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Overview

1. Traditional commodity markets issues and models. Electricity
price models.

2. Energy production from exhaustible resources and renewables:
game threoretic models.

3. Financialization of commodity markets.

2



Game Theoretic Models of Energy Production
I Recent decline in oil prices (around $100 per barrel in June 2014

to around $50 in January 2015) illustrates evolution of energy
production as a result of competition between different sources.

I Drop was prompted in large part by OPEC’s strategic decision
not to decrease its oil output in the face of increased production
of shale oil in the US, itself arising from new technologies
(fracking), spurred by investment in exploration and research in
times of higher oil prices. 3



Energy Production

I These complex interactions are in addition to long-running
concerns about dwindling fossil fuel reserves (‘peak oil’), as well
as climate change transitioning to sustainable energy sources.

I Build models successively incorporating various of these
features starting from a competitive oligopolistic view of an
idealized global energy market, in which game theory describes
the outcome of competition.

I Oligopoly is in a Cournot framework: players choose quantities
of production and prices are determined by total supply.

I Reasonable for energy production: major players determine their
output relative to their production costs, as in the expected
scenario that OPEC will cut production in order to increase the
market price of oil.
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Game Changers

I Start with static, or one-period games to see for instance the
non-competitiveness of producing from a relatively expensive
renewable source, such as wind, against a cheap fossil fuel.

I The nature of the complexities calls for a dynamic model in
which there are (cliché) game changers over time, e.g.

I dwindling reserves of oil or coal, ramping up their scarcity value;
I discoveries of new oil reserves (over 30 major finds in 2009);
I technological innovation such as fracking, led to extraction of

shale oil and gas;
I government subsidies for renewables such as solar and wind;
I varying costs of production, e.g. cheaper solar due to falling

silicon prices and improved solar cell efficiency (Solyndra).

I Many if not all these phenomena are unpredictable and dramatic:
motivate the development of stochastic models, with potentially
significant ‘jumps’ (for instance in costs or reserves).
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Static Cournot Games

I N ≥ 1 profit-maximizing producers (or players), with per-unit
(constant) cost of production si ≥ 0, which will be different,
reflecting the costs of heterogeneous energy sources.

I Market is specified by a decreasing inverse demand curve P(·).
Given total production level Q = q1 + . . .+ qN , the market
clearing price is P(Q).

I Example: linear inverse demand, P(Q) = 1− Q.
I Profit of player i is the quantity produced times price minus cost:

π(qi,Q−i, si) =

{
qi (P(Q−i + qi)− si) if qi > 0,

0 if qi = 0,

where Q−i =
∑

j6=i qj.
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Nash Equilibrium
I A Nash equilibrium is a vector ~q∗ = (q∗1, q

∗
2, . . . , q

∗
N) ∈ [0,∞)N

such that, for all i,

π(q∗i ,Q
∗
−i, si) = max

qi∈[0,∞)
π(qi,Q∗−i, si), (1)

where Q∗−i =
∑

j6=i q∗j .
I Assume: price function P is twice continuously differentiable,

with P′ < 0 everywhere on (0,∞); and there exists η ∈ (0,∞)
such that P(η) = 0. And order the firms by their costs:

0 ≤ s1 ≤ s2 ≤ . . . ≤ sN < P(0+).

I Define relative prudence of P:

ρ(Q) = − Q P′′(Q)

P′(Q)
, ρ = sup

Q∈(0,∞)

ρ(Q).
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Theorem
Suppose that ρ < 2. Then there is a unique Nash equilibrium which
can be constructed as follows. Let Q̄∗ = max {Q∗n | 1 ≤ n ≤ N},
where Q∗n is the unique non-negative solution to the scalar equation

QP′(Q) + nP(Q) =

n∑
j=1

sj.

The unique Nash equilibrium production quantities are given by

q∗i (~s) = max

{
P
(
Q̄∗
)
− si

−P′
(
Q̄∗
) , 0} , 1 ≤ i ≤ N,

and the corresponding profits are

Gi(~s) = q∗i (~s)(P(Q̄∗)− si), 1 ≤ i ≤ N.

In particular, q∗i and Gi are Lipschitz continuous, and the number of
active players (that is, players with q∗i > 0), in the unique equilibrium
is m = min

{
n | Q∗n = Q̄∗

}
. 8



Blockading

I The constraint qi ≥ 0 endogenizes the market structure in terms
of the cost profile~s.

I Oligopolies with symmetric costs generate a trivial market
structure: either all firms active or all firms inactive.

I When firms are asymmetric, some firms may be inactive in
equilibrium. In dynamic models, asymmetric costs induce
different entry times into the market.

I Especially pertinent to energy markets, where producers using
different fuels and technologies have widely different costs of
production. For example, oil and coal sources are much cheaper
than renewables, such as solar or wind.
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Heterogeneous Costs: just oil sources
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Revisions to forecast 
The non-OPEC supply outlook is more pessimistic over 
2012-2013, and more optimistic in the 2014-2016 
range than the prior two outlooks. Major revisions 
include an across-the-board increase in estimates for 
US LTO prospects. For 2016, LTO supplies of around 
3.1 mb/d (not including natural gas plant liquids) are 
more than twice as high as in June 2011’s MTOGMR. 
Broadly speaking, OECD supplies are expected to be 
1.3 mb/d higher in 2016 than forecast in December 
2011, more than offsetting a gloomier view in non-
OECD countries. The UK and Norway’s production level 
is 200 kb/d lower on average, while the Brazilian crude 
outlook is also lower by almost 300 kb/d.  
 
Region- and country-level analysis 
OECD Americas 
United States 

US oil output stands to grow by 3.3 mb/d from 
8.1 mb/d in 2011 to 11.4 mb/d in 2017. LTO accounts 
for 75% of this growth. Production of crude and 
condensate from shale oil and tight oil formations 
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Duopoly: N = 2 with linear demand P(Q) = 1− Q

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Blockaded

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

0.5

1

0.5

Player 1
Blockaded

Blockaded

0

Player 2

1 s1

s2

Current example: OPEC holding back on cuts in production to drive
shale oil producers out of the market and into bankruptcy.
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Monopoly Exhaustible Resources
I Hotelling (1931) : a single producer who has reserves x(t) at

time t, with:
dx
dt

= −q(x(t))1{x(t)>0}, (2)

where q(x(t)) is his production (or extraction) rate. When his
reserves run out, he no longer participates in the market.

I The producer extracts to maximize lifetime discounted profit:

v(x) = sup
q≥0

∫ τx

0
e−rtq(x(t))P(q(x(t)) dt,

where τx is the exhaustion time starting at x(0) = x:

τx = inf{t > 0 | x(t) = 0}.
I Hotelling’s rule (for a monopolist with exhaustible resources):

d
dt

v′(x(t)) = rv′(x(t)), (3)

or v′(x(t)) = v′(x(0))ert.
12



I Incorporating other players leads to nonzero-sum differential
games and PDEs.

I Existence and regularity theory is scarce (outside of the case of
linear-quadratic (LQ) games).

I To illustrate the complexity in the duopoly case, let xi(t) be the
reserves of each player, depleted at their extraction rates qi:

dxi

dt
= −qi(~x(t)), i = 1, 2 where ~x(t) = (x1(t), x2(t)).

I A Nash (or Markov perfect) equilibrium (q∗1, q
∗
2):

vi(~x) = sup
qi≥0

∫ τxi

0
e−rtqi(~x(t))P

(
qi(~x(t)) + q∗j (~x(t))

)
dt, i = 1, 2; j 6= i,

where τxi = inf{t > 0 | xi(t) = 0} are the exhaustion times
starting at xi = xi(0).
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I PDEs for the value functions in x1, x2 > 0:

rvi = sup
qi≥0

π

(
qi,Q∗−i,

∂vi

∂xi

)
− q∗j

∂vi

∂xj
.

I This identifies the infinitesimal problem in the dynamic
programming equation as the static Nash equilibrium problem
with scarcity costs si = ∂vi

∂xi
.

I As players deplete their reserves, their marginal costs may rise
sufficiently to make further production uneconomical and
causing them to drop out of competition.
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N-player dynamic game
I Using the notation of the static Theorem the dynamic game

PDEs are:

rvi = Gi(Dv)− q∗j (Dv)
∂vi

∂xj
, i = 1, 2; j 6= i, Dv =

(
∂vi

∂xi
,
∂vj

∂xj

)
.

I In a model of only exhaustible resources, when player i runs out,
player j has a monopoly until he also exhausts, which lead to
boundary conditions on xi = 0 and at (0, 0) respectively.

I A more nuanced (and optimistic) view allows that when an oil
producer exits, he is replaced by an inexhaustible producer (such
as from solar).

I Alternatively, one can consider models with a single exhaustible
producer, and hence a single state variable, along with N − 1
renewable producers.

I This maintains game effects but minimizes mathematical
complexity, and allows to study the effect of blockading.
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Dynamic Cournot Model for Energy Production
I The oil producer (Player 0) has reserves x(t) at time t, and

chooses his production rate q̄0(x(t)), depleting reserves as

dx
dt

= −q̄0(x(t))1{x(t)>0}.

Others produce energy at rates q̄i(x(t)), i = 1, . . . ,N − 1.
I Price given by linear inverse demand function:

P(t) = 1− q̄0(x(t))−
N−1∑
j=1

q̄j(x(t)).

Note maximum (choke) price is 1.
I Players maximize discounted lifetime profit. Player 0’s value

function:

v0(x) = sup
q̄0

∫ ∞
0

e−rtq̄0(x(t))P(t)1{x(t)>0}dt.
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Aside: Static Cournot Game
I In a static Cournot game between N players with ordered costs

(s0, s1, · · · , sN−1), the number of active players in equilibrium
depends on the distribution of the costs. Let

Gi(s0, s) = max
qi≥0

qi (1− Q− si), Q =

N−1∑
j=0

qj.

I Let S(n) =
∑n−1

j=0 sj. If n ≤ N − 1 players participate, the

equilibrium total supply is: Q?,n = n−S(n)

(n+1) .

Proposition
Let Q̄? = max {Q?,n|0 ≤ n ≤ N − 1}. Then the unique Nash
equilibrium quantities are given by

q?i (s0, s) = max
{

1− Q̄? − si, 0
}
, Gi = (q?i )2, 0 ≤ i ≤ N − 1.

The number of active players in the unique equilibrium is
m = min

{
n | Q?,n = Q̄?

}
. (The others are blockaded).
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Value Functions and Feedback Strategies
We look for a Markov Perfect Nash equilibrium. Player 0’s value
function:

v0(x) = sup
q̄0

∫ ∞
0

e−rtq̄0(x(t))P(t)1{x(t)>0}dt.

When oil runs out, the remaining firms (i = 1, . . . ,N − 1) with their
inexhaustible resources repeatedly play a static game with profit flow
Gi(1, s):

wi(x) = sup
q̄i

∫ ∞
0

e−rtq̄i(x(t)) (P(t)− si)1{x(t)>0}dt +
1
r

Gi(1, s).

The HJB equation is rv0 = G0(v′0, s) with v0(0) = 0, and the
equilibrium production rates are:

q̄?i (x(t)) = q?i (v′0(x(t)), s), i = 0, . . . ,N − 1.

Oil producer’s scarcity value (shadow cost) is encoded in v′0(x).
18



Blockading Points
For n = 0, . . . ,N − 1, let

xn
b = inf{x ≥ 0 : q̄?n(x) = 0}, tn

b = inf{t ≥ 0 : q̄?n(x(t)) > 0}.

Let S(k) =
∑k

j=1 sj and assume s is s.t. sN−1 <
1+S(N−2)

N−1 : guarantees
everyone else participates when oils runs out.

-· · ·
0

Reserves

All Active

xxN−1
b xN−2

b x2
b

Duopoly

x1
b

Oil Monopoly

# Active: N N − 1 N − 2 3 2 1

� · · ·
0

Time

tN−1
b tN−2

b t2
b t1

b
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Low Oil Reserves: Value Function

Proposition
For x ∈ (0, xN−1

b ), Player 0’s value function is given by

v(N)(x) =
1
r

(
1 + S(N−1)

N + 1

)2

(1 + W (θ(x)))2 ,

with θ(x) = −e−µNx−1, and, µN = r(N+1)2

2N(1+S(N−1))
, and where W (·) is

the Lambert-W function.

q̄?0(x(t)) =
1

(N + 1)

(
1− Nv(N)′(x(t)) + S(N−1)

)
,

q̄?i (x(t)) =
1

(N + 1)

(
1− (N + 1)si + v(N)′(x(t)) + S(N−1)

)
,

where v(N)′(x) = −(1 + S(N−1))W (θ(x)) /N.
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Blockading Point

Let αn = (n + 1)sn − (1 + S(n−1)).

Proposition
The last blockading point is given by:

xN−1
b =

1
µN

[
−1 +

NαN−1

1 + S(N−1)
− log

(
NαN−1

1 + S(N−1)

)]
,

provided αN−1 > 0, otherwise xN−1
b =∞. Suppose that for

n ∈ {2, . . . ,N − 1}, xn
b <∞. If αn−1 > 0, then

xn−1
b = xn

b +
1
µn

[
− n(n + 1)

1 + S(n−1)
(sn − sn−1)− log

(
αn−1

αn

)]
,

otherwise xn−1
b =∞.

Assume hereon s such that all αn > 0⇒ xn
b <∞.
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Hotelling’s Rule

I A modified version of Hotelling’s rule for exhaustible resources
holds:

Proposition
For n ∈ {1, . . . ,N}, for x ∈ (xn

b, x
n−1
b ), (we identify xN

b = 0 and
x0

b =∞),

d
dt

v(n)′(x(t)− xn
b) =

(
1
2

+
1
2n

)
r v(n)′(x(t)− xn

b).

I Coincides with the classical Hotelling rule (1931) for n = 1: the
marginal value grows (exponentially) at the discount rate.
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Market Price
I It can be shown that P(n)(xn−1

b − xn
b) = sn−1, i.e. the blockading

point xn−1
b is exactly the point at which the market price equals

the cost of Firm n− 1.
I Turns out there is an autonomous linear ODE for the price:

d
dt

P(t) =

(
1
2

+
1
2n

)
r

(
P(t)− 1 + S(n−1)

n + 1

)
.

I For n ∈ {2, . . . ,N − 1}, the time at which Firm n enters the
game is

tn
b = tn−1

b +
2n

(n + 1)r
log
(

αn

αn−1

)
,

and for n = 1 by

t1
b =

1
r

log

(
s1 − 1

2

P(0)− 1
2

)
.
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Example: N = 10, s = (0.51, 0.52, . . . , 0.59)
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dP/dt
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Summary

I Exhaustibility wins over increased competition: oil runs low,
competing energy sources enter the market, but price rises.
However, exponential rate of price increase decreases like
(1

2 + 1
2n)r.

I Remains to understand the blockading issue with multiple
exhaustible suppliers: involves strongly coupled systems of
nonlinear PDEs with nonsmooth coefficients.

I Those PDEs require subtle regularization in the form of
trembling: bounding below q̄i ≥ ε and passing ε ↓ 0.

I Next: incorporate exploration.
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Exploration and Random Discoveries

I So far: exhaustibility or scarcity leads to price increases/shocks.
I However there were over 30 new discoveries in 2009. Proved

reserves of crude oil rose 13% to 25.2 billion barrels in 2010, the

largest annual increase since 1977, and the highest total level since 1991.
I We analyze effect of exploration and random discoveries in a

dynamic Cournot game . This was studied in the monopoly
context: Pindyck ’78, Arrow & Chang ’82, Deshmukh & Pliska ’80-’85,

Soner ’85, Hagan et al. ’94.
I Concentrate on two-player game: player 2 is clean (solar) with

fixed cost c > 0; player 1 produces oil at zero cost, but can
explore for new reserves.
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Axis Game with Exploration

The remaining reserves X of Player 1 follows

dXt = −q1(Xt)1{Xt>0} dt + δ dNt,

where (Nt) is a controlled point process with intensity λat, penalized
by cost C(at). Market price: P(t) =

(
1− q1(Xt)− q2(Xt)

)
.

Value functions of each player:

v(x) = sup
q1,a

E
[∫ ∞

0
e−rt (q1(Xt)P(t)− C(at)) dt | X0 = x

]
,

w(x) = sup
q2≥0

E
[∫ ∞

0
e−rtq2(Xt)

(
P(t)− c

)
1{Xt>0} dt

+

∫ ∞
0

e−rt 1
4

(1− c)2
1{Xt=0} dt | X0 = x

]
.
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Axis Game HJB System
The ODEs for v and w are

sup
q1,a

{
(1− q1 − q∗2)q1 − q1v′(x)− C(a) + aλ∆v(x)

}
− rv(x) = 0,

sup
q2≥0
{(1− q∗1 − q2 − c)q2} − q∗1w′(x) + a∗(x)λ∆w(x)− rw(x) = 0,

where ∆v(x) = v(x + δ)− v(x) is the non-local or jump term, and

a∗(x) = argsup
a≥0
{−C(a) + aλ∆v(x)}

is the optimal exploration effort.
Boundary conditions:

v(0) = sup
a

aλv(δ)− C(a)

λa + r
, w(0) =

(1− c)2/4 + λa∗(0)w(δ)

λa∗(0) + r
.
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Power Function Costs

I If a∗ > 0 for all x then X∗ is recurrent on its full state space.
Therefore supt X∗t = +∞ and reserves will become arbitrarily
large infinitely often.

I Unrealistic for describing non-renewable resources, and suggests
that we should take C′(0) > 0.

I Then there exists a saturation level xsat such that a∗(x) = 0 for
x > xsat and X∗ would be positive recurrent on [0, xsat + δ) only.

I Take C(a) = 1
βaβ + κa, with β > 1, κ ≥ 0. Note that C′(0) = κ.

Then a∗(x) =
[
(λ∆v(x)− κ)+]γ−1

, where β−1 + γ−1 = 1, and

1
9

(1− 2v′ + c)2 +
1
γ

[
(λ∆v(x)− κ)+]γ − rv = 0.
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Effect of Competition on Exploration Effort
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Sample Game Dynamics
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Hotelling’s Rule Updated
Monopoly exhaustible resources, Hotelling 1931:

d
dt

v′(X∗t ) = rv′(X∗t ).

Here we have

d
dt

v′(X∗t ) |X∗t =x = Dv′(x) = λa∗(x)∆v′(x)− q∗1(x)v′′(x),

and we find:

Dv′(x) =


rv′(x) + q∗1(x)

∂

∂x
q∗2(x) if x < xb ∧ xsat

3
4

rv′(x) xsat < x < xb

rv′(x) x > xb.

With competition, shadow prices grow slower than r.
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Continuum Mean Field Game Approximations
I With a finite number of exhaustible players, the HJB system of

PDEs needs numerical resolution. Even in the two-player case,
these equations are hard to handle.

I Instead, one may study the market dynamics when the number of
firms tends to infinity by using the concept of a mean field game
(MFG), proposed by Lasry & Lions and Caines et al.: continuum
limit of an infinity of small players.

I The interaction is modeled by assuming that each player only
sees and reacts to the other players throught their average action.

I Optimization against the distribution of other players leads to a
backward (in time) HJB equation; their actions determine the
evolution of the state distribution, encoded by a forward
Kolmogorov equation.

I In examples, these equations are numerically tractable and
provide good qualitative approximation for the small # player
problem.
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