Systemic Risk and Central Counterparty Clearing

Damir Filipović
(joint with Hamed Amini and Andreea Minca)

EPFL and Swiss Finance Institute

Systemic Risk and Financial Networks
UCLA, 25 March 2015
Outline

Financial Network

Central Counterparty Clearing

Comparative statics

Does a CCP reduce systemic risk?

Pareto optimality analysis
Outline

Financial Network

Central Counterparty Clearing

Comparative statics

Does a CCP reduce systemic risk?

Pareto optimality analysis
Setup

- Two periods $t = 0, 1, 2$
- Values at $t = 1, 2$ are random variables on (Ω, \mathcal{F})
- m interlinked banks $[m] := \{1, 2, \ldots, m\}$
Instruments

Bank \(i \) holds

- **Cash** \(\gamma_i \): zero return
- **External asset** (e.g. long-term investment maturing at \(t = 2 \)):
 - fundamental value \(Q_i \) at \(t = 1, 2 \)
 - liquidation value \(P_i < Q_i \) at \(t = 1 \)
- **Interbank liabilities**:
 - formation at \(t = 0 \)
 - realization/expiration at \(t = 1 \): \(L_{ij} \)
- **No external debt**
Interbank liabilities realize at $t = 1$

- $L_{ij}(\omega)$ cash-amount bank i owes bank j
- $L_i = \sum_{j \in [m]} L_{ij}$ total nominal liabilities of bank i
- $\sum_{j \in [m]} L_{ji}$ total nominal receivables from other banks
Bank i’s nominal balance sheet at $t = 1$

- **Assets**
 \[\gamma_i + \sum_{j \in [m]} L_{ji} + Q_i \]

- **Liabilities**
 \[L_i + \text{nominal net worth} \]

- **Nominal cash balance**
 \[\gamma_i + \sum_{j \in [m]} L_{ji} - L_i \]
Liquidation of external asset at $t = 1$

- If bank i’s cash balance is negative,

\[
\gamma_i + \sum_{j \in [m]} L_{ji} < L_i,
\]

it sells external assets at liquidation price $P_i < Q_i$

- Bank i is bankrupt if

\[
\underbrace{\gamma_i + \sum_{j \in [m]} L_{ji} + P_i}_{\text{liquidation value of assets}} < L_i,
\]

and then bank j receives a part of liquidation value of bank i’s assets
Interbank liability clearing equilibrium

Interbank liability clearing equilibrium defined as \((L^*_{ij})\) satisfying

1. Fair allocation:
 \[
 0 \leq L^*_{ij} \leq L_{ij}
 \]

2. Clearing: \(L^*_i = \sum_{j \in [m]} L^*_{ij}\) satisfies
 \[
 L^*_i = L_i \wedge \left(\gamma_i + \sum_{j \in [m]} L^*_j + P_i \right), \ i \in [m]
 \]

Assumption 1.

Let \((L^*_{ij})\) be any interbank liability clearing equilibrium
Example of interbank clearing equilibrium

Eisenberg and Noe (2001): proportionality rule \(\Pi_{ij} = \frac{L_{ij}}{L_i} \) and

\[
L_{ij}^* = \Pi_{ij} \frac{L_i^*}{L_i}
\]

with clearing vector \(\mathbf{L}^* = (L_1^*, \ldots, L_m^*) \) determined as fixed point

\[
\Phi(\mathbf{L}^*) = \mathbf{L}^*
\]

where \(\Phi : [0, \mathbf{L}] \rightarrow [0, \mathbf{L}] \) is given by

\[
\Phi_i(\ell) = L_i \land \left(\gamma_i + \sum_{j \in [m]} \ell_j \Pi_{ji} + P_i \right), \quad i \in [m]
\]

Theorem 1.1 (Eisenberg and Noe (2001)).

If \(\gamma_i + P_i > 0 \) for all \(i \) then there exists a unique interbank clearing equilibrium.
Bank i’s terminal net worth at $t = 2$

- Fraction of liquidated external asset
 \[Z_i = \frac{(L_i - \gamma_i - \sum_{j \in [m]} L_{ji}^*)^+}{P_i} \wedge 1 \]

- Assets
 \[A_i = \gamma_i + \sum_{j \in [m]} L_{ji}^* + Z_i P_i + (1 - Z_i) Q_i \]

- Net worth
 \[C_i = A_i - L_i \]
Bankruptcy characterization

- Shortfall of bank i equals

\[C_i^- = L_i - L_i^* \]

- Bank i is bankrupt if and only if

\[C_i < 0 \quad \text{or} \quad L_i^* < L_i \]

- If bank i is bankrupt then all its external assets are liquidated

\[Z_i = 1 \]
Lemma 1.2.
The aggregate surplus satisfies

$$\sum_{i \in [m]} C_i^+ = \sum_{i \in [m]} \gamma_i + \sum_{i \in [m]} Q_i - \sum_{i \in [m]} Z_i(Q_i - P_i).$$
Outline

Financial Network

Central Counterparty Clearing

Comparative statics

Does a CCP reduce systemic risk?

Pareto optimality analysis
Central Clearing Counterparty (CCP)

- We label the CCP as $i = 0$
- All liabilities are cleared through the CCP
 - star shaped network
- Proportionality rule: CCP liabilities have equal seniority
 - interbank clearing equilibrium is trivial (no fixed point problem)
Capital structure of CCP

- The CCP is endowed with
 - external equity capital γ_0
 - guarantee fund $\sum_{i=1}^{m} g_i$

 where $g_i \leq \gamma_i$ is received from bank i at time $t = 0$

- Guarantee fund is hybrid, junior to CCP equity capital
- Banks’ shares in the guarantee fund have equal seniority
Liabilities

- Bank i’s net exposure to CCP
 \[\Lambda_i = \sum_{j=1}^{m} L_{ji} - \sum_{j=1}^{m} L_{ij} \]

- Bank i’s nominal liability to the CCP (netting)
 \[\hat{L}_{i0} = (\Lambda_i - g_i)^+ \]

- CCP’s nominal liability to bank i
 \[\hat{L}_{0i} = (1 - f)\Lambda_i^+ \]

→ CCP charges a volume based fee f on bank i’s receivables
 \[f \times \Lambda_i^+ \]
Nominal guarantee fund

- Bank i’s nominal share in the guarantee fund:

$$G_i = (\Lambda_i + g_i)^+ - \Lambda_i^+$$

- Linking facts:

$$G_i - \hat{L}_{i0} = g_i - \Lambda_i^-,$$
$$G_i \times \hat{L}_{i0} = 0$$

Figure: G_i and \hat{L}_{i0} as functions of Λ_i
CCP’s nominal balance sheet at $t = 1$

Denote $G_{\text{tot}} = \sum_{i=1}^{m} G_i$ total nominal value of guarantee fund

- **Assets:** $\gamma_0 + \sum_{i=1}^{m} g_i + \sum_{i=1}^{m} \hat{L}_i$,
- **Liabilities:** $\hat{L}_0 + G_{\text{tot}} + \text{nominal net worth} \left(\gamma_0 + \sum_{i=1}^{m} f\Lambda_i^+ \right)$.

Central Counterparty Clearing
Liability clearing equilibrium

- Fraction of external assets liquidated \((\hat{L}_{i0} \times \hat{L}_{0i} = 0)\)

\[
\hat{Z}_i = \frac{\left(\gamma_i - g_i - \hat{L}_{i0}\right)^-}{P_i} \wedge 1
\]

- Clearing payment of bank \(i\) to CCP

\[
\hat{L}^*_i = \hat{L}_{i0} \wedge (\gamma_i - g_i + P_i)
\]

- Value of CCP’s total assets become

\[
\hat{A}_0 = \gamma_0 + \sum_{i=1}^m g_i + \sum_{i=1}^m \hat{L}^*_i
\]

- Clearing payment of CCP

\[
\hat{L}^*_0 = \hat{L}_0 \wedge \hat{A}_0
\]

- Bank \(i\) receives (proportionality rule)

\[
\hat{L}^*_{0i} = \frac{\hat{L}_{0i}}{\hat{L}_0} \times \hat{L}^*_0
\]
Liquidation of the guarantee fund at $t = 2$

- Guarantee fund = first layer, prior to nominal net worth

$$G^*_{\text{tot}} = G_{\text{tot}} \wedge \left(\hat{A}_0 - \hat{L}^*_0 - \gamma_0 - \sum_{i=1}^{m} f \wedge_i^+ \right)^+$$

- Bank i receives (proportionality rule)

$$G^*_i = \frac{G_i}{G_{\text{tot}}} \times G^*_{\text{tot}}$$
Terminal net worth

- **CCP**
 \[
 \hat{C}_0 = \hat{A}_0 - \hat{L}_0 - G^*_\text{tot}
 \]

- **Bank \(i\)’s assets**
 \[
 \hat{A}_i = \gamma_i + \hat{Z}_i P_i + (1 - \hat{Z}_i) Q_i + \frac{\hat{L}_{0i}}{\hat{L}_0} \times \hat{L}^*_0 + G^*_i - g_i
 \]

- **Bank \(i\)’s net worth**
 \[
 \hat{C}_i = \hat{A}_i - \hat{L}_{i0}
 \]

- **Shortfall of CCP and banks becomes**
 \[
 \hat{C}^-_i = \hat{L}_i - \hat{L}^*_i
 \]
Lemma 2.1.

The aggregate surplus satisfies

$$\sum_{i=0}^{m} \widehat{C}_i^+ = \sum_{i=0}^{m} \gamma_i + \sum_{i \in [m]} Q_i - \sum_{i \in [m]} \widehat{Z}_i (Q_i - P_i).$$
Outline

Financial Network

Central Counterparty Clearing

Comparative statics

Does a CCP reduce systemic risk?

Pareto optimality analysis
Independence from fee and guarantee fund policy

Write \(\mathbf{g} = (g_1, \ldots, g_m) \)

Lemma 3.1.
- Number of liquidated assets \(\hat{Z}_i \) does not depend on \((f, \mathbf{g})\)
- Shortfall of bank \(i \) does not depend on \((f, \mathbf{g})\)

\[
\hat{C}_i^- = (\Lambda_i + y_i P + \gamma_i)^-
\]
- Aggregate surplus does not depend on \((f, \mathbf{g})\)
Sensitivity results

- **CCP:**

\[\frac{\partial \hat{C}_0}{\partial f} \geq 0, \quad \frac{\partial \hat{C}_0}{\partial g_i} \geq 0 \]

- **Bank \(i\):**

\[\frac{\partial \hat{C}_i}{\partial f} = \frac{\partial \hat{C}_i^+}{\partial f} \leq 0 \]

\[\frac{\partial \hat{C}_i}{\partial g_j} = \frac{\partial \hat{C}_i^+}{\partial g_j} \begin{cases} \geq 0 & \text{if } i \neq j \\ \leq 0 & \text{if } i = j \end{cases} \]
Aggregate sensitivity results

- Aggregate net worth of financial system is non-decreasing in g
 \[
 \frac{\partial \sum_{k=0}^{m} \hat{C}_k}{\partial g_i} = - \frac{\partial \hat{C}_0^-}{\partial g_i} \geq 0, \quad \text{for all } i \in [m]
 \]

- Aggregate net worth of the banks is non-increasing in g
 \[
 \frac{\partial \sum_{k=1}^{m} \hat{C}_k}{\partial g_i} = - \frac{\partial \hat{C}_0^+}{\partial g_i} \leq 0, \quad \text{for all } i \in [m]
 \]

- Same for f
Impact of CCP on net worth of banks

- Compare financial network with and without CCP
- **Convention:** For comparison we set

 \[C_0 = \gamma_0 \]
CCP state-wise impact

- CCP always reduces
 - liquidation losses
 \[\hat{Z}_i \leq Z_i \]
 - bank shortfalls (bankruptcy cost)
 \[\hat{C}_i^- \leq C_i^- \]

- CCP always improves
 - aggregate terminal bank net worth
 \[\sum_{i=1}^{m} \hat{C}_i \geq \sum_{i=1}^{m} C_i \]
 - aggregate surplus
 \[\sum_{i=0}^{m} \hat{C}_i^+ = \sum_{i=0}^{m} C_i^+ + (Q_i - P_i) \sum_{i=1}^{m} (Z_i - \hat{Z}_i) \geq 0 \]

- CCP imposes shortfall risk \(\hat{C}_0^- \geq 0 \)
CCP capital impact decomposition

Lemma 3.2.

Difference in capital of bank $i \in [m]$ is given by

$$\hat{C}_i - C_i = T_1 + T_2 + T_3$$

where ...
...difference in capital due to

- counterparty default:

\[T_1 = -\frac{\Lambda_i^+}{\sum_{i=1}^{m} \Lambda_i^+} \hat{C}_0^- + \sum_{j=1}^{m} (L_{ji} - L_{ji}^*) \]

- liquidation loss:

\[T_2 = (Z_i - \hat{Z}_i)(Q_i - P_i) \geq 0 \]

- fees and losses in guarantee fund:

\[T_3 = -f \Lambda_i^+ - \frac{G_i}{G_{tot}} (G_{tot} - G_{tot}^*) \leq 0 \]
Figure: Expected capital difference components, for $f = 0$
Outline

Financial Network

Central Counterparty Clearing

Comparative statics

Does a CCP reduce systemic risk?

Pareto optimality analysis
Systemic risk measure as in Chen et al. (2013)

- Write \(\mathbf{C} = (C_0, \ldots, C_m) \), and similarly \(\hat{\mathbf{C}} \)
- Generic coherent risk measure \(\rho(X) \)
- Aggregation function, \(\alpha \in [1/2, 1] \),

\[
A_\alpha(\mathbf{C}) = \alpha \sum_{i=0}^{m} C_i^- - (1 - \alpha) \sum_{i=0}^{m} C_i^+
\]

- Systemic risk measure

\[
\rho_\alpha(\mathbf{C}) = \rho(A_\alpha(\mathbf{C}))
\]
Lemma 4.1.

\[A_\alpha(\hat{C}) - A_\alpha(C) = \alpha \hat{C}_0^- - \Delta_\alpha \]

where

\[\Delta_\alpha = \alpha \sum_{i \in [m]} \left(C_i^- - \hat{C}_i^- \right) + (1 - \alpha)(Q - P) \sum_{i \in [m]} \left(Z_i - \hat{Z}_i \right) \]

is nonnegative, \(\Delta_\alpha \geq 0 \), and does not depend on \((f, g)\). Hence

\[\rho_\alpha(\hat{C}) - \rho_\alpha(C) = \rho \left(A_\alpha(\hat{C}) \right) - \rho \left(A_\alpha(C) \right) \leq \rho \left(A_\alpha(\hat{C}) - A_\alpha(C) \right) \]

\[\leq \alpha \rho \left(\hat{C}_0^- \right) + \rho(-\Delta_\alpha) \]

with equality if \(\rho(X) = \mathbb{E}[X] \)
Impact on systemic risk measure

Theorem 4.2.
The CCP reduces systemic risk if (and only if)

\[\alpha \rho \left(\hat{C}_0^- \right) < -\rho \left(-\Delta_\alpha \right) \]

(for \(\rho(X) = \mathbb{E}[X] \)). The RHS does not depend on \((f, g)\).
Outline

Financial Network

Central Counterparty Clearing

Comparative statics

Does a CCP reduce systemic risk?

Pareto optimality analysis
CCP and banks’ utility function

- CCP and banks are risk neutral
- Utility function = expected surplus
 \[u_i(f, g) = \mathbb{E}\left[\hat{C}_i^+\right] \]
- Participation constraints: \((f, g)\) is feasible if
 \[u_0(f, g) \geq \gamma_0 \quad \text{competitive case} \]
 \[u_i(f, g) \geq \mathbb{E}\left[C_i^+\right], \quad i \in [m], \quad \text{monopolistic case} \]
Symmetric case

- $\gamma_i \equiv \gamma, g_i \equiv g$, and

$$ (Q_i, P_i, \{L_{ij}\}_{j=1}^{m}, \{L_{ji}\}_{j=1}^{m}), \quad i \in [m] $$

is exchangeable

- Consequence:

$$ u_0(f, g) + mu_1(f, g) = \gamma_0 + \mathbb{E}[\geq 0] \equiv \text{constant} $$

- Consequence: every feasible (f, g) is Pareto optimal
Numerical result: parameters

- Complete inter dealer network based on BIS 2010 data
- \(m = 14 \) banks
- \(\gamma_0 = \$5bn \)
- \(\gamma = \$10bn \)
- total notional \(\$16tn \)
Numerical result: Pareto optimal policies

Figure: Feasible Pareto optimal policies, and systemic risk zero line
Conclusion

- Simple general financial network setup with and without CCP
- CCP always improves aggregate surplus through lower forced liquidation losses
- CCP always reduces banks’ bankruptcy cost
- CCP introduces tail risk, and may increase systemic risk
- Find sufficient (and necessary) condition for systemic risk reduction
- Numerical example shows that CCP reduces systemic risk for feasible fee and guarantee fund policies (open question: does this hold in general?)