Risk-Consistent Conditional Systemic Risk Measures

Thilo Meyer-Brandis University of Munich

joint with:

H. Hoffmann and G. Svindland, University of Munich

Workshop on Systemic Risk and Financial Networks IPAM, UCLA

March 24, 2015

伺下 イヨト イヨト

Let

$X = (X_1, \ldots, X_d) \in L^\infty_d(\mathcal{F})$

represent (monetary) risk factors associated to a system of d interacting financial institutions.

・日本 ・ モン・ ・ モン

Let

$X = (X_1, \ldots, X_d) \in L^\infty_d(\mathcal{F})$

represent (monetary) risk factors associated to a system of d interacting financial institutions.

 Traditional approach to risk management: Measuring stand-alone risk of each institution

 $\eta(X_i)$

for some univariate risk measure $\eta: L^{\infty}(\mathcal{F}) \to \mathbb{R}$.

・同・ ・ヨ・ ・ヨ・

Motivation

Axiomatic characterization of (univariate) risk measures:

A map $\eta: L^{\infty}(\mathcal{F}) \to \mathbb{R}$ is a monetary risk measure, if it is

- Monotone: $X_1 \ge X_2 \Rightarrow \eta(X_1) \le \eta(X_2)$.
- Cash-invariant:] η(X + m) = η(X) − m for all m ∈ ℝ. (Constant-on-constants: η(m) = −m for all m ∈ ℝ.)
- A monetary risk measure is called convex, if it is
 - Convex: $\eta(\lambda X_1 + (1 \lambda)X_2) \le \lambda \eta(X_1) + (1 \lambda)\eta(X_2)$ for $\lambda \in [0, 1].$ (Quasi-convex: $\eta(\lambda X_1 + (1 - \lambda)X_2) \le \max\{\eta(X_1), \eta(X_2)\}.$)

A convex risk measure is called coherent, if it is

• Pos. homogeneity: $\eta(\lambda X) = \lambda \eta(X)$ for $\lambda \ge 0$.

- 4 周 ト 4 日 ト 4 日 ト - 日

However,

 Financial crisis: traditional approach to regulation and risk management insufficiently captures

Systemic risk: risk that in case of an adverse (local) shock substantial parts of the system default.

► Question: Given the system X = (X₁,..., X_d), what is an appropriate risk measure

 $\rho: L^{\infty}_{d}(\mathcal{F}) \to \mathbb{R}$

of systemic risk?

・ 同 ト ・ ヨ ト ・ ヨ ト …

 Most proposals of systemic risk measures in the post-crisis literature are of the form

$$\rho(X) := \eta\left(\Lambda(X)\right)$$

for some univariate risk measure

 $\eta: L^{\infty}(\mathcal{F}) \to \mathbb{R}$

and some aggregation function

 $\Lambda:\mathbb{R}^{d}\rightarrow\mathbb{R}.$

Risk-Consistent Conditional Systemic Risk Measures

個 と く ヨ と く ヨ と …

Some examples:

Appropriate aggregation to reflect systemic risk?

Systemic Expected Shortfall

[Acharya et al., 2011]

$$\rho(X) := ES_q\left(\sum_{i=1}^d X_i\right)$$

where ES_q is the univariate Expected Shortfall at level $q \in [0, 1]$.

・日・ ・ヨ・ ・ヨ・

Deposit Insurance [Lehar, 2005], [Huang, Zhou & Zhu, 2011]

$$\rho(X) := E\left(\sum_{i=1}^d -X_i^-\right)$$

SystRisk [Brunnermeier & Cheridito, 2013]

$$\rho(X) := \eta_{SystRisk} \left(\sum_{i=1}^{d} -\alpha_i X_i^- + \beta_i (X_i^+ - \mathbf{v}_i) \right)$$

where $\eta_{SystRisk}$ is some utility-based univariate risk measure.

向下 イヨト イヨト

Contagion model

- Π_{ji} denotes the proportion of the total liabilities L_j of bank j which it owes to bank i.
- ► X_i represents the capital endowment of bank i.
- ► If a bank *i* defaults, i.e. X_i < 0, this generates further losses in the system by contagion.
- Systemic risk concerns the total loss in the network generated by a profit/loss profile X = (X₁,...,X_d).

・ 同 ト ・ ヨ ト ・ ヨ ト

[Chen, Iyengar & Moallemi, 2013], [Eisenberg, Noe, 2001] Total loss in the system induced by some initial loss profile $x \in \mathbb{R}^d$:

$$\begin{split} \Lambda(x) &:= \min_{y, b \in \mathbb{R}^d_-} \quad \sum_{i=1}^d -y_i - \gamma b_i \\ \text{subject to} \quad y_i &= x_i - b_i + \sum_{j=1}^d \Pi_{ji} y_j \quad \forall i \end{split}$$

- Bank i decreases its liabilities to the remaining banks by y_i.
- This decreases the equity values of its creditors, which can result in a further default.
- A regulator injects b_i (weighted by $\gamma > 1$) into bank *i*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Various extensions of the Eisenberg & Noe framework to include further channels of contagion, see e.g.
 - [Amini, Filipovic & Minca, 2013]
 - [Awiszus & Weber, 2015]
 - ▶ [Cifuentes, Ferrucci & Shin, 2005]
 - [Gai & Kapadia, 2010]
 - [Rogers & Veraart, 2013]

向下 イヨト イヨト

Conditional risk measuring interesting in systemic risk

 identification of systemic relevant structures

CoVar and CoES [Adrian, Brunnermeier, 2011]

$$\rho(X) := VaR_q\left(\sum_{i=1}^d X_i \mid X_j \leq -VaR_q(X_j)\right)$$

[Acharya et al., 2011]

$$\mathsf{ES}_q\left(X_j \mid \sum_{i=1}^d X_i \leq -\mathsf{VaR}_q(\sum_{i=1}^d X_i)
ight)$$

 \rightarrow conditional risk measure

 $\eta: L^{\infty}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$

for some sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$

- Broad literature on conditional risk measures in a dynamic setup (e.g. [Detlefsen & Scandolo, 2005], [Föllmer & Schied, 2011], [Frittelli & Maggis, 2011], [Tutsch, 2007]).
- In the context of systemic risk, see also [Föllmer, 2014] and [Föllmer & Klüppelberg, 2014]:

・ 同 ト ・ ヨ ト ・ ヨ ト

But also conditional aggregation $\Lambda(x,\omega)$ appears naturally; f.ex.:

- The way of aggregation might depend on macroeconomic factors:
 - Countercyclical regulation: more severe when economy is in good shape than in times of financial distress
 - Stochastic discounting: Λ(x, ω) = Λ̃(x)D(ω), where D is some stochastic discount factor.
- Liability matrix Π = Π(ω) in contagion model above might be stochastic (derivative exposures between banks)

Objective of this presentation: Structural analysis of conditional systemic risk measures $\rho_{\mathcal{G}} : L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G}), \ \mathcal{G} \subset \mathcal{F}$, of the form

 $\rho_{\mathcal{G}}(X) := \eta_{\mathcal{G}}\left(\Lambda_{\mathcal{G}}(X)\right)$

where η_G is some univariate conditional risk measure and Λ_G some conditional aggregation function.

伺 とう ヨン うちょう

Structure of remaining presentation:

- 1. Axiomatic characterization of conditional systemic risk measures of this type
- 2. Examples and simulation study
- 3. Strong consistency and risk-consistency

向下 イヨト イヨト

AXIOMATIC CHARACTERIZATION OF RISK-CONSISTENT CONDITIONAL SYSTEMIC RISK MEASURES

Risk-Consistent Conditional Systemic Risk Measures

Aim: Axiomatic characterization of conditional systemic risk measures of the form $\eta(\Lambda(X))$ in terms of *properties on constants* and *risk-consistent properties*.

 Risk-consistent properties ensure a consistency between local that is ω-wise - risk assessment and the measured global risk.

For deterministic risk measures [Chen, Iyengar & Moallemi, 2013], f. ex.:

▶ *Risk-monotonicity*: if for given risk vectors X and Y we have $\rho(X(\omega)) \ge \rho(Y(\omega))$ in a.a. states ω , then $\rho(X) \ge \rho(Y)$.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

In the deterministic case:

- ▶ [Chen, Iyengar & Moallemi, 2013] on finite probability space
- ▶ [Kromer, Overbeck & Zilch, 2013] general probability space

Our contribution:

- Conditional setting
- More comprehensive structural analysis
- More flexible aggregation and axiomatic setting

Risk-Consistent Conditional Systemic Risk Measures

Notation: Given $(\Omega, \mathcal{F}, \mathbb{P})$ and a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$:

A realization of a function

$$\rho_{\mathcal{G}}: L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$$

is a function

 $\rho_{\mathcal{G}}(\cdot, \cdot) : L^{\infty}_{d}(\mathcal{F}) \times \Omega \to \mathbb{R}$ such that $\rho_{\mathcal{G}}(X, \cdot) \in \rho_{\mathcal{G}}(X)$ for all $X \in L^{\infty}_{d}(\mathcal{F})$.

A realization ρ_G(·, ·) has continuous path if ρ_G(·, ω) : ℝ^d → ℝ is continuous for all ω ∈ Ω.

▶ We denote the constant random vector $X_{\widehat{\omega}}$, $\widehat{\omega} \in \Omega$, by

 $X_{\widehat{\omega}}(\omega) := X(\widehat{\omega}) \; \forall \omega \in \Omega$

- 4 同 2 4 日 2 4 日 2

Definition: A function $\rho_{\mathcal{G}} : L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$ is called *risk-consistent conditional systemic risk measure* (CSRM), if it is

Monotone on constants: $x, y \in \mathbb{R}^d$ with $x \ge y \Rightarrow \rho_{\mathcal{G}}(x) \le \rho_{\mathcal{G}}(y)$

and if there exists a realization $\rho_{\mathcal{G}}(\cdot, \cdot)$ with *continuous paths* such that $\rho_{\mathcal{G}}$ is

Risk-monotone: For all $X, Y \in L^{\infty}_{d}(\mathcal{F})$

 $\rho_{\mathcal{G}}\left(X_{\omega},\omega\right) \geq \rho_{\mathcal{G}}\left(Y_{\omega},\omega\right) \text{ a.s. } \Rightarrow \rho_{\mathcal{G}}\left(X,\omega\right) \geq \rho_{\mathcal{G}}\left(Y,\omega\right) \text{ a.s.}$

(*Risk-*) regular: $\rho_{\mathcal{G}}(X, \omega) = \rho_{\mathcal{G}}(X_{\omega}, \omega)$ a.s. $\forall X \in L^{\infty}_{d}(\mathcal{G})$

・ 同 ト ・ ヨ ト ・ ヨ ト

Risk-Consistent Conditional Systemic Risk Measures

Further risk-consistent properties: We say that $\rho_{\mathcal{G}}$ is

Risk-convex: If for $X, Y, Z \in L^{\infty}_{d}(\mathcal{F})$, $\alpha \in L^{\infty}(\mathcal{G})$ with $0 \le \alpha \le 1$ $\rho_{\mathcal{G}}(Z_{\omega}, \omega) = \alpha(\omega)\rho_{\mathcal{G}}(X_{\omega}, \omega) + (1-\alpha(\omega))\rho_{\mathcal{G}}(Y_{\omega}, \omega)$ a.s. $\Rightarrow \rho_{\mathcal{G}}(Z, \omega) \le \alpha(\omega)\rho_{\mathcal{G}}(X, \omega) + (1-\alpha(\omega))\rho_{\mathcal{G}}(Y, \omega)$ a.s.

Risk-quasiconvex: If for $X, Y, Z \in L^{\infty}_{d}(\mathcal{F}), \alpha \in L^{\infty}(\mathcal{G}), 0 \le \alpha \le 1$ $\rho_{\mathcal{G}}(Z_{\omega}, \omega) = \alpha(\omega)\rho_{\mathcal{G}}(X_{\omega}, \omega) + (1-\alpha(\omega))\rho_{\mathcal{G}}(Y_{\omega}, \omega) \text{ a.s.}$ $\Rightarrow \rho_{\mathcal{G}}(Z, \omega) \le \rho_{\mathcal{G}}(X, \omega) \lor \rho_{\mathcal{G}}(Y, \omega) \text{ a.s.}$

Risk-pos.-homogeneous: If for $X, Y \in L^{\infty}_{d}(\mathcal{F}), 0 \leq \alpha \in L^{\infty}(\mathcal{G})$ $\rho_{\mathcal{G}}(Y_{\omega}, \omega) = \alpha(\omega)\rho_{\mathcal{G}}(X_{\omega}, \omega) \text{ a.s.}$ $\Rightarrow \rho_{\mathcal{G}}(Y, \omega) \leq \alpha(\omega)\rho_{\mathcal{G}}(X, \omega) \text{ a.s.}$

Risk-Consistent Conditional Systemic Risk Measures

Further properties on constants: We say that $\rho_{\mathcal{G}}$ is

Convex on constants: If for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

$$ho_\mathcal{G}\left(\lambda x + (1-\lambda)y
ight) \leq \lambda
ho_\mathcal{G}(x) + (1-\lambda)
ho_\mathcal{G}(y)$$

Positively homogeneous on constants: If for all $x \in \mathbb{R}^d$ and $\lambda \ge 0$

$$\rho_{\mathcal{G}}(\lambda x) = \lambda \rho_{\mathcal{G}}(x)$$

Risk-Consistent Conditional Systemic Risk Measures

Risk-Consistent Conditional Systemic Risk Measures

Proposition: Let $\rho_{\mathcal{G}} : L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$ be a function which has a realization with continuous paths. Further suppose that

$$\rho_{\mathcal{G}}(x) = \sum_{i=1}^{s} a_i(x) \mathbb{I}_{A_i}, \ x \in \mathbb{R}^d,$$

where $a_i(x) \in \mathbb{R}$ and A_i are pairwise disjoint sets such that $\Omega = \bigcup_{i=1}^{s} A_i$ for $s \in \mathbb{N} \cup \{\infty\}$. Define

 $k: \Omega \to \mathbb{N}; \ \omega \mapsto i \text{ such that } \omega \in A_i.$

Then $\rho_{\mathcal{G}}$ is risk-monotone if and only if

 $\rho_{\mathcal{G}}(X_{\omega})\mathbb{I}_{\mathcal{A}_{k(\omega)}} \geq \rho_{\mathcal{G}}(Y_{\omega})\mathbb{I}_{\mathcal{A}_{k(\omega)}} \text{ for a.a. } \omega \Rightarrow \rho_{\mathcal{G}}(X) \geq \rho_{\mathcal{G}}(Y).$

Also the remaining risk-consistent properties can be expressed in a similar way without requiring a particular realization of $\rho_{\mathcal{G}}$.

Risk-Consistent Conditional Systemic Risk Measures

Risk-Consistent Conditional Systemic Risk Measures

Proposition: The following holds for a risk-consistent CSRM $\rho_{\mathcal{G}}$:

- If ρ_G is risk-monotone and monotone on constants, then ρ_G is monotone.
- If ρ_G is risk-quasiconvex and convex on constants, then ρ_G is quasiconvex.
- If ρ_G is risk-convex and convex on constants, then ρ_G is convex;
- ρ_G is risk positively homogeneous and positively homogeneous on constants iff ρ_G is positively homogeneous;

Definition: A function $\Lambda_{\mathcal{G}} : \mathbb{R}^d \times \Omega \to \mathbb{R}$ is a *conditional aggregation function* (CAF), if

- 1. $\Lambda_{\mathcal{G}}(x, \cdot) \in \mathcal{L}^{\infty}(\mathcal{G})$ for all $x \in \mathbb{R}^{d}$.
- 2. $\Lambda_{\mathcal{G}}(\cdot, \omega)$ is *continuous* for all $\omega \in \Omega$.
- 3. $\Lambda_{\mathcal{G}}(\cdot, \omega)$ is *monotone* (increasing) for all $\omega \in \Omega$.

Furthermore, $\Lambda_{\mathcal{G}}$ is called *concave* (*positively homogeneous*) if $\Lambda_{\mathcal{G}}(\cdot, \omega)$ is *concave* (*positively homogeneous*) for all $\omega \in \Omega$.

向下 イヨト イヨト

Given a CAF $\Lambda_{\cal G},$ we extend the aggregation from deterministic to random vectors in the following way:

$$\widetilde{\Lambda}_{\mathcal{G}}: \quad L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{F})$$
$$X(\omega) \mapsto \Lambda_{\mathcal{G}}(X(\omega), \omega)$$

Notice that the aggregation of random vectors is ω -wise in the sense that given a certain state $\omega \in \Omega$, in that state we aggregate the sure payoff $X(\omega)$.

白 ト イヨト イヨト

Definition: Let $F, G \in L^{\infty}(\mathcal{F})$. A function $\eta_{\mathcal{G}} : L^{\infty}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$ is a *conditional base risk measure* (CBRM), if it is

Monotone: $F \geq G \Rightarrow \eta_{\mathcal{G}}(F) \leq \eta_{\mathcal{G}}(G)$.

Constant on \mathcal{G} -constants: $\eta_{\mathcal{G}}(\alpha) = -\alpha \quad \forall \ \alpha \in L^{\infty}(\mathcal{G}).$

・ 同 ト ・ 三 ト ・ 三 ト

Risk-Consistent Conditional Systemic Risk Measures

Additional properties of CBRMs:

Convexity: For all $\alpha \in L^{\infty}(\mathcal{G})$ with $0 \leq \alpha \leq 1$

$$\eta_{\mathcal{G}}\left(\alpha F + (1-\alpha)G\right) \leq \alpha \eta_{\mathcal{G}}(G) + (1-\alpha)\eta_{\mathcal{G}}(G)$$

Quasiconvexity: For all $\alpha \in L^{\infty}(\mathcal{G})$ with $0 \le \alpha \le 1$ $\eta_{\mathcal{G}} (\alpha F + (1 - \alpha)G) \le \eta_{\mathcal{G}}(F) \lor \eta_{\mathcal{G}}(G)$

Positive homogeneity: For all $\alpha \in L^{\infty}(\mathcal{G})$ with $\alpha \geq 0$

$$\eta_{\mathcal{G}}(\alpha F) = \alpha \eta_{\mathcal{G}}(F)$$

Theorem: (Decomposition of conditional systemic risk measures) A map $\rho_{\mathcal{G}} : L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$ is a risk-consistent CSRM if and only if there exists a CBRM $\eta_{\mathcal{G}} : L^{\infty}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$ and a CAF $\Lambda_{\mathcal{G}}$ such that

$$ho_{\mathcal{G}}\left(X
ight)=\eta_{\mathcal{G}}\left(\widetilde{\mathsf{A}}_{\mathcal{G}}\left(X
ight)
ight) \quad orall X\in L^{\infty}_{d}(\mathcal{F}),$$

where $\widetilde{\Lambda}_{\mathcal{G}}(X) := \Lambda_{\mathcal{G}}(X(\omega), \omega).$

向下 イヨト イヨト

Theorem cont': Furthermore, the following equivalences hold:

- $\rho_{\mathcal{G}}$ is risk-convex iff $\eta_{\mathcal{G}}$ is convex;
- $\rho_{\mathcal{G}}$ is risk-quasiconvex iff $\eta_{\mathcal{G}}$ is quasiconvex;
- *ρ*_G is risk-positive homogeneous iff η_G is positive homogeneous;

and

- $\rho_{\mathcal{G}}$ is convex on constants iff $\Lambda_{\mathcal{G}}$ is concave;
- ρ_G is positive homogeneous on constants iff Λ_G is positive homogeneous.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

EXAMPLES AND SIMULATION STUDY

A ■ **Risk-Consistent Conditional Systemic Risk Measures**

< E > < E >

э

CoVar (analogue CoES) [Adrian & Brunnermeier, 2011]:

Let

$$\eta_{\mathcal{G}}(F) := \mathsf{VaR}_{\lambda}(F|\mathcal{G}) := - \operatorname{essinf}_{G \in L^{\infty}(\mathcal{G})} \left\{ \mathbb{P}(F \leq G \mid \mathcal{G}) > \lambda \right\},$$

where $F \in L^{\infty}(\mathcal{F})$, $\lambda \in L^{\infty}(\mathcal{G})$, and $0 < \lambda < 1$.

- ► For a fixed $j \in \{1, ..., d\}$ and $q \in (0, 1)$, define the event $A := \{X_j \le \mathsf{VaR}_q(X_j)\}$ and let $\mathcal{G} := \sigma(A)$.
- Define $\Lambda(x) := \sum x_i, x \in \mathbb{R}$.
- Then the CoVar is represented by η_G(Λ(X)), which is a positively homogeneous CSRM.

(ロ) (同) (E) (E) (E)

Example: Extended contagion model

- Π_{ji} denotes the proportion of the total interbank liabilities L_j of bank j which it owes to bank i.
- ► X_i represents the capital endowment of bank i.
- ► If a bank *i* defaults, i.e. X_i < 0, this generates further losses in the system by contagion.
- Systemic risk concerns the total loss in the network generated by a profit/loss profile X = (X₁,...,X_d).

(1日) (日) (日)

Examples

More realistic contagion aggregation:

▶ Total aggregated loss in the system for loss profile $x \in \mathbb{R}^d$:

$$\begin{split} \Lambda(x) &:= \min_{y, b \in \mathbb{R}^d} \sum_{i=1}^d \left(x_i + b_i + \left(\Pi^\top y \right)_i \right)^- + \gamma b_i \\ \text{subject to} \quad y_i &= \max\left(x_i + b_i + \sum_{j=1}^d \Pi_{ji} y_j \,, -L_i \right) \,\,\forall i \\ \text{and} \quad y \leq 0, \, b \geq 0. \end{split}$$

- Bank i decreases its liabilities to the remaining banks by y_i.
- This decreases the equity values of its creditors, which can result in a further default.
- A regulator injects b_i (weighted by $\gamma > 1$) into bank *i*.

Examples

Conditional contagion aggregation:

- Let the proportional liability matrix Π_{ji}(ω) ∈ L[∞](G) be stochastic.
- Then the corresponding CAF becomes

$$\begin{split} \Lambda(x,\omega) &:= \min_{y,b \in \mathbb{R}^d} \sum_{i=1}^d \left(x_i + b_i + \left(\Pi^\top(\omega) y \right)_i \right)^- + \gamma b_i \\ \text{subject to} \quad y_i &= \max \left(y_i + b_i \leq x_i + \sum_{j=1}^d \Pi_{ji}(\omega) y_j, -L_i \right) \ \forall i \\ \text{and} \quad y \leq 0, b \geq 0. \end{split}$$

(1日) (日) (日)

Numerical case study

- d = 10 financial institutions;
- One realization of an Erdös-Rényi graph with success probability p = 0.35 and with half-normal distributed weights/liabilities;
- Initial capital endowment proportional to the total interbank assets;
- 0.5 correlated normally distributed shocks on this initial capital;

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples

Risk-Consistent Conditional Systemic Risk Measures

Statistics for Λ for 30000 shock scenarios:

γ	1.6	2.6	'∞'	
Mean	78.26	195.27		
5% Quantile	333.09	541.41	977.79	
Standard Deviation	121.79	198.17	337.98	
$\sum b_i$	38.54	30.45	0.00	
Initially defaulted banks	2.78			
Defaulted banks without regulator	3.83			
Defaulted banks with regulator	2.93	3.33	3.83	

Risk-Consistent Conditional Systemic Risk Measures

- - 4 回 ト - 4 回 ト

Systemic ranking by CoVar:

2.6	FI j	2	3	6	4	7	1	10	9	5	8
_ = ح	$\mathrm{CoVaR}_{0.1}^{j}$	266.94	297.28	298.49	308.61	320.58	322.56	332.94	355.23	362.27	367.68
8	FI j	2	4	3	7	9	6	1	10	8	5
3	$\mathrm{CoVaR}_{0.1}^{j}$	397.73	419.11	423.18	459.33	471.81	473.61	481.40	548.21	563.60	601.09
	FI j	2	6	10	3	1	7	5	9	8	4
	$-\mathrm{VaR}_{0.1}(x_j)$	13.30	-7.67	-15.05	-17.01	-20.69	-22.98	-26.89	-30.48	-32.11	-33.41
	FI j	4	3	7	9	1	6	2	10	8	5
	L_j	34	63	66	69	147	171	227	255	256	320

Table 4.3: Systemic importance ranking based on $\text{CoVaR}_{0,1}^{j}$.

Risk-Consistent Conditional Systemic Risk Measures

・ 回 と く ヨ と く ヨ と

STRONG CONSISTENCY AND RISK-CONSISTENCY

個 と く ヨ と く ヨ と

э

Strong consistency and risk-consistency

We now consider CSRMs $\rho_{\mathcal{G}} : L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$ fulfilling:

Monotonicity: $X \ge Y \implies \rho_{\mathcal{G}}(X) \le \rho_{\mathcal{G}}(Y)$

Strong Sensitivity: $X \ge Y$ and $\mathbb{P}(X > Y) > 0$

$$\implies \mathbb{P}(
ho_{\mathcal{G}}(X) <
ho_{\mathcal{G}}(Y)) > 0$$

Locality:
$$\rho_{\mathcal{G}}(X\mathbb{I}_{A} + Y\mathbb{I}_{A^{C}}) = \rho_{\mathcal{G}}(X)\mathbb{I}_{A} + \rho_{\mathcal{G}}(Y)\mathbb{I}_{A^{C}} \quad \forall A \in \mathcal{G}$$

Lebesgue property: For any uniformly bounded sequence $(X_n)_{n \in \mathbb{N}}$ in $L^{\infty}_{d}(\mathcal{F})$ such that $X_n \to X \mathbb{P}$ -a.s.

$$\rho_{\mathcal{G}}(X) = \lim_{n \to \infty} \rho_{\mathcal{G}}(X_n) \quad \mathbb{P}\text{-a.s.}$$

- イボト イヨト - ヨ

Strong consistency and risk-consistency

On (Ω, F, ℙ) let E be a family of sub-σ-algebras of F such that {Ø, Ω}, F ∈ E.

Definition: A family $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ of conditional systemic risk measures (CSRM)

 $\rho_{\mathcal{G}}: L^{\infty}_{d}(\mathcal{F}) \to L^{\infty}(\mathcal{G})$

is (strongly) consistent if for all $\mathcal{G}, \mathcal{H} \in \mathcal{E}$ with $\mathcal{G} \subseteq \mathcal{H}$ and $X, Y \in L^{\infty}_{d}(\mathcal{F})$

 $\rho_{\mathcal{H}}(X) \leq \rho_{\mathcal{H}}(Y) \text{ a.s.} \Longrightarrow \rho_{\mathcal{G}}(X) \leq \rho_{\mathcal{G}}(Y) \text{ a.s.}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark: In case $\rho_{\mathcal{G}}$ and $\rho_{\mathcal{H}}$ are univariate monetary risk measures that are constant-on-constants, strong consistency is equivalent to

 $\rho_{\mathcal{G}}(X) = \rho_{\mathcal{G}}(\rho_{\mathcal{H}}(X)).$

向下 イヨト イヨト

Definition: Given a CSRM $\rho_{\mathcal{G}}$ we define

 $f_{\rho_{\mathcal{G}}}: L^{\infty}(\mathcal{G}) \to L^{\infty}(\mathcal{G}); \alpha \mapsto \rho_{\mathcal{G}}(\alpha \mathbf{1}_d)$

and its corresponding inverse function (which is well-defined)

 $f_{\rho_{\mathcal{G}}}^{-1}$: Im $f_{\rho_{\mathcal{G}}} \to L^{\infty}(\mathcal{G})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma: $f_{\rho_{\mathcal{G}}}$ and $f_{\rho_{\mathcal{G}}}^{-1}$ are antitone, strongly sensitive, local, and fulfill the Lebesgue property. Further

 $\rho_{\mathcal{G}}(L^{\infty}_{d}(\mathcal{F})) = f_{\rho_{\mathcal{G}}}(L^{\infty}(\mathcal{G})).$

向下 イヨト イヨト

Lemma: The following statements are equivalent

1. $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ is strongly consistent;

2.
$$\rho_{\mathcal{G}}(X) = \rho_{\mathcal{G}}\Big(f_{\rho_{\mathcal{H}}}^{-1}\big(\rho_{\mathcal{H}}(X)\big)\mathbf{1}_{d}\Big) \quad \forall X \in L^{\infty}_{d}(\mathcal{F}), \mathcal{G} \subseteq \mathcal{H}$$

• • = • • = •

Lemma: The following statements are equivalent

1. $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ is strongly consistent;

2.
$$\rho_{\mathcal{G}}(X) = \rho_{\mathcal{G}}\Big(f_{\rho_{\mathcal{H}}}^{-1}\big(\rho_{\mathcal{H}}(X)\big)\mathbf{1}_{d}\Big) \quad \forall X \in L^{\infty}_{d}(\mathcal{F}), \mathcal{G} \subseteq \mathcal{H}$$

Remark: In case $\rho_{\mathcal{G}}$ and $\rho_{\mathcal{H}}$ are univariate risk measures that are constant-on-constants, $f_{\rho_{\mathcal{H}}}^{-1} = -id$ and 2. reduces to

2.
$$\rho_{\mathcal{G}}(X) = \rho_{\mathcal{G}}(\rho_{\mathcal{H}}(X))$$

Strong consistency and risk-consistency

Remark: Let $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ be a family of CRMs and define the normalized family

 $(\widetilde{\rho}_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}} := (-f_{\rho_{\mathcal{G}}}^{-1} \circ \rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$

Then (p̃_G)_{G∈E} is a family of CRMs which is consistent iff (p_G)_{G∈E} is consistent.

Further,

$$f_{\widetilde{
ho}_{\mathcal{G}}} = -id$$

which can be considered as a vector generalization of the constant-on-constants property for univariate risk measures.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem: Let $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ be strongly consistent. Assume there exists a continuous realizations $\rho_{\mathcal{G}}(\cdot, \cdot)$ for all $\mathcal{G}\in\mathcal{E}$ and that

$$f_{\rho_{\mathcal{F}}}^{-1} \circ \rho_{\mathcal{F}}(x) \in \mathbb{R} \quad \forall x \in \mathbb{R}^d.$$

Then for all $\mathcal{G} \in \mathcal{E}$ the risk measure $\rho_{\mathcal{G}}$ is risk-consistent, i.e. there exists an CAF $\Lambda_{\mathcal{G}}$ and a CBRM $\eta_{\mathcal{G}}$ such that

 $\rho_{\mathcal{G}} = \eta_{\mathcal{G}} \circ \Lambda_{\mathcal{G}} \,.$

Risk-Consistent Conditional Systemic Risk Measures

伺 ト イヨト イヨト

Theorem cont': Further, the CAF are strongly consistent in the sense that for all $\mathcal{G} \subseteq \mathcal{H}$

 $\Lambda_{\mathcal{H}}(X) \leq \Lambda_{\mathcal{H}}(Y) \implies \Lambda_{\mathcal{G}}(X) \leq \Lambda_{\mathcal{G}}(Y) \quad (X,Y \in L^{\infty}_{d}(\mathcal{F})),$

which is equivalent to

 $f_{\Lambda_{\mathcal{G}}}^{-1}\big(\Lambda_{\mathcal{G}}(X)\big)=f_{\Lambda_{\mathcal{F}}}^{-1}\big(\Lambda_{\mathcal{F}}(X)\big), \text{ for all } X\in L^\infty_d(\mathcal{F}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Law-invariant, consistent systemic risk measures:

Definition: A CSRM is called conditional law-invariant if

 $\mu_{X}(\cdot|\mathcal{G}) = \mu_{Y}(\cdot|\mathcal{G}) \Longrightarrow \rho_{\mathcal{G}}(X) = \rho_{\mathcal{G}}(Y),$

where $\mu_X(\cdot|\mathcal{G})$ and $\mu_Y(\cdot|\mathcal{G})$ are the \mathcal{G} -conditional distributions of $X, Y \in L^{\infty}_d(\mathcal{F})$ resp.

Assumption: There exists $\mathcal{H} \in \mathcal{E}$ such that $(\Omega, \mathcal{H}, \mathbb{P})$ is atomless, and $(\Omega, \mathcal{F}, \mathbb{P})$ is conditionally atomless given \mathcal{H} .

・吊り ・ヨト ・ヨト ・ヨ

Theorem [Föllmer, 2014]: Let $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ be a family of univariate, conditionally law-invariant, monetary risk measures. Then $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ is strongly consistent iff the $\rho_{\mathcal{G}}$ are certainty equivalents of the form

 $\rho_{\mathcal{G}}(F) = u^{-1} \big(\mathbb{E}_{\mathbb{P}} \left(\left. u(F) \right| \, \mathcal{G} \right) \big), \quad \forall F \in L^{\infty}_{,}(\mathcal{F})$

where $u : \mathbb{R} \to \mathbb{R}$ is strictly increasing and continuous.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Strong consistency and risk-consistency

Theorem: Let $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ be a family of conditionally law-invariant CSRMs. Then $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ is strongly consistent iff each $\rho_{\mathcal{G}}$ is of the form

$$\rho_{\mathcal{G}}(X) = g_{\mathcal{G}}\left(f_u^{-1}(\mathbb{E}_{\mathbb{P}}(u(X) \mid \mathcal{G}))\right), \quad \forall X \in L^{\infty}_d(\mathcal{F}),$$

where

- $u: \mathbb{R}^d \to \mathbb{R}$ is strictly increasing and continuous
- ► f_u^{-1} : Im $f_u \to \mathbb{R}$ is the unique inverse function of $f_u : \mathbb{R} \to \mathbb{R}$; $x \mapsto u(x\mathbf{1}_d)$
- ▶ $g_G : L^{\infty}(G) \to L^{\infty}(G)$ is antitone, strongly sensitive, local, and fulfills the Lebesgue property
- In particular, $g_{\mathcal{G}} = f_{\rho_{\mathcal{G}}}$ for all $\mathcal{G} \in \mathcal{E}$.

▲□→ ▲ 国 → ▲ 国 →

Strong consistency and risk-consistency

Corollary: Let $(\rho_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ be a family of conditionally law-invariant, strongly consistent CSRMs. Under the assumptions from above, the risk-consistent decomposition $\rho_{\mathcal{G}} = \eta_{\mathcal{G}} \circ \Lambda_{\mathcal{G}}$ is given by a stochastic certainty equivalent $\eta_{\mathcal{G}}$ of the form

 $\eta_{\mathcal{G}}(F) = -U_{\mathcal{G}}^{-1}\left(\mathbb{E}_{\mathbb{P}}\left(\left.U_{\mathcal{G}}(F) \mid \mathcal{G}\right)\right), \quad F \in L^{\infty}(\mathcal{F}),$

where $U_{\mathcal{G}} := f_u \circ \widetilde{g}_{\mathcal{G}}^{-1} : L^{\infty}(\mathcal{F}) \to L^{\infty}(\mathcal{F})$ and $\widetilde{g}_{\mathcal{G}}$ is a certain extension of $g_{\mathcal{G}}$ from $L^{\infty}(\mathcal{G})$ to $L^{\infty}(\mathcal{F})$, and the aggregation

$$\Lambda_{\mathcal{G}} := \widetilde{g}_{\mathcal{G}} \circ f_u^{-1} \circ u.$$

Further, the CBRM $\eta_{\mathcal{G}}$ and the aggregation $\Lambda^{\mathcal{G}}$ are related to each other by

$$U_{\mathcal{G}}(\Lambda^{\mathcal{G}}(x)) = u(x) \quad \forall x \in \mathbb{R}^d, \, \mathcal{G} \in \mathcal{E}.$$

Corollary: Let CBRMs $(\eta_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ and CAFs $(\Lambda_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ be given such that $(\eta_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ are strongly consistent and $(\rho_{\mathcal{G}} := \eta_{\mathcal{G}} \circ \Lambda_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ are conditionally law-invariant, strongly consistent CSRMs. Then the CBRMs $(\eta_{\mathcal{G}})_{\mathcal{G}\in\mathcal{E}}$ must be certainty equivalents of the form

 $\eta_{\mathcal{G}}(F) := u^{-1} (\mathbb{E}_{\mathbb{P}} (u(F) \mid \mathcal{G})), \quad F \in L^{\infty}(\mathcal{F}),$

where $u : \mathbb{R} \to \mathbb{R}$ is strictly increasing and continuous, and the CAFs $(\Lambda_{\mathcal{G}})_{\mathcal{G} \in \mathcal{E}}$ must be of the form

 $\Lambda_{\mathcal{G}} = f\left(\alpha_{\mathcal{G}} \cdot \Lambda(x) + \beta_{\mathcal{G}}\right),\,$

for some deterministic AF Λ , \mathcal{G} -constants $\alpha_{\mathcal{G}}, \beta_{\mathcal{G}} \in L^{\infty}(\mathcal{G})$, and some strictly increasing and continuous $f : \mathbb{R} \to \mathbb{R}$.

References

- V. V. Acharya, L. H. Pedersen, T. Philippon, and M. Richardson. Measuring systemic risk. Working paper, March 2010.
- Adrian, T. and M. K. Brunnermeier (2011). Covar. Technical report, National Bureau of Economic Research.
- - Amini, H., D. Filipovic & A. Minca (2013), Systemic risk with central counterparty clearing, Swiss Finance Institute Research Paper No. 13-34, Swiss Finance Institute
- Awiszus, K. & Weber, S. (2015): The Joint Impact of Bankruptcy Costs, Cross-Holdings and Fire Sales on Systemic Risk in Financial Networks, preprint
- Artzner, Delbaen, Eber, Heath: Coherent measures of risk, Math. Fin., 1999
- Brunnermeier, M. K. and P. Cheridito (2013). Measuring and allocating systemic risk. Available at SSRN

・ 回 ト ・ ヨ ト ・ ヨ ト

References

- Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and Montrucchio, L., Riskmeasures: rationality and diversication, Mathematical Finance, 21, 743 - 774 (2011)
- - Chen, C., G. Iyengar, and C. C. Moallemi (2013). An axiomatic approach to systemic risk. Management Science 59(6), 13731388.
- Cifuentes, R., G. Ferrucci & H. S. Shin (2005), Liquidity risk and contagion, Journal of the European Economic Association 3 (2-3), 556566]
- Detlefsen, K. and G. Scandolo (2005). Conditional and dynamic convex risk measures. Finance and Stochastics 9(4), 539561..
- Föllmer, H., Spatial Risk Measures and their Local Specication: The Locally Law-Invariant Case, Statistics & Risk Modeling 31(1), 79103, 2014.

Föllmer, H. & A. Schied (2011). Stochastic Finance: An introduction in discrete time (3rd ed.). De Gruyter.

イロン 不同と 不同と 不同と

References

- Föllmer, H., Klüppelberg, C., Spatial risk measures: local specification and boundary risk. In: Crisan, D., Hambly, B. and Zariphopoulou, T.: Stochastic Analysis and Applications 2014 - In Honour of Terry Lyons . Springer, 2014, 307-326
- Frittelli, M. & M. Maggis (2011). Conditional certainty equivalent. International Journal of Theoretical and Applied Finance 14 (01), 4159
- Gai, P. & Kapadia, S. (2010), Contagion in financial networks, Bank of England Working Papers 383, Bank of England
- X. Huang, H. Zhou, and H. Zhu. A framework for assessing the systemic risk of major financial institutions. Journal of Banking & Finance, 33(11):20362049, 2009.

Kromer E., Overbeck, L., Zilch, K.. Systemic risk measures on general probability spaces, preprint, 2013.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

- A. Lehar. Measuring systemic risk: A risk management approach. Journal of Banking & Finance, 29(10): 25772603, 2005

Rogers, L. C. G. & L. A. M. Veraart (2013), Failure and rescue in an interbank network, Management Science 59(4), 882898.

Tutsch, S. (2007). Konsistente und konsequente dynamische Risikomae und das Problem der Aktualisierung. Ph. D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II.

<回と < 目と < 目と