Incorporating GISC and High Frequency Data into Portfolio Allocation and Risk Estimation

Jianqing Fan

Princeton University

with Alex Furger and Dacheng Xiu

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

Estimation large volatility matrix using high-frequency data

- How to large estimate covariance matrix?
- What is a reasonable covariance structure?
- How to use high-frequency data to ensure locality?
- What does the procedure perform?
- How does it impact on portfolio allocation and risk assessment?

イロト イポト イヨト イヨト

Estimation large volatility matrix using high-frequency data

- How to large estimate covariance matrix?
- What is a reasonable covariance structure?
- How to use high-frequency data to ensure locality?
- What does the procedure perform?
- How does it impact on portfolio allocation and risk assessment?

イロト イポト イヨト イヨト

Estimation large volatility matrix using high-frequency data

- How to large estimate covariance matrix?
- What is a reasonable covariance structure?
- How to use high-frequency data to ensure locality?
- What does the procedure perform?
- How does it impact on portfolio allocation and risk assessment?

イロト イポト イヨト イヨト

- Introduction
- Structures of Covariance Matrix
- High-Frequency High-dim Covariance Estimation
- Numerical Studies

イロト イポト イヨト イヨト

Introduction

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

<ロト < 四ト < 回ト < 回ト < 回ト <</p>

3

Sac

pervades every facet of finance. It is related to

- ★ option pricing
- ★ risk measures and risk-adjusted returns
- ★ securities regularization
- ★ portfolio allocation and proprietary trading
- \star simulation of complex financial systems

イロト イポト イヨト イヨト

э

- Positive definite.
- Well-conditioned to give reasonable portfolio allocations and risk management.
- Time locality and time varying.
- Transparent or easily understood.

Aim: Propose a simple estimator that achieves them all.

イロト イ理ト イヨト イヨト

э

use high-frequency financial data

 \star to localize volatility \star to increase sample size.

wide availability of high-frequency data

- ★ individual stocks, stock indices, ETFs
- ★ foreign exchange and interest rate futures
- ★ commodity futures
- our procedure takes advantage of this

イロト イポト イヨト イヨト

High-frequency Data Problems

- ★ Microstructure noise ★Nonsynchronized trading ★Jumps
- Dealt with MSRV, realized kernel, wavelets, bipower, QMLE, pre-averaging, but required additive assumptions.
 - Subsampling at 5-15 minutes frequency.

12:00

16:00

5-minute returns

Impact of Microstructural Noise: Epps Effect

Epps effect: corr between IBM and INTC on 11/14/13

イロト イポト イヨト イヨト

э

Sac

- High spurious correlations (Fan, Shao, Zhou, 2015)
- Sample covariance matrix can be inconsistency.
 (*Tracy, Widom, Bai, Silverstein, Johnstone, ...*)
- Setimate can easily ill conditioned
- Need to impose a structure

イロト イポト イヨト イヨト

Covariance Structure

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Large literature: Bickel & Levina (08), Lam & Fan (09), Cai, Zhou, Zhang, Ledoit, Wolfe ..., but

Monthly sample correlation at least 0.15 in at least 12 months in 2007-2009.

イロト イポト イヨト イヨト

- Large literature in econ and finance on (dynamic) factor models (Stoch, Watson, Bai, Ng, Forni, Hallin, Lippi, Reichlin, ...)
- Estimate large covariance (Fan, Fan, Lv 08; Fan, Liao, Martina, 13)
- Related to low-rank + sparse: *Candes, Kolchinskii, Wainwright, Negahban, Cai, ...*

<u>Model</u>: $\mathbf{Y}_t = \mathbf{B}\mathbf{f}_t + \varepsilon_t$, $\boldsymbol{\Sigma}_{\mathbf{Y}} = \mathbf{B}\boldsymbol{\Sigma}_t\mathbf{B}^{\mathbf{T}} + \boldsymbol{\Sigma}_{\varepsilon}$ $\boldsymbol{\Sigma}_{\varepsilon}$ sparse.

(Sharpe, 63; Lintner, 65; Ross, 76; Chamberlain & Rothschild, 83; Fama & French, 93)

Factors: observable or unobservable

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Fama-French factors: CRSP index, HML, SMB (daily)
★ Extended to 5 minutes by *Ait-Sahalia, Kalnina an Xiu (2014)*★ Inadequate to capture sector correlation.

 9 sector factors proxied by their ETFs: Energy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY), Consumer Staples (XLP), Health Care (XLV), Financial (XLF), Information Technology (XLK), Utilities (XLU)

イロト イポト イヨト イヨト

-

8-digit codes: ★Digits 1-2: sector. ★Digits 3-4: industry group.
 ★Digits 5-6: industry. ★Digits 7-8: sub industry.

No. of companies in each GICS sector on Dec. 28th, 2012: Energy (E), Materials (M),

Industrials (I), Consumer Discretionary (CD), Consumer Staples (CS), Health Care (HC),

Financial (F), Information Technology (IT), Telecommunication Services (TS), Utilities (U),

Is Conditional Sparsity Reasonable?

Non-zero Entries of the Residual Correlation Matrix (2007 - 2009) after taking

out Fama-French factors

 \ge 12 months with $|corr| \ge 0.15$ Based on 15 minutes data (n = 572) each month

• • = • • = •

Sorting by GICS

Non-zero Entries of the Residual Correlation Matrix (2007 - 2009) after taking

out Fama-French factors

 \ge 12 months with $|corr| \ge 0.15$ Based on 15 minutes data (n = 572) each month

★ ∃ > < ∃ >

Sorting by GICS (Pre-Crisis: 2004-2006)

 $\mathcal{O} \land \mathcal{O}$

Sorting by GICS (Crisis: 2007-2009)

Sorting by GICS (Post-Crisis: 2010-2012)

Jianqing Fan (Princeton University)

High-Frequency High-Dimensional Vol

 $\mathcal{O} \land \mathcal{O}$

Average *R*² and No. of Significant correlations

		Significant Correlations			
Pre-Crisis	R^2	Strict	Industry Group	Sector	
САРМ	19.39% (6.57%)	3900	980	626	
CAPM + FF	21.45% (6.53%)	3714	904	664	
CAPM + FF + 9 IF 28.95% (9.00%)		2156	246	138	
		Significant Correlations			
Crisis R ²		Strict	Industry Group	Sector	
САРМ	31.79% (7.49%)	10986	6170	2798	
CAPM + FF	33.97% (7.68%)	8422	3904	1782	
CAPM + FF + 9 IF 44.52% (10.09%)		2658	354	204	
		Significant Correlations			
Post-Crisis	R^2	Strict	Industry Group	Sector	
САРМ	37.12% (9.01%)	13380	380 6812		
CAPM + FF	39.00% (9.01%)	10604	4346 22		
CAPM + FF + 9 IF	48.48% (9.94%)	2560	2560 212 1		

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

< ロ > < 回 > < 臣 > < 臣 > < 臣 < 臣 < 臣 < ○ < ○</p>

High-dimensional Covariance Regularization

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

イロト イポト イヨト イヨト

э

Block thresholding estimator

• Estimate the joint covariance: $U_s = (\begin{array}{c} Y_s^T \\ Y_s^T \end{array}, \begin{array}{c} X_s^T \\ X_s^T \end{array})^T$

$$\widehat{\Pi} = \frac{1}{t} \sum_{j=1}^{\lfloor t/\Delta_n \rfloor} (U_{j\Delta} - U_{(j-1)\Delta}) (U_{j\Delta} - U_{(j-1)\Delta})^{\mathsf{T}}$$

d returns r factors

イロト 不得 トイヨト イヨト

② Compute market beta $\beta = \widehat{\Pi}_{12} \widehat{\Pi}_{22}^{-1}$ and residual variance

$$\widehat{\boldsymbol{\Gamma}} = \widehat{\boldsymbol{\Pi}}_{11} - \widehat{\boldsymbol{\Pi}}_{12} (\widehat{\boldsymbol{\Pi}}_{22})^{-1} \widehat{\boldsymbol{\Pi}}_{21},$$

- Sort by GICS to form blocks.
- Obtain $\widehat{\Gamma}^{S}$ by truncating off-block entries of $\widehat{\Gamma}$ to 0s.

•
$$\widehat{\Sigma}^{S} = \widehat{\beta}\widehat{E}\widehat{\beta}^{\intercal} + \widehat{\Gamma}^{S}$$
, where $\widehat{E} = \widehat{\Pi}_{22}$

Other variants and Checklist

Choice of set thresholding: S can be one of the folliwng

 $S_1 = \{(i,j) \text{ such that the$ *ith*and*jth* $assets belong to the same sector},$ $S_2 = \{(i,j) \text{ such that the$ *ith*and*jth* $assets belong to the same industry},$ $S_3 = \{(i,j) \text{ such that } i = j\}.$

- Positive-Definite? \checkmark
- Better Conditioned? \checkmark
- Time Varying? \checkmark
- Simple!! √

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Assumptions

• Asset returns and factors follow Itô semimartingales:

$$\mathbf{Y}_{\mathbf{t}} = \boldsymbol{\beta} \mathbf{X}_{\mathbf{t}} + \mathbf{Z}_{\mathbf{t}}, \qquad X_t = \int_0^t h_s \, ds + \int_0^t \eta_s \, dW_s$$
$$Z_t = \int_0^t f_s \, ds + \int_0^t \gamma_s \, dB_s, \qquad [X, Z^T] = 0.$$
$$\Longrightarrow \boldsymbol{\Sigma}_{d \times d} = \boldsymbol{\beta}_{d \times r} \mathbf{E}_{r \times r} \boldsymbol{\beta}_{d \times r}^\mathsf{T} + \boldsymbol{\Gamma}_{d \times d},$$

where $\Sigma = \frac{1}{t} \int_0^t (\beta \eta_s \eta_s^\mathsf{T} \beta^\mathsf{T} + \gamma_s \gamma_s^\mathsf{T}) ds$ and $\Gamma = \frac{1}{t} \int_0^t \gamma_s \gamma_s^\mathsf{T} ds$.

• Factors are **pervasive**: $||d^{-1}\beta^T\beta - B|| = o(1)$, and the residual covariance matrix is block-diagonal: $\Gamma_{S^c} = 0$.

•
$$r = o(d), \Delta_n r^4 \log(d) = o(1).$$

• $m_d r \sqrt{\Delta_n \log d} = o(1)$, where m_d is the largest nonzero

<u>Theorem 1</u>: For any $S = S_1, S_2, S_3$, without any assumption on m_d :

$$||\widehat{\Sigma}^{S} - \Sigma||_{\max} = O_{\rho}\left(\sqrt{r^{4}\Delta_{n}\log d}\right).$$

<u>Theorem 2</u>: With sparsity assumption on m_d :

$$||(\widehat{\Sigma}^{\mathcal{S}})^{-1} - \Sigma^{-1}|| = O_p\left(m_d\sqrt{r^2\Delta_n\log d}\right).$$

Comparable rates with i.i.d. case.

イロト 不得下 イヨト イヨト

Remarks

- In-fill asymptotic for continuous time model.
- **Risk approx**: $\left| \omega^{*\intercal} \widehat{\Sigma}^{S} \widehat{\omega}^{*} \omega^{*} \Sigma \omega^{*} \right| \leq \left| \left| \widehat{\Sigma}^{S} \Sigma \right| \right|_{\max} \| \widehat{\omega}^{*} \|_{1}^{2}$.
- Sparse portfolio alloc.: $\min_{\omega} \omega^{\mathsf{T}} \widehat{\Sigma}^{S} \omega$, s.t. $\omega^{\mathsf{T}} 1 = 1$, $\|\omega\|_{1} \le \gamma$. $\left|\widehat{\omega}^{*\mathsf{T}} \widehat{\Sigma}^{S} \widehat{\omega}^{*} - \omega^{*} \Sigma \omega^{*}\right| \le \|\widehat{\Sigma}^{S} - \Sigma\| - \gamma^{2}$

• Min variance: $(\mathbf{1}^{\mathsf{T}}\Sigma^{-1}\mathbf{1})^{-1}$

 $\left| \left(\mathbf{1}^{\mathsf{T}} \left(\widehat{\Sigma}^{\mathcal{S}} \right)^{-1} \mathbf{1} \right)^{-1} - \left(\mathbf{1}^{\mathsf{T}} \Sigma^{-1} \mathbf{1} \right)^{-1} \right| \quad \leq \quad 2 \left(\mathbf{1}^{\mathsf{T}} \Sigma^{-1} \mathbf{1} \right)^{-2} || \left(\widehat{\Sigma}^{\mathcal{S}} \right)^{-1} - \Sigma^{-1} ||,$

イロト 不得 トイヨト イヨト 二日

Remarks

- In-fill asymptotic for continuous time model.
- Risk approx: $\left| \omega^{*\intercal} \widehat{\Sigma}^{S} \widehat{\omega}^{*} \omega^{*} \Sigma \omega^{*} \right| \leq ||\widehat{\Sigma}^{S} \Sigma||_{max} ||\widehat{\omega}^{*}||_{1}^{2}$.
- Sparse portfolio alloc.: $\min_{\omega} \omega^{\intercal} \widehat{\Sigma}^{S} \omega$, s.t. $\omega^{\intercal} 1 = 1, \|\omega\|_{1} \leq \gamma$.

$$\left|\widehat{\omega}^{*\mathsf{T}}\widehat{\Sigma}^{\mathcal{S}}\widehat{\omega}^{*} - \omega^{*}\Sigma\omega^{*}\right| \leq ||\widehat{\Sigma}^{\mathcal{S}} - \Sigma||_{\max}\gamma^{2}$$

• Min variance: $(\mathbf{1}^{\mathsf{T}}\Sigma^{-1}\mathbf{1})^{-1}$

 $\left| \left(\mathbf{1}^{\mathsf{T}} \left(\widehat{\Sigma}^{\mathcal{S}} \right)^{-1} \mathbf{1} \right)^{-1} - \left(\mathbf{1}^{\mathsf{T}} \Sigma^{-1} \mathbf{1} \right)^{-1} \right| \quad \leq \quad 2 \left(\mathbf{1}^{\mathsf{T}} \Sigma^{-1} \mathbf{1} \right)^{-2} || \left(\widehat{\Sigma}^{\mathcal{S}} \right)^{-1} - \Sigma^{-1} ||,$

イロト 不得 とくき とくきとうき

Remarks

- In-fill asymptotic for continuous time model.
- Risk approx: $\left| \omega^{*\intercal} \widehat{\Sigma}^{S} \widehat{\omega}^{*} \omega^{*} \Sigma \omega^{*} \right| \leq ||\widehat{\Sigma}^{S} \Sigma||_{max} ||\widehat{\omega}^{*}||_{1}^{2}$.
- Sparse portfolio alloc.: $\min_{\omega} \omega^{\intercal} \widehat{\Sigma}^{S} \omega$, s.t. $\omega^{\intercal} 1 = 1, \|\omega\|_{1} \leq \gamma$.

$$\left|\widehat{\omega}^{*\mathsf{T}}\widehat{\Sigma}^{\mathcal{S}}\widehat{\omega}^{*} - \omega^{*}\Sigma\omega^{*}\right| \leq ||\widehat{\Sigma}^{\mathcal{S}} - \Sigma||_{\max}\gamma^{2}$$

• Min variance: $(\mathbf{1}^{\mathsf{T}} \Sigma^{-1} \mathbf{1})^{-1}$

$$\left(\mathbf{1}^{\mathsf{T}}\left(\widehat{\boldsymbol{\Sigma}}^{\mathcal{S}}\right)^{-1}\mathbf{1}\right)^{-1} - \left(\mathbf{1}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\mathbf{1}\right)^{-1} \left| \quad \leq \quad 2\left(\mathbf{1}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\mathbf{1}\right)^{-2}||\left(\widehat{\boldsymbol{\Sigma}}^{\mathcal{S}}\right)^{-1} - \boldsymbol{\Sigma}^{-1}||,$$

イロト イポト イヨト イヨト

3

SOG

Numerical Studies

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

<u>Parameters</u>: d = 500 assets, r = 3 factors, $N_{sim} = 100$ **<u>Factor Model</u>**: $dY_{i,t} = \sum_{j=1}^{r} \beta_{i,j} dX_{j,t} + dZ_{i,t}$ **Loadings**: $\beta_1 \sim \mathcal{U}[0.25, 2.25]$, and $\beta_2, \beta_3 \sim \mathcal{U}[-0.5, 0.5]$.

<u>Noise</u>: $dZ_{i,t} = \gamma_i^T dB_{i,t}$

10 blocks (of size 50 \times 50): with-block corr = 0.25, vol $\sim \mathcal{U}[0.25, 2.25]$.

イロト 不得 トイヨト イヨト ニヨー

<u>Parameters</u>: d = 500 assets, r = 3 factors, $N_{sim} = 100$ **<u>Factor Model</u>**: $dY_{i,t} = \sum_{j=1}^{r} \beta_{i,j} dX_{j,t} + dZ_{i,t}$ **Loadings**: $\beta_1 \sim \mathcal{U}[0.25, 2.25]$, and $\beta_2, \beta_3 \sim \mathcal{U}[-0.5, 0.5]$.

 $\begin{array}{ll} \hline \textbf{Dynamic of Factors:} \ dX_{j,t} = b_j dt + \sigma_{j,t} dW_{j,t} \ \text{with stochastic volatility (CIR):} \\ d\sigma_{j,t}^2 = \kappa_j (\theta_j - \sigma_{j,t}^2) dt + \eta_j \sigma_{j,t} d\widetilde{W}_{j,t}, & \text{leverage } \mathbb{E}[dW_{j,t} d\widetilde{W}_{j,t}] = \rho_j dt. \\ \kappa = (3,4,5), \qquad \theta = (0.09, 0.04, 0.06), \qquad \eta = (0.3, 0.4, 0.3), \\ \rho = (-0.6, -0.4, -0.250), & \text{and } b = (0.05, 0.03, 0.02). \end{array}$

<u>Noise</u>: $dZ_{i,t} = \gamma_i^T dB_{i,t}$

10 blocks (of size 50 \times 50): with-block corr = 0.25, vol $\sim \mathcal{U}[0.25, 2.25]$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

<u>Parameters</u>: d = 500 assets, r = 3 factors, $N_{sim} = 100$ <u>Factor Model</u>: $dY_{i,t} = \sum_{j=1}^{r} \beta_{i,j} dX_{j,t} + dZ_{i,t}$ Loadings: $\beta_1 \sim \mathcal{U}[0.25, 2.25]$, and $\beta_2, \beta_3 \sim \mathcal{U}[-0.5, 0.5]$.

 $\begin{array}{ll} \hline \textbf{Dynamic of Factors:} \ dX_{j,t} = b_j dt + \sigma_{j,t} dW_{j,t} \ \text{with stochastic volatility (CIR):} \\ d\sigma_{j,t}^2 = \kappa_j (\theta_j - \sigma_{j,t}^2) dt + \eta_j \sigma_{j,t} d\widetilde{W}_{j,t}, & \text{leverage } \mathbb{E}[dW_{j,t} d\widetilde{W}_{j,t}] = \rho_j dt. \\ \kappa = (3,4,5), \qquad \theta = (0.09, 0.04, 0.06), \qquad \eta = (0.3, 0.4, 0.3), \\ \rho = (-0.6, -0.4, -0.250), & \text{and } b = (0.05, 0.03, 0.02). \end{array}$

<u>**Noise</u>**: $dZ_{i,t} = \gamma_i^{\mathsf{T}} dB_{i,t}$ </u>

10 blocks (of size 50 \times 50): with-block corr = 0.25, vol $\sim \mathcal{U}[0.25, 2.25]$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

<u>Microstructural noise</u>: add $N(0, 0.005^2)$ to the log-prices

Nonsynchronized trading:

- ★ Generate data at 1-second frequency for 6.5 hours;
- ★ Get number N_i from log-normal with $\mu = 2500$ and $\sigma = 0.8$ truncated at 500 and 23400;
- ★ Subsample N_i data at random as the trading prices of the i^{th} asset.

Length of Data: one month.

イロト イ理ト イヨト イヨト

Simulation Results

	Frequency	5 sec	15 sec	30 sec	1 min	5 min	15 min	30 min	
I	$\ \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\ _{\max}$	59.29	20.09	10.21	5.22	1.18	0.52	0.39	0.38
	$\ (\widehat{\Sigma}^{\mathcal{S}})^{-1} - \Sigma^{-1}\ $	6.62	6.59	6.55	6.46	5.86	5.13	4.76	25.07
II	$\ \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\ _{max}$	0.01	0.02	0.03	0.04	0.08	0.14	0.20	0.30
	$\ (\widehat{\Sigma}^{S})^{-1} - \Sigma^{-1}\ $	0.28	0.49	0.70	1.03	2.68	6.06	11.82	36.49

★I: With ★II: Without microstructure noise

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

3

Sac

Minimum variance portfilios

Period: Jan 2007 – Dec. 2012.

Output: Risk of monthly rebalanced portfolios

Jianqing Fan (Princeton University)

High-Frequency High-Dimensional Vol

Number of Stocks

Figure: Number of Stocks Selected in the Optimized Portfolios

Э

DQC

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

★ Propose a covariance matrix estimator for a large panel of high-frequency stock returns.

- It is positive-definite.
- It does not have any tuning parameters.
- It allows time-varying volatilities and correlations.
- ★ Empirically, this estimator achieves a much lower out-of-sample risk than many alternatives.
- ★ Establish rates of convergence for continuous time finance model.

イロト 不得下 イヨト イヨト

The End

イロト イポト イヨト イヨト

2

DQC

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol