xL) (interpolation of field from mesh)
(3) fin1 = 3(6 + Gn_2)

(4) vy, =vp_1+ At(Gn_1+a)/2

(5) z, =%+ (At?*/2)a

“Pre-push” to next time level:

(6) T =x,+ At v,

(7) Using this new Z, compute p and y for the field solver

Note that this new p and x are at time level n+1;
they allow us to solve for E, ., knowing only the {X}




“Conventional” implicit PIC must obey a At constraint
if a short scale length anywhere is to be resolved

- The need to resolve field variations (scale length A) couples At and Ax:
Along orbit: Vv At/A<c¢, (1)
On grid: AX |\ < &, (2)

- In a sheath region, the relevant A is the electron Debye length, Ay,

Using (1) with the characteristic velocity V = Vypema6 » @nd noting that
Mpe = Vrhermale / @pe » the global constraint is wp At < ¢,

- In such cases, implicit PIC offers no timestep advantage over
conventional explicit PIC



Limitations of “conventional” implicit PIC simulation

- There is a narrow “valley of goodness” (with small absolute energy error) in
parameter space that well-behaved implicit PIC simulations should occupy*

AX/ N

/
VA w. At

_— pe
The optimum lies along v, At/Ax ~ 0.3 +- 0.1

- However, at large At the “valley” results from a balance between spurious

heating and imposed damping; coherent structures may be replaced by
random motions

- This motivates schemes with “tunable” damping - discussed next

- It also motivates use of independent particle timesteps - discussed later
*B. I. Cohen, A. B. Langdon, and A. Friedman, J. Comp. Phys. 46, 15 (1982)



2. “Tunably”
damped
methods

Adjustable implicit particle advance is tunable
between undamped and “d1” limits*

The algorithm is written here in a form that displays the time-centering:

Un+1 = Un T At [an+1 + An]/z
Tpi1 = Tn + AL [vp, + (AL/2)an11]
where:

A, =(0/2)a,1+ (1 —-6/2)a,_; (temporary qty’s)
an-1 = (1—0/2)a, + (0/2)a,—2 (running sums)

The “blend” is adjustable between “d1” (6 = 1)

and undamped “c0” (6 = 0) limits

*A. Friedman, J. Comp. Phys. 90, 292 (1990).



“Dispersion” of tunably-damped implicit mover is attractive

L]

At small timestep:
wyJwo =1 — WAL [1/(4—260) —1/24] + - - -
v/we = —0/2(2 — 02w ALd + - -

0* 10" 10° 100 10" 10’ .
OL 1 oo (w,at)



Tunably-damped mover offers flexibility

- By adjusting 6 we can move the “valley of goodness” around in parameter

space; this in itself has utility

- We'd like to actually widen the valley, perhaps by:

— Using a different 06 for each particle, depending upon its location in
phase space

— Using a different 6 for each component of the motion, e.g., L, ||

- To do this in a long simulation, must vary 6 with time, for each particle.

This can be done while preserving second-order accuracy.

- Explicit tunably-damped particle advances also exist

— Derive by extrapolating E forward along the trajectory by one timestep:
En+1 = 2En - En-1

— Simpler than implicit, may have utility, but | don’t know of any examples



Damped implicit EM field advances have been developed

« As suggested in [A. Friedman, J. Comp. Phys. 90, 292 (1990)], damping can be
applied to time-domain electromagnetics by folding a tuning parameter into the
method of [Hewett & Langdon, JCP 72, 121 (1987)]:

En+1 — En = cAtV X Bn+1/2 — 47TAtJn+1/2

At .
_CTV X [En+1 g An—l]

Bn+1/2 — Bn—1/2

where:

A, 1=(0/2)E,+(1—-6/2)E,_» (temporary qty’s)
E,1=01-0/2)E,+ (/2)E,_,

« This method is used in the LSP code.

(running sums)

« Another proposed method [Langdon and Barnes, in Multiple Time Scales J. U.
Brackbill and B. I. Cohen, Eds., Academic,1985, p. 335] blends d1 and leapfrog

They suggest setting the d1 fraction nonzero only where cells are small, to enable
violating the light-wave Courant condition locally

« | do not know if this method has been tested.



An explicit EM method has proven useful for noise reduction
« From [A. Friedman, J. Comp. Phys. 90, 292 (1990)] :
En+1=E,1+CAIVXBH+1/2_4TCAZVJ”_'_I/z; : (343)

0 1 L3 g
sz+3/2=Bn+1/2—CAtVX’:(1 +Z) En+1 _EEn—i—(E—Z) Enl:la (34b)

where

= 0 7
Erz—1:(1—§>En+§En—2‘ (35)

- In 1D with central differencing, a dispersion relation was obtained.
Define Q = (cAt/Ax)sin(kAx/2). Then, for small timestep, the damping is:

vy At~ —80/(2 —0)* 2% and so y o (k 4x)*.

- The method has attractive properties; see
[Greenwood, et al., JCP 201, 665 (2004)]



Condor simulation of ATA injector (from 1990)*

- S. T. Brandon & J. K. Boyd studied how timing errors in the EM pulses that create
the diode voltage affect the electron beam properties

« Here, the simulated history of the beam current vs. time at a downstream plane is
corrupted by noisy fields that are generated by fluctuations in the particle injection
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* A. Friedman, J. J. Ambrosiano, J. K. Boyd, S. T. Brandon, D. E. Nielson, Jr., and P. W. Rambo, “Damped
Time Advance Methods for Particles and EM Fields,” Proc. US-Japan Workshop on Advanced Computer
Techniques Applied to Plasmas and Fusion, Los Angeles, Sept. 26-8, 1990; LLNL Report UCRL-JC-106050



3. Implicit
Multiscale

PIC

Want to overcome limitations of
“conventional” implicit PIC

Advance each particle using a timestep that resolves the local field
variations (assumed to be at scale of the grid spacing)

Implicitness to:
— Afford stability with At >t .., and Ax > A

in selected regions of phase space where that physics is deemed
unimportant

... requires judgment on part of user, and/or smart controls
— afford a time-centered, second-order-accurate scheme

Debye



The scheme builds upon direct-implicit PIC

v The field equation solved at every step is:

V-(1+x)V¢ = p, with x(x) = 3w2At®

» By this method, the deposition of charge occurs
implicitly, one step earlier than in an explicit code.

v We use this to let an infrequently-processed block
(with associated timestep size At = jdt) deposit its
information j time levels ahead of the current one.

 This information is then interpolated backward in time
to yield the data needed to produce the field a
single time level ahead.

. As particles move about, it is necessary to change
their At's (move them from block to block), in order
to preserve the accuracy of their orbits and the
deposited charge density.



Timestep sizes are all multiples of some smallest
(11 — u L] n -
micro” step size; field-solve is done every micro-step

Particles are kept sorted into blocks. For every block
k, there is an associated At,; the large timestep used
for particles in large cells should help suppress the
finite-grid instability. The electron blocks might be:

Block el: push every step
Block e2: push on even-numbered steps

Block e3: push on odd-numbered steps
Block e4: push if (step number mod 4)
Block eS: push if (step number mod 4)
Block eb: push if (step number mod 4)
Block e7: push if (step number mod 4)

"
whN— o



A timeline shows the procedure for both active and

inactive blocks
» Dots with a back-arrow denote interpolation
in time of p and Y.

TIME LEVEL
3 4 5 6 7 8§ 9 10 1l
o e\ Tox\
3 / X,V \ [D,X @\
7/ X,V N DX e, N

The other blocks were advanced on earlier steps, and
we need only interpolate their contributions to px
back to tl 8 before the field-solve:

3 4 5 6 7 § 9 10 Il
2 / N/ pX \
4 N/ X\
5 \/ BX .\

6 NS e N\



To change step size, must generate new lag-averaged fields

For a particle that has moved to a point (x,,v,) where T = Af(x ,v,) < At/r,
set a,_1 =>(a+a,_1)/2 ,and set “new block” flag.

For particles that have moved to a point (x,,v,) where t = At(x,v,) > r Af,
set a,,_1 = dg|q > and set “new block” flag.

We have used either r=v2 or r = 2; the latter offers useful hysteresis.



Our first tests* established method as a useful
approach to “subcycling”

In a series of runs, free expansion of a plasma slab was studied
no subcycling ions advanced every 8th step
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*A. Friedman, S. E. Parker, S. L. Ray, and C. K. Birdsall, “Multi-Scale Particle-in-Cell
Plasma Simulation,” J. Comp. Phys. 96, 54 (1991).



Our later work* examined a sheath near a “floating” wall
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*S. E. Parker, A. Friedman, S. L. Ray, and C. K. Birdsall, “Bounded Multi-Scale Plasma Simulation:
Application to Sheath Problems,” J. Comp. Phys. 107, 388 (1993).



Timestep size control is an “art” as much as a “science”

« Seek to control truncation error

— Static control associates ab initio a step size T with each location in
phase space

— Dynamic control sets T based on evolving gradients, etc.

- In the sheath application, particle travel through the sheath (0,E), rather
than the time-dependent variation of E, is most limiting

— Would like to limit |kvAt| < g,, where k ~ 6 E/E . However,

if E and o E are fluctuating about zero (as is often the case),

then where E ~ 0 there may be spuriously large values of k
— It’s somewhat easier to limit w2 Af> = (g/m) |9, E|Af* < &,
by computing|o,E | on the grid

— For our sheath work we used static control

trap



Particle “promotion” to smaller Dt and “demotion” to
larger Dt must be handled carefully

- Look ahead by CvAt, where C is a constant, and see if particle will enter a spatial
region wherein w? A* < ¢, . This produces lines in phase space with slope that

are the boundaries between Ar groups.
« Choose C > 2 so that a particle will be promoted to smaller Ar soon enough to
“keep up” with the constraint; can’t allow more than a halving of Az in a single step.

« When “demoting” particles to larger At at a timestep boundary, an empty “wedge” in
phase space is created; avoid by delaying demotion of half the particles by a step.

2| immediate demotion o 2| delayed demotion

0 20 40 _ 60 80 100 o 20 40 , 60 80 100



Application to sheath showed effectiveness of method

Potential vs. x att =100 (W, = 1)

0 ——— T —
Multi A f— ) vs.xatt=100 -
. group, ‘ 1 [
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- ratio L |
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Another series of runs examined propagation of an ion acoustic shock
front toward a conducting absorbing plate; see paper by Parker, et al.



4. Current Simulations of secondary electron emission (SEE)
related effects in a plasma slab in crossed electric and
work magnetic fields

[Sydorenko, Smolyakov, 46" APS DPP, Savannah GA, 2004, NM2B.008]

Hall thruster, cylindrical geometry:

S|y

1D3V PIC simulations, plane geometry,
approximation of accelerating region of

a Hall thruster:
dielectric

, B

X X
plasma
y 2z E

<« [ —>

SEE

dielectric

Motivation:

Electron temperature in the accelerating
region of a Hall thruster (40 eV) is higher
than the temperature of charge saturation
of SEE in Maxwellian plasma (17 eV).
[Staack, Raitses, Fisch, Appl. Phys. Lett. 84,
3028 (2004).]

Objective:

The investigation of modification of
electron velocity distribution function by
SEE effects.

Simulation requirements:

Both the sheath and the bulk plasma must
be resolved.

PIC code:

Electrostatic implicit multi-scale with non-
uniform grid constant in time. [Friedman,
Parker, Ray, Birdsall, J. Comput. Phys. 96, 54
(1991).] The external fields B, and E, are
assumed constant.




Simulations of SEE effects in a plasma slab ...
Benchmarking of the multi-scale code

The code was applied to simulations of the region between the Maxwellian plasma
source (x=0) and the wall with SEE (x=L). No collisions, zero external fields.

Such a problem was considered by Schwager [Phys. Fluids B 5, 631 (1993)]

-0.02

-0.00
06— - 0.02

Snapshots of profile of potential.

The insert figure zooms into the
potential dip near the emitting wall.

| » Blue arrows — Schwager’s data.

- Black curves — uniform grid,
Ax=4,,/32,At= 1/(4a)pe)
« Red curves — nonuniform grid,
Ax . =A,, /32,Ax_ [Ax_. =16;

Aty = 1/(1280), 1, /AL, = 64

The results of the single-scale and multi-scale simulations are close to each other

and reproduce the results of Schwager.

The multi-scale simulation is 8 times faster than the single scale simulation.




Discrete Event Simulation is an alternative approach

« DES PIC has similar goals to Implicit Multi-Scale PIC but differs fundamentally
— Event-driven, not time-driven
— Particle timesteps fully independent, asynchronous
— Not (necessarily) implicit

- Builds on established discrete-event methodology

* Incremental field solution may be a challenge

« Successfully applied to spacecraft charging in 1D spherical geometry*:

Time-driven Simulation Event-driven Simulation
107 ¢a) R )
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0-3[(c) 0
\ L ; L
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1 10 100 1000 5000 1 10 100 1000 5000
log {shell #) log (shell #)

*H. Karimabadi, J. Driscoll, Y. A. Omelchenko, and N. Omidi,to be publ. in JCP



Self-consistent e-i simulation of ion beams requires
technique to bridge timescales*

* Need to follow electrons through strongly magnetized and unmagnetized
regions = need to deal with electron cyclotron timescale, ~ 101" sec.
 lon timescales 10'°to > 102 sec.

- Parker & Birdsall (JCP '91) showed that standard “Boris” mover at large
w. At produces correct ExB and magnetic drifts, but ...

— anomalously large “gyro” radius (~ p w At) [problematic for us]
— anomalously small “gyro” frequency [OK for us]

« Our solution: interpolation between Boris mover and
drift kinetics (motion along B, plus drifts).

dv dv
Vipew = Voia + At (—) + (1 — ) (—)
dt Lorentz dt uV B

Verp =b(b-v)+av, +(1—a)vy

*R. H. Cohen, A. Friedman, M. Kireeff Covo, S. M. Lund, A. W. Molvik, F. M. Bieniosek, P. A. Seidl,
J.—L. Vay, P. Stoltz and S. Veitzer, “Simulating Electron Clouds in Heavy-lon Accelerators,” to be
published in Phys. Plasmas.
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Interpolated mover enables bridging over electron
cyclotron timescale

« The particular choice: a=1/[1+(w At/2)?]"2 gives

— physically correct “gyro” radius at large w At
— correct drift velocity and parallel dynamics

* Interpolated mover subjected to a number of tests and does well. e.g.:
simulation of distribution of electrons in last magnetic quad of HCX:
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Solution of Vlasov equation on a grid in phase space offers
low noise, large dynamic range for beam halo studies

4D Vlasov testbed
(with constant
focusing) showed
structure of the halo
in a density-
mismatched beam
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New ideas: moving grid to model time-dependent applied field,
AMR-Vlasov to resolve fine structures

moving phase-space grid,
based on non-split
semi-Lagrangian advance
[E. Sonnendrucker,

F. Filbet, A. Friedman,

E. Oudet, J.-L. Vay, CPC,
2004]

<=

=S

adaptive mesh [N. Besse,

F. Filbet, M. Gutnic, I. Paun,

E. Sonnendrucker, in Numerical

Mathematics and Advanced . F v .« . . |

Applications, ENUMATH 2001, 6 © v o w o =

F. Brezzi, A. Buffa, S. Corsaro, .
A. Murli (Eds), (Springer, 2003).]
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IMSPIC works, but unanswered questions remain

Among them:

— How to achieve efficiency on problems that are not
“embarassingly multiscale” (large “macro” regions,
small “micro” regions)

— Relationship of implicit multiscale PIC to other methods

These slides are available at:
http://hifweb.lbl.gov/public/slides/Friedman-IPAMO05.pdf







Implicit “d1” advance is simple and popular

This version uses “integer time levels,” allowing changes of At “between steps”

Unt1 = Up + AL [(3/2)an+1 + (1/2)an-1]/2
Tpi1 = Ty + Al v, + (AL/2)ap.1]
where:

an-1 = (1/2)an + (1/2)a,—2 (running sums)

“Dispersion” at small timestep is:
wrfwg =1 —11/24 WSAL* + - -
v/wy = —1/2 wiAt? + - - -



An analysis of the d1 mover in a “fixed” harmonic well
suggests stability for any timestep size

1 9p—iwAt _ 1
[(2/woAt) sin(wAt/2)]? o—ZiwAt

with small timestep limits:
wrfwg =1 —11/24 wSAL* + - -
v/wy = —1/2 wgAt® + - - -

 This expression, with stability for any At, obtains when the future field is
interpolated at the true future positions

- However, it is usual to interpolate at the “~” positions; in that case the exact
relation* replaces: (wyAt)? = (WpAL)? = (wAt)?/ [1 - (wyAL)2/2]

and orbits are unstable in a fixed well for (wyAt)? > 2.4

- Electrostatic simulations with such codes are observed to be stable!

This is a consequence of the implicit fieldsolver’s reducing the restoring
acceleration from (-w,x) to [-w,2x / (14x)], where x = w*At*/2

*A. Friedman, J. Comp. Phys. 90, 292 (1990)



Timestep limitations of “conventional” implicit PIC
simulation

e A transit-time limitation: kv, At < 1.
Necessary for accuracy in a direct-implicit code.
Necessary for stability in a moment-implicit code (?).

e A need to resolve trapping oscillations:
Evaluation of &x at X instead of at x,,, leads to

errors ~6x°VE. The relative error is (wmpAt)z, which
must be small for the linearization to be valid; here
Wirap ® VIVal.  Numerical instability can result for
many implementations if this condition is violated.

e The above condition can be rewritten as:

(kv,At)’qe/T < 1, so that if kv,At is < 1 there
i1s the constraint: q¢ < T.

e In a grossly non-neutral region where Prot = Py

the restriction on (wy,At)° = (W, At)% /p.
implies that w At must be less than unity.



Explicit tunably-damped particle advances also exist

- They are obtained by extrapolating the electric component of the
acceleration forward along the trajectory by one timestep: a,,, = 2a, - a,,

« At 6 =0 the explicit scheme is just leapfrog
- Stability limits are slightly more severe than leapfrog when 6 >0

- Damping at small At is identical to that of implicit scheme; real frequency
shift is different:

wrfwo =1 —wiA? [0/4(2 — 0) —1/24] + - - -
vwe = —0/[2(2 — 0)?|wSAt® + - -

n+1

- These schemes are simpler than implicit and may have utility ...
... but I don’t recall any examples



An explicit EM method has proven useful for noise reduction

« From [A. Friedman, J. Comp. Phys. 90, 292 (1990)] :

E,,1=E,+cd4tVxB, ,—4n 4T, 1; . (34a)
0 1 (RO
]3n+3/2:13n—f—1/2_cAZVX 1+Z En+1__2-En+ 5__4— En—l > (34b)
where
_ 0 [
E ={1—<)E +=-E, _,. 35
n—1 ( 2) n+2 n—2 ( )

On a one-dimensional spatial lattice with central differencing, a dispersion relation
for a mode with spatial wavenumber k can be obtained. Defining Q=
(c At/dx) sin(k Ax/2), one finds

g flomdEs ey _ZQSinz((DAI/Z)
sin (——2 >—.Q [1 re—di_g | (36)

For small w 4t¢, the damping is y At~ —80/(2 —0)*> 2%, and so y oc (k 4x)*

- The method has attractive properties; see [Greenwood, et al., JCP 201, 665 (2004)]



The operations carried out at “timestep 7” are:

» Let us abbreviate "time-level” by "tl"; the code:

Blocks 1: Advances x,v from tl 6 to tl 7;
computes contribution to p,x at tl 8.

Blocks 3: Advances x,v from tl 5 to tl 7;
computes contribution to p,x at tl 9.

Blocks 7: Advances x,v from tl 3 to tl 7;
computes contribution to p,x at tl I1.

» After the active particles have been pushed to tl
7 (and before their p and X contributions have been
accumulated), they are moved, if their (x,v) so
dictate, to new blocks. Redistribution is always
into a block which is active.

For example, if at the end of the push phase of
timestep 7 a particle that was in block el now is in
a region where it should be pushed only every other
step (or less often), it's moved into block e3 so
that its next push will occur on timestep 9.

Then the "pre-push” to tl 8 (or beyond) is performed,
p and ¥ interpolated to tl 8 (for those blocks pre-
pushed beyond 8), and the field equation solved for Ej.



IMSPIC algorithm advances particles over various
intervals, but solves for E at every “micro” timestep

1. Carry out “final push” for all blocks, using At of the current block: At = At,:

Enforce particle boundary conditions

For a particle that has moved to a point (x,,v,) where t=Al(x,,v,) < At/,
set a,_1 = (a+a,_1)/2 , and set “new block” flag.

(Here we have used either r = v2 or r = 2; the latter offers useful hysteresis)

For particles that have moved to a point (x,,v,) where t=Al(x,,Vv,) > rAt,
set a,,_1 = a,)q , and set “new block” flag

2. Exit “final push.” For each active block, copy p~ array into p~,4, then set p~t0 0

3. Sort flagged particles into new blocks, inject any new particles into the right blocks

4. Carry out “pre-push”. compute x~ positions and use them to compute the p~ array
associated with each block at its future time level

5. Exit “pre-push.” Calculate field quantities:
For all necessary blocks, interpolate p~ and y to time level n+1

Perform the field-solve to obtain E

n+1



