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Overview

I. Traditional commodity markets issues and models. Electricity
price models.

[\

. Energy production from exhaustible resources and renewables:
game threoretic models.

(OS]

. Financialization of commodity markets.



Game Theoretic Models of Energy Production

» Recent decline in oil prices (around $100 per barrel in June 2014
to around $50 in January 2015) illustrates evolution of energy
production as a result of competition between different sources.
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» Drop was prompted in large part by OPEC’s strategic decision
not to decrease its oil output in the face of increased production
of shale oil in the US, itself arising from new technologies
(fracking), spurred by investment in exploration and research in
times of higher oil prices.



Energy Production

These complex interactions are in addition to long-running
concerns about dwindling fossil fuel reserves (‘peak oil’), as well
as climate change transitioning to sustainable energy sources.

Build models successively incorporating various of these
features starting from a competitive oligopolistic view of an
idealized global energy market, in which game theory describes
the outcome of competition.

Oligopoly is in a Cournot framework: players choose quantities
of production and prices are determined by total supply.

Reasonable for energy production: major players determine their
output relative to their production costs, as in the expected
scenario that OPEC will cut production in order to increase the
market price of oil.



Game Changers

Start with static, or one-period games to see for instance the
non-competitiveness of producing from a relatively expensive
renewable source, such as wind, against a cheap fossil fuel.
The nature of the complexities calls for a dynamic model in
which there are (cliché) game changers over time, e.g.
dwindling reserves of oil or coal, ramping up their scarcity value;
discoveries of new oil reserves (over 30 major finds in 2009);
technological innovation such as fracking, led to extraction of
shale oil and gas;
government subsidies for renewables such as solar and wind;
varying costs of production, e.g. cheaper solar due to falling
silicon prices and improved solar cell efficiency (Solyndra).

Many if not all these phenomena are unpredictable and dramatic:
motivate the development of stochastic models, with potentially
significant ‘jumps’ (for instance in costs or reserves).



Static Cournot Games

N > 1 profit-maximizing producers (or players), with per-unit
(constant) cost of production , which will be different,
reflecting the costs of heterogeneous energy sources.

Market is specified by a decreasing inverse demand curve P(-).
Given total production level Q = g; + ... + gy, the market
clearing price is P(Q).

Example: linear inverse demand, P(Q) = 1 — Q.

Profit of player i is the quantity produced times price minus cost:

(P(O_i +q;) —s;) ifg; >0,
ﬂ—(qin—hsi):{ q( ( 0 q) ) lel:O

where Q_; =3, g;.



Nash Equilibrium

A Nash equilibrium is a vector §* = (¢}, 43, - .., qx) € [0,00)V
such that, for all i,
W(Q;‘kaii?Si) = max W(Ql‘aQ*—ivsi)v (1)

in[0,00)

where 0%, =3 ., g7

Assume: price function P is twice continuously differentiable,
with P < 0 everywhere on (0, 00); and there exists n € (0, 00)
such that P(n) = 0. And order the firms by their costs:

0<s1<s<...<sy<PO).

Define relative prudence of P:

L QPII(Q) _
p(Q) = P " Qesgéio) p(Q).



Theorem

Suppose that p < 2. Then there is a unique Nash equilibrium which
can be constructed as follows. Let Q* = max {Q% | 1 <n < N},
where Q}, is the unique non-negative solution to the scalar equation

QP (Q) + nP(Q Z 5;.

The unique Nash equilibrium production quantities are given by

P(Q") —si

qZ‘(F):maX{ P (0] ,0}, 1 <i<N,

and the corresponding profits are
Gi(5) = ¢;()(P(Q*) — 1), 1<i<N.

In particular, qi and G; are Lipschitz continuous, and the number of
active players (that is, players with g7 > 0), in the unique equilibrium
ism=min{n| Q" =Q*\.



Blockading

The constraint ¢; > 0 endogenizes the market structure in terms
of the cost profile 5.

Oligopolies with symmetric costs generate a trivial market
structure: either all firms active or all firms inactive.

When firms are asymmetric, some firms may be inactive in
equilibrium. In dynamic models, asymmetric costs induce
different entry times into the market.

Especially pertinent to energy markets, where producers using
different fuels and technologies have widely different costs of
production. For example, oil and coal sources are much cheaper
than renewables, such as solar or wind.



Heterogeneous Costs: just oil sources
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Figure: Estimated oil extraction costs from varying sources, 2012.
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Duopoly: N = 2 with linear demand P(Q) =1 — Q
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Current example: OPEC holding back on cuts in production to drive
shale oil producers out of the market and into bankruptcy.



Monopoly Exhaustible Resources

Hotelling (1931) : a single producer who has reserves x(z) at

time ¢, with:

dx

E = 7Q(X(Z)):H-{x(r)>0}7 (2)
where g(x(7)) is his production (or extraction) rate. When his
reserves run out, he no longer participates in the market.

The producer extracts to maximize lifetime discounted profit:

v(a) = sup [ e a(x(o)Plate(o)

q=0J0
where 7, is the exhaustion time starting at x(0) = x:
e = inf{r > 0 | x(t) = 0}.
Hotelling’s rule (for a monopolist with exhaustible resources):
d

—V(x(1)) = r'(x(1)), 3)

dt
or v'(x(r)) = V'(x(0))e™.



Incorporating other players leads to nonzero-sum differential
games and PDE:s.

Existence and regularity theory is scarce (outside of the case of
linear-quadratic (LQ) games).

To illustrate the complexity in the duopoly case, let x;(7) be the
reserves of each player, depleted at their extraction rates ¢;:
dx; o . o
o = —qi(X(1)), i=1,2 where X(t) = (x1(2),x2(1)).

A Nash (or Markov perfect) equilibrium (g7, ¢3):

vi(X) = sup /ij e "qi(X(1))P (qi(X(1) + qf (X(1))) dt, i =1,2;j # i,
qi>0J0

where 7, = inf{r > 0 | x;(¢) = 0} are the exhaustion times
starting at x; = x;(0).



PDE:s for the value functions in x;,x, > O:

Ov; ov;
rvi = sup (%Q* VI> g

—i» —q; —.
>0 Ox; ! Ox;

This identifies the infinitesimal problem in the dynamic
programming equation as the static Nash equilibrium problem

with scarcity costs s; = f%
i

As players deplete their reserves, their marginal costs may rise
sufficiently to make further production uneconomical and
causing them to drop out of competition.



N-player dynamic game

Using the notation of the static Theorem the dynamic game
PDEs are:

. 0v; Ov; Ov;
r\',-fG,-(fD\')—q/»(‘D\')%, i=1,2j#i, Dv= < ! V-’>.
OXj

(97)61'7 Oxj

]

In a model of only exhaustible resources, when player i runs out,
player j has a monopoly until he also exhausts, which lead to
boundary conditions on x; = 0 and at (0, 0) respectively.

A more nuanced (and optimistic) view allows that when an oil
producer exits, he is replaced by an inexhaustible producer (such
as from solar).

Alternatively, one can consider models with a single exhaustible
producer, and hence a single state variable, along with N — 1
renewable producers.

This maintains game effects but minimizes mathematical
complexity, and allows to study the effect of blockading.



Dynamic Cournot Model for Energy Production

» The oil producer (Player 0) has reserves x(z) at time ¢, and

chooses his production rate go(x(7)), depleting reserves as
dx
7 —qo(x(1)) L x(1)>0} -

Others produce energy at rates ¢;(x(7)),i=1,...,N — 1.
» Price given by linear inverse demand function:

N—1
P(t) = 1 —qo(x(r)) = ) g(x(1)).
j=1

Note maximum (choke) price is 1.

» Players maximize discounted lifetime profit. Player 0’s value
function:

vo(x) = Sup/() eiqu(x(l‘))P(t)]l{x(t)>0}dt.
q0 -
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Aside: Static Cournot Game
» In a static Cournot game between N players with ordered costs
(50,81, ,Sn—1), the number of active players in equilibrium
depends on the distribution of the costs. Let
N-1
Gi(s0, s) ZII;}%%U—Q—S:‘), 0= 2%‘-
l:

» Let ") = 57" /s, If n < N — 1 players participate, the

]
equilibrium total supply is: O*" = ’E;f{’;.

Proposition
Let Q* = max {Q*"|0 < n < N — 1}. Then the unique Nash
equilibrium quantities are given by

q; (s0.5) =max {1 — 0" — 5,0}, Gi=(q})?, 0<i<N-L

The number of active players in the unique equilibrium is

m = min {n | O*" = Q*} (The others are blockaded).
17



Value Functions and Feedback Strategies
We look for a Markov Perfect Nash equilibrium. Player 0’s value

function:
oo
w0(e) =sup [ 0 (50 PO T oo
0
When oil runs out, the remaining firms (i = 1, ..., N — 1) with their

inexhaustible resources repeatedly play a static game with profit flow
Gi ( 1 y S):

wi(x) = sup /OOO e "qi(x(1)) (P(t) = i) Liyy>o0pdt + %Gi(l,s).

qi

The HIB equation is rvy = Go(v), s) with vo(0) = 0, and the
equilibrium production rates are:

q; (x(1)) = q; (v (x(1)),s),  i=0,...,N—1.

Oil producer’s scarcity value (shadow cost) is encoded in vj(x).

18



Blockading Points
Forn=0,...,N—1,let
xp=inf{x >0:g,(x) =0}, 1, =inf{r >0:q,(x(r)) > 0}.

(N
Let S®) = Zlf ;5 and assume s is s.t. sy < L : guarantees
everyone else participates when oils runs out.

Reserves
All Active Duopoly  Oil Monopoly
I ] ] ] ]
i T T T T
0 X! X2 X X
# Active: N N-—-1 N-2 3 2 1
Time




Low Oil Reserves: Value Function

Proposition
For x € (0, x;)v_l), Player 0’s value function is given by

™) 1 (14+s%-D\° 2
W) = (2] W),
with 0(x) = —e= =1 and, iy = M, and where W () is

2N(14+S(V=1))
the Lambert-W function.

qo(x(1)) = (N—li—l) (1 — N (x(1)) +S(N—1)> 7
wn) = <N1+1> (1= @+ D5+ (x(0) 4+ 5D

where vIV)' (x) = —(1 + SW=D)W (0(x)) /N.
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Blockading Point

Let o, = (n+ 1)s, — (1 + 5=,

Proposition
The last blockading point is given by:

1 Nay_ Nay_—
-1 _ N—-1 N—1
5 [ P s Tl (1 +S<N—1>>] ’
provided a1 > 0, otherwise xév 1 = . Suppose that for

ne{2,...,N—1},x} <oo. Ifan_1 >0, then

N I nn+1) Qp—|
n—1 __ .n o - _loo | 21
Xy, =X, + 7/1,, |:  + 5‘(”71) (“n 51171) l()c < a, )

otherwise x’;fl = 00.

Assume hereon s such that all o, > 0 = ) < o0,

21



Hotelling’s Rule

A modified version of Hotelling’s rule for exhaustible resources

holds:

Proposition

Forn € {1,...,N}, forx € (x},x}""), (we identify x) = 0 and

2 =o0)

b >
d / 1 1 /
2,0 = [ () s
D) =) = (54 5, ) o 60 - ).

Coincides with the classical Hotelling rule (1931) for n = 1: the
marginal value grows (exponentially) at the discount rate.

22



Market Price

» It can be shown that P(") ()CZ*1 — X})) = Sp—1, i.e. the blockading

n—1

point x, " is exactly the point at which the market price equals
the cost of Firm n — 1.

» Turns out there is an autonomous linear ODE for the price:
d 11 1 4+ st=1)
—P(t)=| -+ — Pit) — —— .
Q) <2+2n>r<() A1

» Forn € {2,...,N — 1}, the time at which Firm n enters the

game is
2n «
=71 1 "
b= +(n+l)r ©8 <an1>’

and forn = 1 by

23



Example: N = 10, s = (0.51,0.52,...,0.59)
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dP/dt
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Summary

Exhaustibility wins over increased competition: oil runs low,
competing energy sources enter the market, but price rises.
However, exponential rate of price increase decreases like
(3 + 20)r

2 2n/" "
Remains to understand the blockading issue with multiple
exhaustible suppliers: involves strongly coupled systems of
nonlinear PDEs with nonsmooth coefficients.

Those PDEs require subtle regularization in the form of
trembling: bounding below g; > ¢ and passing € | O.
Next: incorporate exploration.

26



Exploration and Random Discoveries

So far: exhaustibility or scarcity leads to price increases/shocks.

However there were over 30 new discoveries in 2009. Proved
reserves of crude oil rose 13% to 25.2 billion barrels in 2010, the

largest annual increase since 1977, and the highest total level since 1991.

We analyze effect of exploration and random discoveries in a
dynamic Cournot game . This was studied in the monopoly
context: Pindyck *78, Arrow & Chang ’82, Deshmukh & Pliska *80-’85,
Soner ’85, Hagan et al. *94.

Concentrate on two-player game: player 2 is clean (solar) with

fixed cost ¢ > 0; player 1 produces oil at zero cost, but can
explore for new reserves.

27



Axis Game with Exploration

The remaining reserves X of Player 1 follows
aX; = —q (X,) ﬂ{X,>0} dt + 0 dN,,

where (N,) is a controlled point process with intensity \«,, penalized
by cost C(a,). Market price: P(1) = (1 — q1(X;) — ¢2(X1)).
Value functions of each player:

Wx) = supE[ | e ampo - ca dr|xo:x],

q1,a

w) = | [T (P - )L

42>0

_I_/Ov —rl4(]—C) ]]'{X o}dt|X()—x:| .

28



Axis Game HJB System

The ODEs for v and w are
sup {(1 — g1 — ¢3)q1 — q1V'(x) = Ca) + arAv(x)} — rv(x) = 0,
q1,a
sup {(1 — g7 — g2 — ¢)q2} — 1w’ (x) + a" (x)\Aw(x) — rw(x) = 0,
4220

where Av(x) = v(x + d) — v(x) is the non-local or jump term, and

a*(x) = ar;g:gp{—C(a) + a\Av(x)}

is the optimal exploration effort.
Boundary conditions:

aiv(0) — C(a)

v(0) = sup T_Ha w(0) =

(1 —¢)?/4+ Aa*(0)w(d)
Aa*(0) +r ’

29



Power Function Costs

If a* > 0 for all x then X* is recurrent on its full state space.
Therefore sup, X; = +oc and reserves will become arbitrarily
large infinitely often.

Unrealistic for describing non-renewable resources, and suggests
that we should take C'(0) > 0.

Then there exists a saturation level xg such that a*(x) = 0 for
X > Xg and X* would be positive recurrent on [0, xg, + J) only.

Take C(a) = sa” + ka, with 3 > 1,k > 0. Note that C'(0) = k.
Then a*(x) = [(AAv(x) — /<;)+P_1, where 87! +~7! =1, and

1 ;o 1 _
g1 =2/ 4P+~ [0Av) =) ] = =0,
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Effect of Competition on Exploration Effort

Exhaustible producer: ¢; (), a*(z) Green producer: g3 (z)
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The parameters are § = 1, A = 1,7 = 0.1,C(a) = 0.1a + a*/2.
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Sample Game Dynamics

Reserves trajectory

Equilibrium production rates

Time ¢
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Hotelling’s Rule Updated

Monopoly exhaustible resources, Hotelling 1931:

d * *
EV/(Xz ) = rV/(Xz )-

Here we have

d

EV'(X;* ) xr=x = DV'(x) = Aa" (x) AV (x) — g} ()" (x),
and we find:
/ * a * .
' (x) + q; (x)aqz(x) if  x < xp A Xeat
/ = 3

Dv(x) = er’ (x) Xsar < X < Xp
' (x) X > Xp.

With competition, shadow prices grow slower than r.

33



Continuum Mean Field Game Approximations

With a finite number of exhaustible players, the HIB system of
PDEs needs numerical resolution. Even in the two-player case,
these equations are hard to handle.
Instead, one may study the market dynamics when the number of
firms tends to infinity by using the concept of a

, proposed by Lasry & Lions and Caines et al.: continuum
limit of an infinity of small players.
The interaction is modeled by assuming that each player only
sees and reacts to the other players throught their average action.
Optimization against the distribution of other players leads to a
backward (in time) HJB equation; their actions determine the
evolution of the state distribution, encoded by a forward
Kolmogorov equation.
In examples, these equations are numerically tractable and
provide good qualitative approximation for the small # player
problem.
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Some References

# Players Type Demand Randomness Replenish
Hotelling (1931) 1 — linear Determ. No
Dasgupta and Stiglitz (1981) N Cournot constant single-shock ~ No
Deshmukh and Pliska (1983) 1 - regimes  Poisson Yes
Benchekroun (2008) N Cournot  linear Determ. Yes
Benchekroun et al (2009) N Cournot linear Determ. Yes
Harris et al (2010) 1+g  Cournot linear  Brownian No
Ludkovski and Sircar (2011) 1+g  Cournot linear Poisson Yes
Ledvina and Sircar (2012) 1+N  Bertrand linear Determ. No
Ludkovski and Yang (2014) 1+g  Cournot linear Poisson Yes
Colombo and Labrecciosa (2013) N Cournot linear Determ. Yes
Dasarathy and Sircar (2014) 14N Cournot linear Poisson Yes
Guéant et al (2010) oo Cournot CES Determ. No
Chan and Sircar (2014) oo Bertrand linear  Brownian No




	Set-up

