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Motivation

I Let
X = (X1, . . . ,Xd) ∈ L∞d (F)

represent (monetary) risk factors associated to a system of d
interacting financial institutions.
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Motivation

I Let
X = (X1, . . . ,Xd) ∈ L∞d (F)

represent (monetary) risk factors associated to a system of d
interacting financial institutions.

I Traditional approach to risk management: Measuring
stand-alone risk of each institution

η (Xi )

for some univariate risk measure η : L∞(F)→ R.
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Motivation

Axiomatic characterization of (univariate) risk measures:

A map η : L∞(F)→ R is a monetary risk measure, if it is

I Monotone: X1 ≥ X2 ⇒ η(X1) ≤ η(X2).

I Cash-invariant:] η(X + m) = η(X )−m for all m ∈ R.

(Constant-on-constants: η(m) = −m for all m ∈ R.)

A monetary risk measure is called convex, if it is

I Convex: η(λX1 + (1− λ)X2) ≤ λη(X1) + (1− λ)η(X2) for
λ ∈ [0, 1].

(Quasi-convex: η(λX1 + (1− λ)X2) ≤ max{η(X1), η(X2)}.)

A convex risk measure is called coherent, if it is

I Pos. homogeneity: η(λX ) = λη(X ) for λ ≥ 0.
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Motivation

However,

I Financial crisis: traditional approach to regulation and risk
management insufficiently captures

Systemic risk: risk that in case of an adverse (local) shock
substantial parts of the system default.

I Question: Given the system X = (X1, . . . ,Xd), what is an
appropriate risk measure

ρ : L∞d (F)→ R

of systemic risk?
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Motivation

I Most proposals of systemic risk measures in the post-crisis
literature are of the form

ρ(X ) := η (Λ(X ))

for some univariate risk measure

η : L∞(F)→ R

and some aggregation function

Λ : Rd → R.
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Motivation

Some examples:

I Appropriate aggregation to reflect systemic risk?

Systemic Expected Shortfall

[Acharya et al., 2011]

ρ(X ) := ESq

(
d∑

i=1

Xi

)
where ESq is the univariate Expected Shortfall at level q ∈ [0, 1].
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Motivation

Deposit Insurance [Lehar, 2005], [Huang, Zhou & Zhu, 2011]

ρ(X ) := E

(
d∑

i=1

−X−i

)

SystRisk [Brunnermeier & Cheridito, 2013]

ρ(X ) := ηSystRisk

(
d∑

i=1

−αiX
−
i + βi (X

+
i − vi )

)

where ηSystRisk is some utility-based univariate risk measure.
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Motivation

Contagion model

I Πji denotes the proportion of the total liabilities Lj of bank j
which it owes to bank i .

I Xi represents the capital endowment of bank i .

I If a bank i defaults, i.e. Xi < 0, this generates further losses
in the system by contagion.

I Systemic risk concerns the total loss in the network generated
by a profit/loss profile X = (X1, . . . ,Xd).
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Motivation

[Chen, Iyengar & Moallemi, 2013], [Eisenberg, Noe, 2001]

Total loss in the system induced by some initial loss profile x ∈ Rd :

Λ(x) := min
y ,b∈Rd

−

d∑
i=1

−yi − γbi

subject to yi = xi − bi +
d∑

j=1

Πjiyj ∀i

I Bank i decreases its liabilities to the remaining banks by yi .

I This decreases the equity values of its creditors, which can
result in a further default.

I A regulator injects bi (weighted by γ > 1) into bank i .
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Motivation

I Various extensions of the Eisenberg & Noe framework to
include further channels of contagion, see e.g.

I [Amini, Filipovic & Minca, 2013]

I [Awiszus & Weber, 2015]

I [Cifuentes, Ferrucci & Shin, 2005]

I [Gai & Kapadia, 2010]

I [Rogers & Veraart, 2013]
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Motivation

I Conditional risk measuring interesting in systemic risk
→ identification of systemic relevant structures

CoVar and CoES [Adrian, Brunnermeier, 2011]

ρ(X ) := VaRq

(
d∑

i=1

Xi | Xj ≤ −VaRq(Xj)

)

[Acharya et al., 2011]

ESq

(
Xj |

d∑
i=1

Xi ≤ −VaRq(
d∑

i=1

Xi )

)
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Motivation

→ conditional risk measure

η : L∞(F)→ L∞(G)

for some sub-σ-algebra G ⊂ F

I Broad literature on conditional risk measures in a dynamic
setup (e.g. [Detlefsen & Scandolo, 2005], [Föllmer & Schied,
2011], [Frittelli & Maggis, 2011], [Tutsch, 2007]).

I In the context of systemic risk, see also [Föllmer, 2014] and
[Föllmer & Klüppelberg, 2014]:
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Motivation

But also conditional aggregation Λ(x , ω) appears naturally; f.ex.:

I The way of aggregation might depend on macroeconomic
factors:

I Countercyclical regulation: more severe when economy is in
good shape than in times of financial distress

I Stochastic discounting: Λ(x , ω) = Λ̃(x)D(ω), where D is some
stochastic discount factor.

I Liability matrix Π = Π(ω) in contagion model above might be
stochastic (derivative exposures between banks)
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Motivation

Objective of this presentation: Structural analysis of conditional
systemic risk measures ρG : L∞d (F)→ L∞(G), G ⊂ F , of the form

ρG(X ) := ηG (ΛG(X ))

where ηG is some univariate conditional risk measure and ΛG some
conditional aggregation function.
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Motivation

Structure of remaining presentation:

1. Axiomatic characterization of conditional systemic risk
measures of this type

2. Examples and simulation study

3. Strong consistency and risk-consistency
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AXIOMATIC CHARACTERIZATION OF
RISK-CONSISTENT CONDITIONAL

SYSTEMIC RISK MEASURES
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Risk-Consistent Conditional Systemic Risk Measures

Aim: Axiomatic characterization of conditional systemic risk
measures of the form η (Λ(X )) in terms of properties on constants
and risk-consistent properties.

I Risk-consistent properties ensure a consistency between local -
that is ω-wise - risk assessment and the measured global risk.

For deterministic risk measures [Chen, Iyengar & Moallemi, 2013],
f. ex.:

I Risk-monotonicity : if for given risk vectors X and Y we have
ρ(X (ω)) ≥ ρ(Y (ω)) in a.a. states ω, then ρ(X ) ≥ ρ(Y ).
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Risk-Consistent Conditional Systemic Risk Measures

In the deterministic case:

I [Chen, Iyengar & Moallemi, 2013] on finite probability space

I [Kromer, Overbeck & Zilch, 2013] general probability space

Our contribution:

I Conditional setting

I More comprehensive structural analysis

I More flexible aggregation and axiomatic setting
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Risk-Consistent Conditional Systemic Risk Measures

Notation: Given (Ω,F ,P) and a sub-σ-algebra G ⊂ F :

I A realization of a function

ρG : L∞d (F)→ L∞(G)

is a function
ρG(·, ·) : L∞d (F)× Ω→ R

such that ρG (X , ·) ∈ ρG(X ) for all X ∈ L∞d (F).

I A realization ρG(·, ·) has continuous path if ρG (·, ω) : Rd → R
is continuous for all ω ∈ Ω.

I We denote the constant random vector Xω̂ , ω̂ ∈ Ω, by

Xω̂(ω) := X (ω̂) ∀ω ∈ Ω

.
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Risk-Consistent Conditional Systemic Risk Measures

Definition: A function ρG : L∞d (F)→ L∞(G) is called
risk-consistent conditional systemic risk measure (CSRM), if it is

Monotone on constants: x , y ∈ Rd with x ≥ y ⇒ ρG(x) ≤ ρG(y)

and if there exists a realization ρG (·, ·) with continuous paths such
that ρG is

Risk-monotone: For all X ,Y ∈ L∞d (F)

ρG (Xω, ω) ≥ ρG (Yω, ω) a.s.⇒ ρG (X , ω) ≥ ρG (Y , ω) a.s.

(Risk-) regular: ρG (X , ω) = ρG (Xω, ω) a.s. ∀X ∈ L∞d (G)
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Further risk-consistent properties: We say that ρG is

Risk-convex: If for X ,Y ,Z ∈ L∞d (F), α ∈ L∞(G) with 0 ≤ α ≤ 1

ρG (Zω, ω) = α(ω)ρG (Xω, ω)+
(
1−α(ω)

)
ρG (Yω, ω) a.s.

⇒ ρG (Z , ω) ≤ α(ω)ρG (X , ω)+(1−α(ω))ρG (Y , ω) a.s.

Risk-quasiconvex: If for X ,Y ,Z ∈ L∞d (F), α ∈ L∞(G), 0 ≤ α ≤ 1

ρG (Zω, ω) = α(ω)ρG (Xω, ω)+
(
1−α(ω)

)
ρG (Yω, ω) a.s.

⇒ ρG (Z , ω) ≤ ρG (X , ω) ∨ ρG (Y , ω) a.s.

Risk-pos.-homogeneous: If for X ,Y ∈ L∞d (F), 0 ≤ α ∈ L∞(G)

ρG (Yω, ω) = α(ω)ρG (Xω, ω) a.s.

⇒ ρG (Y , ω) ≤ α(ω)ρG (X , ω) a.s.
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Further properties on constants: We say that ρG is

Convex on constants: If for all x , y ∈ Rd and λ ∈ [0, 1]

ρG (λx + (1− λ)y) ≤ λρG(x) + (1− λ)ρG(y)

Positively homogeneous on constants: If for all x ∈ Rd and λ ≥ 0

ρG(λx) = λρG(x)
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Proposition: Let ρG : L∞d (F)→ L∞(G) be a function which has a
realization with continuous paths. Further suppose that

ρG(x) =
s∑

i=1

ai (x)IAi
, x ∈ Rd ,

where ai (x) ∈ R and Ai are pairwise disjoint sets such that
Ω =

⋃s
i=1 Ai for s ∈ N ∪ {∞}. Define

k : Ω→ N; ω 7→ i such that ω ∈ Ai .

Then ρG is risk-monotone if and only if

ρG(Xω)IAk(ω)
≥ ρG(Yω)IAk(ω)

for a.a. ω ⇒ ρG(X ) ≥ ρG(Y ).

Also the remaining risk-consistent properties can be expressed in a
similar way without requiring a particular realization of ρG .
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Proposition: The following holds for a risk-consistent CSRM ρG :

I If ρG is risk-monotone and monotone on constants, then ρG is
monotone.

I If ρG is risk-quasiconvex and convex on constants, then ρG is
quasiconvex.

I If ρG is risk-convex and convex on constants, then ρG is
convex;

I ρG is risk positively homogeneous and positively homogeneous
on constants iff ρG is positively homogeneous;
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Definition: A function ΛG : Rd × Ω→ R is a conditional
aggregation function (CAF), if

1. ΛG (x , ·) ∈ L∞(G) for all x ∈ Rd .

2. ΛG (·, ω) is continuous for all ω ∈ Ω.

3. ΛG (·, ω) is monotone (increasing) for all ω ∈ Ω.

Furthermore, ΛG is called concave (positively homogeneous) if
ΛG (·, ω) is concave (positively homogeneous) for all ω ∈ Ω.
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Given a CAF ΛG , we extend the aggregation from deterministic to
random vectors in the following way:

Λ̃G : L∞d (F)→ L∞(F)

X (ω) 7→ ΛG (X (ω), ω)

Notice that the aggregation of random vectors is ω-wise in the
sense that given a certain state ω ∈ Ω, in that state we aggregate
the sure payoff X (ω).
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Definition: Let F ,G ∈ L∞(F). A function ηG : L∞(F)→ L∞(G)
is a conditional base risk measure (CBRM), if it is

Monotone: F ≥ G ⇒ ηG(F ) ≤ ηG(G ).

Constant on G-constants: ηG(α) = −α ∀ α ∈ L∞(G).
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Additional properties of CBRMs:

Convexity: For all α ∈ L∞(G) with 0 ≤ α ≤ 1

ηG (αF + (1− α)G ) ≤ αηG(G ) + (1− α)ηG(G )

Quasiconvexity: For all α ∈ L∞(G) with 0 ≤ α ≤ 1

ηG (αF + (1− α)G ) ≤ ηG(F ) ∨ ηG(G )

Positive homogeneity: For all α ∈ L∞(G) with α ≥ 0

ηG(αF ) = αηG(F )

Risk-Consistent Conditional Systemic Risk Measures



Risk-Consistent Conditional Systemic Risk Measures

Theorem: (Decomposition of conditional systemic risk measures)

A map ρG : L∞d (F)→ L∞(G) is a risk-consistent CSRM if and only
if there exists a CBRM ηG : L∞(F)→ L∞(G) and a CAF ΛG such
that

ρG (X ) = ηG

(
Λ̃G (X )

)
∀X ∈ L∞d (F),

where Λ̃G (X ) := ΛG (X (ω), ω).
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Theorem cont’: Furthermore, the following equivalences hold:

I ρG is risk-convex iff ηG is convex;

I ρG is risk-quasiconvex iff ηG is quasiconvex;

I ρG is risk-positive homogeneous iff ηG is positive
homogeneous;

and

I ρG is convex on constants iff ΛG is concave;

I ρG is positive homogeneous on constants iff ΛG is positive
homogeneous.
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EXAMPLES AND SIMULATION STUDY
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Examples

CoVar (analogue CoES) [Adrian & Brunnermeier, 2011]:

I Let

ηG(F ) := VaRλ(F |G) := − essinf
G∈L∞(G)

{
P
(
F ≤ G

∣∣ G) > λ
}
,

where F ∈ L∞(F), λ ∈ L∞(G), and 0 < λ < 1.

I For a fixed j ∈ {1, ..., d} and q ∈ (0, 1), define the event
A := {Xj ≤ −VaRq(Xj)} and let G := σ(A).

I Define Λ(x) :=
∑

xi , x ∈ R.

I Then the CoVar is represented by ηG(Λ(X )), which is a
positively homogeneous CSRM.
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Example: Extended contagion model

I Πji denotes the proportion of the total interbank liabilities Lj
of bank j which it owes to bank i .

I Xi represents the capital endowment of bank i .

I If a bank i defaults, i.e. Xi < 0, this generates further losses
in the system by contagion.

I Systemic risk concerns the total loss in the network generated
by a profit/loss profile X = (X1, . . . ,Xd).
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More realistic contagion aggregation:

I Total aggregated loss in the system for loss profile x ∈ Rd :

Λ(x) := min
y ,b∈Rd

d∑
i=1

(
xi + bi +

(
Π>y

)
i

)−
+ γbi

subject to yi = max

xi + bi +
d∑

j=1

Πjiyj ,−Li

 ∀i
and y ≤ 0, b ≥ 0.

I Bank i decreases its liabilities to the remaining banks by yi .

I This decreases the equity values of its creditors, which can
result in a further default.

I A regulator injects bi (weighted by γ > 1) into bank i .

Risk-Consistent Conditional Systemic Risk Measures



Examples

Conditional contagion aggregation:

I Let the proportional liability matrix Πji (ω) ∈ L∞(G) be
stochastic.

I Then the corresponding CAF becomes

Λ(x , ω) := min
y ,b∈Rd

d∑
i=1

(
xi + bi +

(
Π>(ω)y

)
i

)−
+ γbi

subject to yi = max

yi + bi ≤ xi +
d∑

j=1

Πji (ω)yj ,−Li

 ∀i
and y ≤ 0, b ≥ 0.
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Numerical case study

I d = 10 financial institutions;

I One realization of an Erdös-Rényi graph with success
probability p = 0.35 and with half-normal distributed
weights/liabilities;

I Initial capital endowment proportional to the total interbank
assets;

I 0.5 correlated normally distributed shocks on this initial
capital;
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Statistics for Λ for 30000 shock scenarios:

γ 1.6 2.6 ’∞’

Mean 78.26 115.69 195.27

5% Quantile 333.09 541.41 977.79

Standard Deviation 121.79 198.17 337.98∑
bi 38.54 30.45 0.00

Initially defaulted banks 2.78

Defaulted banks without regulator 3.83

Defaulted banks with regulator 2.93 3.33 3.83
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Systemic ranking by CoVar:
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STRONG CONSISTENCY AND
RISK-CONSISTENCY
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Strong consistency and risk-consistency

We now consider CSRMs ρG : L∞d (F)→ L∞(G) fulfilling:

Monotonicity: X ≥ Y =⇒ ρG(X ) ≤ ρG(Y )

Strong Sensitivity: X ≥ Y and P(X > Y ) > 0

=⇒ P
(
ρG(X ) < ρG(Y )

)
> 0

Locality: ρG(X IA + Y IAC ) = ρG(X )IA + ρG(Y )IAC ∀A ∈ G

Lebesgue property: For any uniformly bounded sequence (Xn)n∈N
in L∞d (F) such that Xn → X P-a.s.

ρG(X ) = lim
n→∞

ρG(Xn) P-a.s.
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Strong consistency and risk-consistency

I On (Ω,F ,P) let E be a family of sub-σ-algebras of F such
that {∅,Ω},F ∈ E .

Definition: A family
(
ρG
)
G∈E of conditional systemic risk

measures (CSRM)

ρG : L∞d (F)→ L∞(G)

is (strongly) consistent if for all G,H ∈ E with G ⊆ H and
X ,Y ∈ L∞d (F)

ρH(X ) ≤ ρH(Y ) a.s. =⇒ ρG(X ) ≤ ρG(Y ) a.s..
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Strong consistency and risk-consistency

Remark: In case ρG and ρH are univariate monetary risk measures
that are constant-on-constants, strong consistency is equivalent to

ρG(X ) = ρG
(
ρH(X )

)
.
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Strong consistency and risk-consistency

Definition: Given a CSRM ρG we define

fρG : L∞(G)→ L∞(G);α 7→ ρG(α1d)

and its corresponding inverse function (which is well-defined)

f −1
ρG : Im fρG → L∞(G).
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Strong consistency and risk-consistency

Lemma: fρG and f −1
ρG are antitone, strongly sensitive, local, and

fulfill the Lebesgue property. Further

ρG(L∞d (F)) = fρG (L∞(G)).
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Strong consistency and risk-consistency

Lemma: The following statements are equivalent

1. (ρG)G∈E is strongly consistent;

2. ρG(X ) = ρG

(
f −1
ρH

(
ρH(X )

)
1d

)
∀X ∈ L∞d (F),G ⊆ H
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Strong consistency and risk-consistency

Lemma: The following statements are equivalent

1. (ρG)G∈E is strongly consistent;

2. ρG(X ) = ρG

(
f −1
ρH

(
ρH(X )

)
1d

)
∀X ∈ L∞d (F),G ⊆ H

Remark: In case ρG and ρH are univariate risk measures that are
constant-on-constants, f −1

ρH = −id and 2. reduces to

2. ρG(X ) = ρG
(
ρH(X )

)
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Strong consistency and risk-consistency

Remark: Let (ρG)G∈E be a family of CRMs and define the
normalized family

(ρ̃G)G∈E := (−f −1
ρG ◦ ρG)G∈E

.

I Then (ρ̃G)G∈E is a family of CRMs which is consistent iff
(ρG)G∈E is consistent.

I Further,
fρ̃G = −id

which can be considered as a vector generalization of the
constant-on-constants property for univariate risk measures.
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Strong consistency and risk-consistency

Theorem: Let (ρG)G∈E be strongly consistent. Assume there
exists a continuous realizations ρG(·, ·) for all G ∈ E and that

f −1
ρF ◦ ρF (x) ∈ R ∀x ∈ Rd .

Then for all G ∈ E the risk measure ρG is risk-consistent, i.e. there
exists an CAF ΛG and a CBRM ηG such that

ρG = ηG ◦ ΛG .
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Strong consistency and risk-consistency

Theorem cont’: Further, the CAF are strongly consistent in the
sense that for all G ⊆ H

ΛH(X ) ≤ ΛH(Y ) =⇒ ΛG(X ) ≤ ΛG(Y ) (X ,Y ∈ L∞d (F)),

which is equivalent to

f −1
ΛG

(
ΛG(X )

)
= f −1

ΛF

(
ΛF (X )

)
, for all X ∈ L∞d (F).
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Strong consistency and risk-consistency

Law-invariant, consistent systemic risk measures:

Definition: A CSRM is called conditional law-invariant if

µX (·|G) = µY (·|G) =⇒ ρG(X ) = ρG(Y ),

where µX (·|G) and µY (·|G) are the G-conditional distributions of
X ,Y ∈ L∞d (F) resp.

Assumption: There exists H ∈ E such that (Ω,H,P) is atomless,
and (Ω,F ,P) is conditionally atomless given H.
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Strong consistency and risk-consistency

Theorem [Föllmer, 2014]: Let (ρG)G∈E be a family of univariate,
conditionally law-invariant, monetary risk measures. Then (ρG)G∈E
is strongly consistent iff the ρG are certainty equivalents of the form

ρG(F ) = u−1
(
EP (u(F ) | G)

)
, ∀F ∈ L∞, (F)

where u : R→ R is strictly increasing and continuous.
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Strong consistency and risk-consistency

Theorem: Let (ρG)G∈E be a family of conditionally law-invariant
CSRMs. Then (ρG)G∈E is strongly consistent iff each ρG is of the
form

ρG(X ) = gG
(
f −1
u

(
EP (u(X ) | G)

))
, ∀X ∈ L∞d (F),

where

I u : Rd → R is strictly increasing and continuous

I f −1
u : Im fu → R is the unique inverse function of
fu : R→ R; x 7→ u(x1d)

I gG : L∞(G)→ L∞(G) is antitone, strongly sensitive, local, and
fulfills the Lebesgue property

I In particular, gG = fρG for all G ∈ E .

Risk-Consistent Conditional Systemic Risk Measures



Strong consistency and risk-consistency

Corollary: Let (ρG)G∈E be a family of conditionally law-invariant,
strongly consistent CSRMs. Under the assumptions from above,
the risk-consistent decomposition ρG = ηG ◦ ΛG is given by a
stochastic certainty equivalent ηG of the form

ηG(F ) = −U−1
G (EP (UG(F ) | G)) , F ∈ L∞(F),

where UG := fu ◦ g̃−1
G : L∞(F)→ L∞(F) and g̃G is a certain

extension of gG from L∞(G) to L∞(F), and the aggregation

ΛG := g̃G ◦ f −1
u ◦ u.

Further, the CBRM ηG and the aggregation ΛG are related to each
other by

UG(ΛG(x)) = u(x) ∀ x ∈ Rd , G ∈ E .
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Strong consistency and risk-consistency

Corollary: Let CBRMs (ηG)G∈E and CAFs (ΛG)G∈E be given such
that (ηG)G∈E are strongly consistent and (ρG := ηG ◦ ΛG)G∈E are
conditionally law-invariant, strongly consistent CSRMs. Then the
CBRMs (ηG)G∈E must be certainty equivalents of the form

ηG(F ) := u−1
(
EP (u(F ) | G)

)
, F ∈ L∞(F),

where u : R→ R is strictly increasing and continuous, and the
CAFs (ΛG)G∈E must be of the form

ΛG = f (αG · Λ(x) + βG) ,

for some deterministic AF Λ, G-constants αG , βG ∈ L∞(G), and
some strictly increasing and continuous f : R→ R.
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Föllmer, H. & A. Schied (2011). Stochastic Finance: An introduction in discrete

time (3rd ed.). De Gruyter.

Risk-Consistent Conditional Systemic Risk Measures



References
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