Optimal Order Display in Limit Order Markets with Liquidity Competition

Ulrich Horst^1

Humboldt-Universität zu Berlin Department of Mathematics

and School of Business and Economics

¹Based on joint work with Gökhan Cebiroglu; to appear in JEDC

Outline

- Limit Order Books (LOBs) and hidden liquidity
- A sequential trade model with
 - a hidden liquidity trader that needs to buy a (large) position
 - liquidity competition at submission and more competitive price level
 - random market order flow executing standing liquidity
- Optimal dispaly strategies under market impact
 - openly displayed orders impact market dynamics
 - exchanges allow traders to shield orders from public view
 - tradeoff between loss in execution priority and reduced impact
- Closed form solutions under pure liquidity competition
 - model performs well for liquid stocks and medium order sizes
 - show expected shortfalls for selected (liquid) stocks

Hidden Liquidity in LOBs

Hidden Liquidity in Limit Order Books

- Electronic exchanges organize trading through *limit order books*
- Market participants can submit
 - market orders for immediate execution
 - limit orders for future execution
 - cancellations of standing orders
- Orders are executed according to a set of priority rules:
 - price priority
 - time priority

188 ms in the life of the Apple stock

Hidden Liquidity in Limit Order Books

- Electronic exchanges organize trading through limit order books
- Market participants can submit
 - market orders for immediate execution
 - limit orders for future execution
 - cancellations of standing orders
- Orders are executed according to a set of priority rules:
 - price priority
 - time priority
 - display priority
- Markets allow traders to hide some/all of their orders
 - Hidden orders account for 20%-30% of liquidity
 - If orders can be fully hidden, there may be liquidity in the spread

Hidden orders

Hidden orders

Why Hiding?

- Large limit orders have market impact
 - private information ("scare away other traders")
 - large displayed orders encourage price undercutting ("impatience")
- Hiding orders helps to reduce market impact
 - tradeoff between reduced market impact and loss in time priority
 - we study optimal display decisions under liquidity competition
- Market impact of market orders has been studied extensively
 - plenty of models of portfolio liquidation with market orders
 - no model of portfolio liquidation using limit orders (with impact)
 - market impact: assume that volume imbalances drive order flow

The Model

The Model

We consider a benchmark model with a single risk neutral trader who:

- needs to buy N shares by some time T
- submits a *limit order* at the best bid price B_0
- can chose to openly display $\Delta \in [0, N]$ shares
- faces same side liquidity competition
 - at the submission price level ("loss in time priority")
 - at more competitive price levels ("undercutting")
- cancels all unexecuted orders at time T
 - resubmits cancelled orders as market orders
 - faces "opposite side liquidity competition"

Trading Costs

Order flows (limit and market) depend on the visible state of the book.

- A random number Z^{Δ} is executed before time T
- The *relative* execution price is given by

$$P^{\Delta} := \left(1 - \frac{Z^{\Delta}}{N}\right) S_T^{\Delta}$$

where $S_T^{\Delta} := \frac{A_T^{\Delta} - B_0}{B_0}$ denotes the *effective spread*.

- Both same and opposite side order flow (limit and market) matters
- The two sides of the market are assumed conditionally independent given Δ ; the expected relative execution price is:

$$W(\Delta) := \left(1 - \frac{\mathbb{E}Z^{\Delta}}{N}\right) \mu(\Delta).$$

Flow Dynamics

- We consolidate order arrivals into single submissions with laws:
 - aggregate limit order volume $(y \ge 0)$ at submission price level:

$$f_{y}(u) = (1-q)\mathbf{1}_{\{u=0\}} + \frac{q}{\beta}e^{-\frac{u}{\beta}}\mathbf{1}_{\{u>0\}}$$

• aggregate limit order volume ($\hat{y} \ge 0$) at more competitive levels:

$$f_{\hat{y}}(u) = (1-\hat{q})\mathbf{1}_{\{u=0\}} + \frac{\hat{q}}{\hat{\beta}}e^{-\frac{u}{\hat{\beta}}}\mathbf{1}_{\{u>0\}}.$$

• aggregate market order volume ($x \ge 0$):

$$f_x(u) = (1-p)\mathbf{1}_{\{u=0\}} + \frac{p}{\alpha}e^{-\frac{u}{\alpha}}\mathbf{1}_{\{u>0\}}.$$

The volume y has priority over the hidden order N – Δ ("display priority"); ŷ has priority over the full order N ("price priority")

Theorem (Expected Execution Volume) The expected execution volume is given by

$$V = \alpha p (1 - \hat{\beta}_r) e^{-\frac{D(1-c)}{\alpha}} \left\{ (1 - \beta_r) \left(e^{-\frac{\Delta}{\alpha}} - e^{-\frac{N}{\alpha}} \right) + \left(1 - e^{-\frac{\Delta}{\alpha}} \right) \right\}$$

where D is the volume at submission level, c cancellation ratio and

$$\hat{eta}_r = \hat{q} rac{\hat{eta}}{lpha + \hat{eta}}; \quad eta_r = q rac{eta}{lpha + eta}.$$

Market Impact of Limit Orders

Assumption (Market impact of limit order) The variables $p, \alpha, \beta, \hat{\beta}$ and μ depend the order imbalance

$$I:=I(\Delta)=D_b-D_a+\Delta.$$

In particular, the expected relative execution price is of the form:

$$W^{\Delta} = W(\Delta, p(\Delta), \alpha(\Delta), \beta(\Delta), \hat{\beta}(\Delta), \mu(\Delta))$$

and

$$rac{d}{d\Delta}W = M_{
m Impact} + M_{
m Priority}$$

Remark

We calibrated this model (see below) but there is typically no closed-form solution for optimal display sizes.

A Model of Pure Liquidity Competition

The Model

Assumption (Pure liquidity competition)

Only order flow at more competitive prices depends on imbalances, and

$$\hat{\beta} = \hat{\beta}_0 + \hat{\beta}_1 \Delta$$

We define the intensity of liquidity competition ξ as

$$\xi = \frac{\hat{\beta}_1}{1 + \hat{\beta}_0 / \alpha}$$

and recall that the Lambert Function is any function that solves:

$$w = \Phi(w)e^{\Phi(w)}, w \in \mathbb{C}.$$

Theorem (Optimal display sizes)

Assume all model parameters are independent of the display size, except

$$\hat{eta}(\Delta) = \hat{eta}_0 + \hat{eta}_1 \Delta$$

Assume moreover that $\hat{q} = 1$. Then

$$\frac{\Delta^*}{N} = \begin{cases} 1 & \text{if } \xi \le \xi_- \\ -\frac{\alpha}{N} (1 + \xi^{-1} + \Phi_{-1}(\overline{w})) & \text{if } \xi_- < \xi < \xi_+ \\ 0 & \text{if } \xi \ge \xi_+ \end{cases}$$

with
$$\overline{w} := -\gamma e^{-\xi^{-1}-1}, \qquad \gamma := \frac{1-e^{-\frac{N}{\alpha}}(1-\beta_r)}{\beta_r},$$

and $\xi_- := \left(\gamma e^{\frac{N}{\alpha}} - 1 - \frac{N}{\alpha}\right)^{-1}, \quad \xi_+ := \left(\gamma - 1\right)^{-1}.$

Optimal Display Ratios

Little competition at submission price level: hide more

Optimal Display Ratios

More competition at submission price level: hide less

Estimating Display Ratios

The Data

- NASDAQ ITCH order-message data; 01/11 04/11
- random selection of 31 stocks from the S&P500 index
- aggregation of cancellation, submission, ... into 1 min snapshots

	Average Stock Properties				Average Model Parameters			
	MQ (\$)	S (bps)	TrVol (1000\$)	Var	D _{bid} (shares)	α (shares)	р	$\mu_{(bps)}$
q_1	32	37.27	2.55	25.07	1,705	647	0.23	8.83
q_2	23	9.29	19.14	13.01	6,101	1,940	0.62	1.90
q_3	64	3.96	425.03	8.15	18,391	11,488	0.90	2.24
All	41	15.35	171.44	14.63	9,582	5,261	0.61	4.04

Model Parameter

• For the full model we used a linear regression model for $\beta_r, \hat{\beta}_r, \mu$

$$\gamma[I] = b_0 + b_1 I + \varepsilon_\gamma$$

and

$$\log \alpha[I] = a_0 + a_1I + \varepsilon_a; \quad p[I] = \frac{1}{1 + e^{\kappa_0 + \kappa_1I + \varepsilon_p}}$$

· For the reduced model we used an inverse linear model for

$$\hat{\beta}_r[I] = 1 - \frac{1}{\zeta}; \quad \zeta = \zeta_0 + \zeta_1 I + \varepsilon_{\zeta}.$$

• Average *r*² goodness-of-fit ranges from 40% to 63% and is stable across all stocks.

Transaction Costs: Liquid Stocks: $N = \alpha p$

Transaction Costs: Liquid Stocks: N=10 αp

Transaction Stocks: Less Liquid Stocks: N=10 αp

Implementation Shortfall: EBAY

Implementation Shortfall: MSFT

Conclusion

- We studied a model of optimal order display under market impact
- Closed form solution for pure liquidity competition
- Reduced model performs well for liquid stocks
- Open problems:
 - more general flow dynamics
 - general analysis of limit order impact
 - dynamic model of optimal order placement
 - ...

Thank You!