
Viktor K. Decyk

UCLA and JPL

Parallization of the UCLA Parallel PIC
Framework

Abstract:

Parallelization of the QuickPIC code comes from components provided by the
UCLA Parallel PIC (UPIC) Framework. Parallelization of these components will be
discussed, particularly the handling of dynamic load balancing.

What are Particle-in-Cell Codes?
PIC codes integrate the trajectories of many particles
interacting self-consistently via electromagnetic fields

1. Calculate charge (and current) densities from particles
ρ(r) = ΣqiS(r-ri)

2. Solve Maxwell’s equation, Spectral or Finite-Difference
∇•E = 4πρ

3. Advance particle’s coordinates:
mi(dvi/dt) = qi[E(ri) + vi x B(ri)/c]

dxi/dt = vi
A grid is used as a scaffolding to calculate forces

=> the grid reduces calculation to order N

UPIC Framework
Framework: a unified environment containing all components
needed for writing code for a specific problem domain

Goal is rapid construction of new codes by reusing tested
modules: “Lego” pieces for developing new codes

Designed for student programmers, with many error checks
and debugging help

Supports multiple numerical methods, optimizations,
different physics models, different types of hardware

Automatically adapts to computer architecture

Above all, hides parallel processing

Layered Approach
Bottom Layer: optimized Fortran 77 routines
• complex but very fast

Middle layer: helper objects work with Fortran 90 arrays
• Fortran 90 arrays powerful, well-understood
• Helper objects describe data, but do not contain data
• Good environment when making many changes (white box)

Higher Layers: high level objects have many properties
• Objects contain great deal of hidden information
• Good environment when making few changes (black box)

Highest Layer: one object represents entire plasma simulation

PLIB: Parallel Particle Simulation Library

A low-level library (60 subroutines) which encapsulate all the
communication patterns needed by parallel PIC codes

•designed for high-performance
•communications are separated from physics
•supports both message-passing and shared memory
•supports RISC and vector architecture
•supports linear and quadratic interpolation

Robust: used in many projects since initial development in 1989.

Fortran77 with Fortran90 wrappers

PLIB: Parallel Particle Simulation Library

Initialization Routines PPINIT, PPEXIT, PPID, DCOMPx
family

Particle Manager, guarantees
particles in correct domain PMOVEx family

Field Manager, guard cell
accumulation and replication PxCGUARDx, PxAGUARDx family

Partition manager, moves data
between partitions PFMOVE, REPARTD, FNOFF

Transpose Routines, swapping
decompositions PxTPOSEx family

FFT Routines PxFFTx, DBLSINx, PHAFDBLx,
PZDBLx family

I/O Routines, accumulate and
broadcast data from files PBCAST, PWRITE, PREAD

Miscellaneous Routines PSUM, PMAX, PSCAN, PTIMERA

Only small number of different communication patterns needed

Particle Manager

Nodes organized by physical location in space. After update,
particles distributed to appropriate node

All holes in particle array are filled

• Particles can move across multiple nodes
• Particle data will be processed in pieces, if memory low
• Particle data will not be overwritten if array is too small

Particle boundaries can be changed drastically

If overflow is detected, partition can be changed without failure

Field Manager
Field quantities (charge density, electric fields) have guard cells
to avoid excessive communication

After deposit, density deposited in guard cells passed to
“owner”

After field solve, electric for magnetic fields replicated to guard
cells before advancing particles

Linear and quadratic interpolation supported

For this thin regions, guard cell information does not have be be
nearest neighbor

Partition Manager
Moves data between non-uniform and partitions

Fields which do not belong, passed to appropriate neighbor,
then passed again if necessary. Remembers how many passes
are required.

Finds new partitions based on number of particles per cell,
accurate to nearest cell. Can also find new partitions from
known distribution.

Partition manager is called every time step, since fields needed
by particles are in non-uniform partitions, but FFT based solvers
require uniform partitions.

Transpose Routines
Many algorithms can be parallelized by operating on one co-
ordinate which is local (not distributed), then transposing and
operating on the other coordinate, which is now local

FFT can be parallelized this way
Also, mixed spectral and finite-difference methods

Limitations
• Cannot use more processors than grids
• Assumes domains are regular

Transpose is very communication intensive, all-to-all

Collision avoidance important for some hardware

At any given pass, each process sends and receives to
unique processor. Pause at each pass before continuing.

PLIB Philosophy

2D code supports 1D domain decomposition
3D code supports 1D and 2D decomposition

PLIB generally does only data movement, no physics
• Communications patterns can be reused

Physics modules only need to know current data layout
• Physicists can use PLIB without knowing about MPI

Multiple FFTs can be done with single transpose

Encapsulation of Parallelism

PLIB is embedded in various classes in the Middle layer of UPIC
• Provides safe and simpler interface to Fortran77 codes
• Encapsulates parallel data layouts
• Provides polymorphism
• Provides error checking

Some helper classes that use parallelism:

• ufield2d, uniformly partitioned fields (e.g., transpose)
• nfield2d, non-uniform partitioned fields
 (e.g., partition manager, guard cells)
• fft2d, for Fast Fourier Transforms
• part2d, for particles (e.g., particle manager)

UPIC Framework
Codes built using UPIC Framework:

QuickPIC: Quasi-static code for plasma accelerators

• approximation that everything is moving at the speed of light
• coupled 2D and 3D parallel codes

QPIC: a 2D quantum PIC code
• uses semi-classical approximation based on integrating many
Feynman paths

BEPS: an interactive 2D PIC code for teaching plasma physics

Hipass: 2D for ionospheric modification experiments

MC^2: a 3D PIC code for cosmology

3D Electrostatic particle benchmark
127 million particles, 256 processors

0 1.13 2.25 3.38 4.50

IBM SP3/375

Intel Xeon/2.4 GHz

HP Alpha ES45

Mac G5/2 GHz

Push Time/particle/time step in nsec (shorter is better)

Scaling of Large PIC Electrostatic Benchmark

0.1

1

10

100 1000 104

1 Billion Particles
512x256x512 Mesh

Data
Linear scaling

Ti
m

e/
pa

rt
ic

le
/st

ep
 (

ns
ec

)

Number of Processors

3D PIC Performance on NERSC SP3/375

Currently available

Status of UPIC Framework

Electrostatic, Electromagnetic, Darwin
Relativity Option Gyrokinetic, Collisions

Force Types

Field Boundary Conditions
Periodic, Conducting,
Mixed Periodic/Conducting Open (Vacuum), Moving Window

Particle Boundary Conditions
Periodic, Reflecting,
Mixed Periodic/Reflecting Absorbing/Emitting, Ionization

Initialization
Arbitrary function n(x)n(y)n(z),
2 species

Arbitrary function n(x,y,z),
N species

Planned for future

2D BEPS Code:

Relativistic
Electromagnetic Two

Stream Instability

QPIC: 2-D Quantum Collisions
J. Tonge, D. Dauger, & V. Decyk

QuickPIC: Hosing instability in plasma wakefield
accelerator

Chengkun Huang and E162 Collaboration

