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Setup

I Two periods t = 0, 1, 2

I Values at t = 1, 2 are random variables on (Ω,F)

I m interlinked banks [m] := {1, 2, . . . ,m}
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Instruments

Bank i holds

I Cash γi : zero return
I External asset (e.g. long-term investment maturing at t = 2):

I fundamental value Qi at t = 1, 2
I liquidation value Pi < Qi at t = 1

I Interbank liabilities:
I formation at t = 0
I realization/expiration at t = 1: Lij

I No external debt
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Interbank liabilities realize at t = 1

I Lij(ω) cash-amount bank i owes bank j

I Li =
∑

j∈[m] Lij total nominal liabilities of bank i

I
∑

j∈[m] Lji total nominal receivables from other banks
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Bank i ’s nominal balance sheet at t = 1

I Assets
γi +

∑
j∈[m] Lji + Qi

I Liabilities
Li + nominal net worth

I Nominal cash balance

γi +
∑

j∈[m] Lji − Li
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Liquidation of external asset at t = 1

I If bank i ’s cash balance is negative,

γi +
∑

j∈[m] Lji < Li ,

it sells external assets at liquidation price Pi < Qi

I Bank i is bankrupt if

γi +
∑

j∈[m] Lji + Pi︸ ︷︷ ︸
liquidation value of assets

< Li ,

and then bank j receives a part of liquidation value of bank i ’s
assets
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Interbank liability clearing equilibrium

Interbank liability clearing equilibrium defined as (L∗ij) satisfying

1. Fair allocation:
0 ≤ L∗ij ≤ Lij

2. Clearing: L∗i =
∑

j∈[m] L∗ij satisfies

L∗i = Li ∧
(
γi +

∑
j∈[m] L∗ji + Pi

)
, i ∈ [m]

Assumption 1.

Let (L∗ij) be any interbank liability clearing equilibrium
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Example of interbank clearing equilibrium

Eisenberg and Noe (2001): proportionality rule Πij = Lij/Li and

L∗ij = ΠijL
∗
i

with clearing vector L∗ = (L∗1, . . . , L
∗
m) determined as fixed point

Φ(L∗) = L∗

where Φ : [0,L]→ [0,L] is given by

Φi (`) = Li ∧
(
γi +

∑
j∈[m] `jΠji + Pi

)
, i ∈ [m]

Theorem 1.1 (Eisenberg and Noe (2001)).

If γi + Pi > 0 for all i then there exists a unique interbank clearing
equilibrium.

Financial Network 10/42



Bank i ’s terminal net worth at t = 2

I Fraction of liquidated external asset

Zi =

(
Li − γi −

∑
j∈[m] L∗ji

)+

Pi
∧ 1

I Assets

Ai = γi +
∑

j∈[m] L∗ji + ZiPi + (1− Zi )Qi

I Net worth
Ci = Ai − Li
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Bankruptcy characterization

I Shortfall of bank i equals

C−i = Li − L∗i

I Bank i is bankrupt if and only if

Ci < 0 (or L∗i < Li )

I If bank i is bankrupt then all its external assets are liquidated

Zi = 1

Financial Network 12/42



Aggregate surplus identify

Lemma 1.2.
The aggregate surplus satisfies∑

i∈[m] C +
i =

∑
i∈[m] γi +

∑
i∈[m] Qi −

∑
i∈[m] Zi (Qi − Pi ).
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Central Clearing Counterparty (CCP)

I We label the CCP as i = 0

I All liabilities are cleared through the CCP

→ star shaped network

I Proportionality rule: CCP liabilities have equal seniority

→ interbank clearing equilibrium is trivial (no fixed point
problem)
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Capital structure of CCP

I The CCP is endowed with
I external equity capital γ0

I guarantee fund ∑m
i=1 gi

where gi ≤ γi is received from bank i at time t = 0

I Guarantee fund is hybrid, junior to CCP equity capital

I Banks’ shares in the guarantee fund have equal seniority
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Liabilities

I Bank i ’s net exposure to CCP

Λi =
∑m

j=1 Lji −
∑m

j=1 Lij

I Bank i ’s nominal liability to the CCP (netting)

L̂i0 =
(
Λ−i − gi

)+

I CCP’s nominal liability to bank i

L̂0i = (1− f )Λ+
i

→ CCP charges a volume based fee f on bank i ’s receivables

f × Λ+
i
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Nominal guarantee fund

I Bank i ’s nominal share in the guarantee fund:

Gi = (Λi + gi )
+ − Λ+

i

I Linking facts:

Gi − L̂i0 = gi − Λ−i , Gi × L̂i0 = 0

-gi 

gi 

0 Λi 

Gi 

Li0 
^ 

Figure: Gi and L̂i0 as functions of Λi
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CCP’s nominal balance sheet at t = 1

Denote Gtot =
∑m

i=1 Gi total nominal value of guarantee fund

I Assets: γ0 +
∑m

i=1 gi +
∑m

i=1 L̂i0,

I Liabilities: L̂0 + Gtot + nominal net worth
(
γ0 +

∑m
i=1 f Λ+

i

)
.
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Liability clearing equilibrium
I Fraction of external assets liquidated (L̂i0 × L̂0i = 0)

Ẑi =

(
γi − gi − L̂i0

)−
Pi

∧ 1

I Clearing payment of bank i to CCP

L̂∗i = L̂i0 ∧ (γi − gi + Pi )

I Value of CCP’s total assets become

Â0 = γ0 +
∑m

i=1 gi +
∑m

i=1 L̂∗i

I Clearing payment of CCP

L̂∗0 = L̂0 ∧ Â0

I Bank i receives (proportionality rule)

L̂∗0i =
L̂0i

L̂0

× L̂∗0
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Liquidation of the guarantee fund at t = 2

I Guarantee fund = first layer, prior to nominal net worth

G ∗tot = Gtot ∧

(
Â0 − L̂∗0 − γ0 −

m∑
i=1

f Λ+
i

)+

I Bank i receives (proportionality rule)

G ∗i =
Gi

Gtot
× G ∗tot
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Terminal net worth

I CCP
Ĉ0 = Â0 − L̂0 − G ∗tot

I Bank i ’s assets

Âi = γi + ẐiPi + (1− Ẑi )Qi +
L̂0i

L̂0

× L̂∗0 + G ∗i − gi

I Bank i ’s net worth
Ĉi = Âi − L̂i0

I Shortfall of CCP and banks becomes

Ĉ−i = L̂i − L̂∗i
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Aggregate surplus identity with CCP

Lemma 2.1.
The aggregate surplus satisfies∑m

i=0 Ĉ +
i =

∑m
i=0 γi +

∑
i∈[m] Qi −

∑
i∈[m] Ẑi (Qi − Pi ).
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Independence from fee and guarantee fund policy

Write g = (g1, . . . , gm)

Lemma 3.1.

I Number of liquidated assets Ẑi does not depend on (f , g)

I Shortfall of bank i does not depend on (f , g)

Ĉ−i = (Λi + yiP + γi )
−

I Aggregate surplus dos not depend on (f , g)
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Sensitivity results

I CCP:
∂Ĉ0

∂f
≥ 0,

∂Ĉ0

∂gi
≥ 0

I Bank i :

∂Ĉi

∂f
=
∂Ĉ +

i

∂f
≤ 0

∂Ĉi

∂gj
=
∂Ĉ +

i

∂gj

{
≥ 0 if i 6= j

≤ 0 if i = j
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Aggregate sensitivity results

I Aggregate net worth of financial system is non-decreasing in g

∂
∑m

k=0 Ĉk

∂gi
= −

∂Ĉ−0
∂gi

≥ 0, for all i ∈ [m]

I Aggregate net worth of the banks is non-increasing in g

∂
∑m

k=1 Ĉk

∂gi
= −

∂Ĉ +
0

∂gi
≤ 0, for all i ∈ [m]

I Same for f
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Impact of CCP on net worth of banks

I Compare financial network with and without CCP

I Convention: For comparison we set

C0 = γ0
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CCP state-wise impact

I CCP always reduces
I liquidation losses

Ẑi ≤ Zi

I bank shortfalls (bankruptcy cost)

Ĉ−
i ≤ C−

i

I CCP always improves

I aggregate terminal bank net worth∑m
i=1 Ĉi ≥

∑m
i=1 Ci

I aggregate surplus∑m
i=0 Ĉ +

i =
∑m

i=0 C +
i + (Qi − Pi )

∑m
i=1(Zi − Ẑi )︸ ︷︷ ︸

≥0

I CCP imposes shortfall risk Ĉ−0 ≥ 0
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CCP capital impact decomposition

Lemma 3.2.
Difference in capital of bank i ∈ [m] is given by

Ĉi − Ci = T1 + T2 + T3

where . . .

Comparative statics 30/42



. . . difference in capital due to

I counterparty default:

T1 = −
Λ+
i∑m

i=1 Λ+
i

Ĉ−0 +
∑m

j=1(Lji − L∗ji )

I liquidation loss:

T2 = (Zi − Ẑi )(Qi − Pi ) ≥ 0

I fees and losses in guarantee fund:

T3 = −f Λ+
i −

Gi

Gtot
(Gtot − G ∗tot) ≤ 0
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Figure: Expected capital difference components, for f = 0
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Systemic risk measure as in Chen et al. (2013)

I Write C = (C0, . . . ,Cm), and similarly Ĉ

I Generic coherent risk measure ρ(X )

I Aggregation function, α ∈ [1/2, 1],

Aα(C) = α
∑m

i=0 C−i︸ ︷︷ ︸
bankruptcy cost

− (1− α)
∑m

i=0 C +
i︸ ︷︷ ︸

tax benefits

I Systemic risk measure

ρα(C) = ρ (Aα(C))
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Impact on aggregation function

Lemma 4.1.

Aα(Ĉ)− Aα(C) = αĈ−0 −∆α

where

∆α = α
∑

i∈[m]

(
C−i − Ĉ−i

)
+ (1− α)(Q − P)

∑
i∈[m]

(
Zi − Ẑi

)
is nonnegative, ∆α ≥ 0, and does not depend on (f , g). Hence

ρα(Ĉ)− ρα(C) = ρ
(

Aα(Ĉ)
)
− ρ (Aα(C)) ≤ ρ

(
Aα(Ĉ)− Aα(C)

)
≤ αρ

(
Ĉ−0

)
+ ρ(−∆α)

with equlity if ρ(X ) = E[X ]
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Impact on systemic risk measure

Theorem 4.2.
The CCP reduces systemic risk if (and only if)

αρ
(

Ĉ−0

)
< −ρ (−∆α)

(for ρ(X ) = E[X ]). The RHS does not depend on (f , g).
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CCP and banks’ utility function

I CCP and banks are risk neutral

I Utility function = expected surplus

ui (f , g) = E
[
Ĉ +
i

]
I Participation constraints: (f , g) is feasible if

u0(f , g) ≥ γ0 competitive case

ui (f , g) ≥ E
[
C +
i

]
, i ∈ [m], monopolistic case
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Symmetric case

I γi ≡ γ, gi ≡ g , and

(Qi ,Pi , {Lij}j=1...m, {Lji}j=1...m), i ∈ [m]

is exchangeable

I Consequence:

u0(f , g) + mu1(f , g) = γ0 + E [≥ 0] ≡ constant

I Consequence: every feasible (f , g) is Pareto optimal
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Numerical result: parameters

I Complete inter dealer network based on BIS 2010 data

I m = 14 banks

I γ0 = $5bn

I γ = $10bn

I total notional $16tn
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Numerical result: Pareto optimal policies
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Figure: Feasible Pareto optimal policies, and systemic risk zero line
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Conclusion

I Simple general financial network setup with and without CCP

I CCP always improves aggregate surplus through lower forced
liquidation losses

I CCP always reduces banks’ bankruptcy cost

I CCP introduces tail risk, and may increase systemic risk

I Find sufficient (and necessary) condition for systemic risk
reduction

I Numerical example shows that CCP reduces systemic risk for
feasible fee and guarantee fund policies (open question: does
this hold in general?)
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