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Particles and heat flow rapidly along magnetic
field lines

B

ωc =
eB

m
; ρ =

vth
ωc
.

The ratio of thermal conductivities is very large:

κ‖/κ⊥ = 108 − 1010.



Magnetic confinement uses nested flux surfaces

There is a dense set of magnetic surfaces formed by field lines

that close upon themselves.



Symmetry-breaking perturbations create
secondary magnetic axes

B = ∇χ×∇(θ − ζ/q) → Bh +∇ψh ×∇ζ.
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The perturbation allows rapid outward transport.



The flow of heat along magnetic field lines
flattens the temperature inside the separatrix

(V. S. Udintsev et al., PPCF 2003)



Magnetic islands are a leading cause of anxiety

• Island overlap gives rise to magnetic stochasticity and (in

tokamaks) disruptions.

• Experiments and theory show that increasing β = 2µ0p/B
2

and decreasing ρ/L destabilizes neoclassical tearing modes.

• In stellarators, island minimization depends on precise shap-

ing of current coils.



Island growth is controlled by the parallel current

The dominant factors affecting island growth are

• The bootstrap current, proportional to the pressure gradient,

and

• The polarization current, a quadratic function of the phase

velocity of the island.

This talk will focus on the fluid theory of the polarization current.

The first question we must ask is why do islands rotate?



Reason 1: Inhomogeneous plasmas support
diamagnetic flows

J

B

Electrons and ions have opposite diamagnetic flows.



Reason 2: Electric fields cause plasma flow

m
dv

dt
= e(E + v ×B).

For ω � ωc = eB/m, the solution is

v =
E

B
x̂ +

1

ωc

d

dt

(
E

B

)
ŷ.

B E

x

x

x

x

x

x

x

v

The inertial correction to the electric drift is called the polariza-
tion drift.



The polarization draws a parallel current

Quasi-neutrality gives rise to a return current flowing along the

magnetic field:

vpol ∼ φ′φ′′ ∼ φ/L3

VE

Vpol

VE

Jpol

Jpol



Do islands follow electrons or ions?

• The frozen-in law suggests the island should rotate with the

electrons, ω = ω∗e

• Ion viscosity suggests the island should rotate with the ions.

n/n
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Model

We consider a cold-ion (Ti = 0) incompressible (∇‖v‖ = 0) fluid

model in a slab.

∂tψ+ vE · ∇ψ+∇‖n+ α̂∇‖T = Cj, (1)

∂tU + vE · ∇U −∇‖j = µ∇2
⊥U, (2)

∂tn+ vE · ∇n−∇‖j = D∇2
⊥n, (3)

3
2(∂tT + vE · ∇T )− α̂∇‖j =

κ

C
∇2
‖T + κ⊥∇2

⊥T , (4)

where C = 0.51(νe/ω∗)(me/mi)(Ls/Ln)
2.



The obligatory multiscale slide

Key fact of island life is k‖ = kx/Ls ∼ kW/Ls.

• Time scales:

plasma island

Alfven frequency ωA 30 MHz 50 kHz
Drift frequency ω∗ 50 kHz 10 kHz

Transport rate τ−1
E 1 Hz 2 kHz

• Space scales:

plasma 1 m
ω∗ = k‖cs 10−1m

island 2 · 10−2m
Ion gyro-radius ρi 10−3m



Projective integration for thin islands

The flux variation across a thin island is negligible: W∇ψ � ψ.

It follows that the shape of the island is fixed by its amplitude

alone:

ψ =
x2

2
+ ψ̃ cos

(
y −

∫
ω(t) dt

)
.

The macroscopic equations are

dW

dt
= ∆′ + β̂

ω(ω − ω∗)

W (W2 + ρ2)
(5)

dω

dt
= g(W,ω) (6)

where W = 2
√
ψ̃ is the half-width of the island.



Equilibrium solution

• Electron stream function

n = ϕ+H(ψ).

• Vorticity equation

∇2ϕ = K(ϕ) +H(ψ)

• Grad-Shafranov equation

J = I(ψ) + ϕ
dH

dψ
.



Transport equations

• Particle transport equation:

dH

dψ
=

D
κ⊥

(
1− 〈∂ψϕ〉ψ

)
Γ + 3

2
C
κ⊥
α̂ηeΥ

D
κ⊥

(
〈x2〉ψ + γΥ

)
Γ + C

κ⊥
α̂2Υ〈x2〉ψ

. (7)

where Υ = 〈ϕ2〉ψ − 〈ϕ〉2ψ/〈1〉ψ and Γ = 〈x2〉ψ + 3 C
κ⊥

Υ/2.

• Potential vorticity transport equation

dK

dϕ
=
D

µ

(
1−

1

〈ϕ2
x〉ϕ

)
+ σ

(
D

µ
− 1

)
〈ϕx∂xH(ψ)〉ϕ

〈ϕ2
x〉ϕ

. (8)



We solve the equilibrium and transport
equations iteratively (H. Wilson)

∇2ϕ(n+1) = K(n)(ϕ(n+1)) +H(n)(ψ)

dK(n+1)(ϕ)

dϕ
= F (ϕ(n);ϕ);

dH(n+1)(ψ)

dψ
= G(ϕ(n);ψ)



Velocity profiles are V-shaped

We determine the value of ω by requiring that the torque vanish,

limx→∞ µV ′
y = 0.
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For 0 < ω < ω∗e, the island excites drift waves

• The island emits a bow wave as it rotates.

• The island acts as a cavity resonator for the drift waves.

• Convection cells inside the island may act as ball bearings,



The slip velocity measures island permeability

• δV∞ > 0 indicates that plasma is flowing through the island.

• δV∞ < 0 indicates that the island is flattening the velocity
profile. For δV∞ < 0, we may define an effective island cross-
section as σ = |δV∞|/V ′

δV∞>0
V

x

V'=U

δV∞<0

σw



Islands become impermeable for W > ρs
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Slip velocity as a function of the torque for intermediate size islands (ρs �
W � ρsLs/Ln).



The polarization drift gives rise to an amplitude
threshold for drift-tearing mode excitation

The stabilizing effect of the polarization drift for W < ρs gives
rise to a critical island width for excitation of drift-tearing modes.
The scaling of the critical width found here agrees with that
found numerically by Scott et al.
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What about ion temperature?

The linear solution of ion gyrokinetic equation shows that the
frequency band ωi < ω < 0 is stable.
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Unfortunately, fluid FLR models are not integrable.



Equilibrium integrability is a consequence of
Hamiltonian dynamics

• Coherent structures are equilibrium solutions in a moving

frame. For a system obeying Hamiltonian dynamics,

∂ξj

∂t
= {ξj, H} = {ξj, H + C} = 0. (9)

• The extrema of the functional F = H + C,

δF = 0, (10)

are solutions of these equations.

• Equation (10) is a first-integral of Equation (9).



Consider BOUT model

Is this Hamiltonian? How badly do we want our models to be?



Importance of coherent structures

• Zonal flows and avalanches are examples of CS in 3D. Other

CS are more elusive but may nevertheless affect transport

properties.



We explore role of the Hamiltonian property
with a simple model

Consider standard FLR fluid equations for p, ϕ, v with two mod-

els for the electron response:

• full Boltzmann response This generalizes the Boltzmann

model n = φ, so as to ensure Galilean invariance,

n = φ− ux, (11)

where u is a constant background velocity in the y direction.

• parallel Boltzmann response

n = φ̃ := φ− φ̄, (12)



Modon collision under Boltzmann model
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Bipolar modons retain coherence with Boltzmann electron re-

sponse.



Modon collision under parallel Boltzmann model
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The parallel Boltzmann response leads to zonal flow generation



Results of the Poisson bracket construction

• The Fully Boltzmann model is Hamiltonian

• There are three families of detailed conservation laws (Casimirs)

constraining the motion.

• For Γ > 0, we were unable to write the parallel Boltzmann

model in Hamiltonian form.

• Does this mean that there are no CS for parallel Boltzmann

electrons and Γ > 0?



Existence of equilibria for Γ > 0

• We solve the equilibrium equation in powers of Γ � 1 for the
Parallel Boltzmann model. The first-order equation is

vE · ∇ (first order corrections) =
∂2φ̄0

∂x2
∂2φ0

∂x∂y
.

• Near the center of a convection cell, the solubility condition
for the above equation is 2π∂2

x φ̄0∂xyφ0√
∂2
x φ̄0∂

2
y φ̄0 − (∂xyφ0)

2


x=xmax

= 0.

This is satisfied only if the major axes of the streamlines are
aligned with the coordinate axes.

Conclusion: There are no elliptical CS for Γ > 0.



Discussion

• We conjecture that the existence of Casimirs is responsible

for the robustness of coherent structures.

• The parallel Boltzmann model appears to be non-Hamiltonian.

• The parallel Boltzmann model lacks non-trivial coherent struc-

tures.

• We need Hamiltonian FLR fluid models.


