Limit Order Books

René Carmona

Bendheim Center for Finance
Department of Operations Research & Financial Engineering
Princeton University

IPAM, Los Angeles, March 10, 2015
Standard Assumptions in Finance

Black-Scholes theory
- Price given by a **single** number
- **infinite** liquidity
 - one can buy or sell **any** quantity **at** this price
 - with **NO IMPACT** on the asset price
- Fixes to account for liquidity frictions
 - Transaction Costs ([Constantinides, Davis, Paras, Zariphopoulou, Shreve, Soner,])
 - liquidity \sim transaction cost ([Cetin-Jarrow-Protter])

Not satisfactory for
- Large trades (over short periods)
- High Frequency Trading

Need **Market Microstructure**
- e.g. understand how are buy and sell orders executed?
New Markets

▸ Quote Driven Markets
 ▸ Market Maker or Dealer centralizes buy and sell orders and provides liquidity by setting bid and ask quotes.
 Ex: NYSE specialist system

▸ Order Driven Markets
 ▸ electronic platforms aggregate all available orders in a Limit Order Book (LOB)
 Ex: NASDAQ, NYSE, ICE, BATS, CHX, LSE,

▸ Same stock traded on several venues
▸ Price discovery made difficult as most instruments can be traded off market without printing the trade to a publicly accessible data source
 ▸ Competition between markets leads to lower fees and smaller tick sizes

▸ Creation of Dark Pools
▸ Increase in updating frequency of order books
High Frequency Trading

Speculative figures – Sound plausible

- HFT accounts for 60 – 75% of all share volume.
- 10% of that is predatory ≈ 600 million shares per day
- At 0.01-0.02 per share, predatory HFT is profiting 6-12 million a day or 1.5-3 billion e year

Algorithmic Trading – Source of concern

- Moving computing facilities closer to trading platform (latency)
- Relying on / competing with Benchmark Tracking execution algorithms
Pros & Cons

Pros

▶ Smaller tick size;
▶ HF traders provide extra liquidity
▶ Dark pools reduce trade execution costs from price impact
▶ Markets are more efficient

Cons

▶ Expensive technological arms race
▶ Dark trading incentivizes price manipulation, fishing and predatory trading
▶ Little or no oversight possible by humans (e.g. flash crash) & increased systemic risk
▶ HF trading algorithms do not use economic fundamentals (e.g. value & profitability of a firm)
Some Highly Publicized Mishaps

Flash Crash of May 6, 2010

- Dow Jones IA plunged about 1000 points (recovered in minutes)
- Biggest one-day point decline (998.5 points)
 - At 2:32 pm a mutual fund program started to sell 75,000 E-Mini S&P 500 contracts (≈ 4.1 billion USD) at an execution rate of 9%
 - HT trading programs were among the buyers: quickly bought and resold contracts to each other
 - hot-potato volume effect, combined sales drove the E-mini price down 3% in just 4 minutes

Other Notable Crashes

- Associated Press’ Twitter account hack
 - White House bombed
 - President Obama injured
 - DJIA lost 140 points and recovered in minutes
- Several mini flash crashes on NASDAQ in 2012
Limit Order Book (LOB)

List of all the waiting buy and sell orders

- Prices are multiple of the tick size
- For a given price, orders are arranged in a **First-In-First-Out** (FIFO) stack
- At each time t
 - The **bid** price B_t is the price of the highest waiting buy order
 - The **ask** price A_t is the price of the lowest waiting sell order

- The state of the order book is modified by **order book events**:
 - limit orders
 - market orders
 - cancelations

- **consolidated order book**: If the stock is traded in several venues, one aggregates over all (visible) trading venues.

- Here, **little** or no discussion of pools
The Role of a LOB

- Crucial in high frequency finance: explains transaction costs.
- **Liquidity providers** post trading intentions: Bids and Offers.
- **Liquidity takers** execute certain orders: adverse selection.

Figure: Snapshot of Apple order book at 8:43 (NASDAQ)
DELL NASDAQ Order Book, May 18, 2013

Time = 15 hr 48 mn
Limit Orders

A limit order sits in the order book until it is
- either executed against a matching market order
- or it is canceled

A limit order
- may be executed very quickly if it corresponds to a price near the bid and the ask
- may take a long time if
 - the market price moves away from the requested price
 - the requested price is too far from the bid/ask.
- can be canceled at any time

Typically, a limit order waits for a match
- transaction cost is known
- execution time is uncertain
A **market order** is an order to buy/sell a certain quantity of the asset at the **best available price** in the book.

- Agents can put a **market order** that, for a buy (resp. sell) order,
 - the first share(s) will be traded at the ask (resp. bid) price
 - the remaining one(s) will be traded some ticks upper (resp. lower) in order to fill the order size.
- The ask (resp. bid) price is then modified accordingly.
- When either the bid or ask queue is **depleted** by
 - market orders
 - cancelations
 the price is **updated** up or down to the next level of the order book.

Typically a **market order** consumes the cheapest limit orders

- **immediate execution** (if the book is filled enough)
- **price** per share instead **uncertain** (depends upon the order size)
Cancellations

- Agents can put a **cancellation** of x orders in a given queue reduces the queue size by x
- When either the bid or ask **queue is depleted** by market orders and cancelations, the **price moves** up or down to the next level of the order book.
Actual trades come in two forms

- Agents can put a limit order and wait that this order matches another one
 - transaction cost is known
 - execution time is uncertain
- Agents can put a market order that consumes the cheapest limit orders in the book
 - immediate execution (if the book is filled enough)
 - price per share instead depends on the order size

For a buy (resp. sell) order, the first share will be traded at the ask (resp. bid) price while the last one will be traded some ticks upper (resp. lower) in order to fill the order size. The ask (resp. bid) price is then modified accordingly.

Agents can put a cancellation of \(x\) orders in a given queue reduces the queue size by \(x\)

When either the bid or ask queue is depleted by market orders and cancelations, the price moves up or down to the next level of the order book.
Impact of Large Market Order Fills

- **Current mid-price**
 \[p_{mid} = \frac{(p_{Bid} + p_{Ask})}{2} = 13.98 \]

- **Fill size** \(N = 76015 \) (e.g. buy)

- **\(n_1 \) shares available at best bid \(p_1 \), \(n_2 \) shares at price \(p_2 > p_1 \), \ldots**

- **\(n_k \) shares at price \(p_k > p_{k-1} \)**
 \[N = n_1 + n_2 + n_3 + \ldots + n_k \]

- **Transaction cost**
 \[n_1 p_1 + n_2 p_2 + \ldots + n_k p_k = 1064578 \]

- **Effective price**
 \[p_{eff} = \frac{1}{N} (n_1 p_1 + n_2 p_2 + \ldots + n_k p_k) \]
 \[= 14.00484 \]

- **New mid-price** \(p_{mid} = 13.995 \)
A LOB Idiosyncrasy: Hidden Liquidity

- Some exchanges (e.g. NASDAQ & NYSE) allow **Hidden Orders**
- Made **visible** to the broader market **after being executed**
- **Controversial**
 - barrier to the implementation of a fully transparent market
 - impediment to price discovery and information dissemination

Results of First Empirical Analyzes

- Encourage **fishing**
- After it is **revealed** that a hidden order was executed
 - rash increase of order placement inside the bid-ask after
- HF Traders **divided** in two groups
 - Traders try to take advantage of the remaining hidden liquidity
 - Traders try to steal execution priority from the fully hidden orders
"Partially Hidden" Orders: Iceberg Orders

- **Dark liquidity** posted inside the LOB
- Two components: the **shown quantity** and the **hidden remainder**
- Order queued with the **lit** part of the LOB, only the shown quantity is visible
- When the order reaches the front of the queue, **only the display quantity is filled**
- Trade (price & quantity filled) **revealed**
- **hidden part** put at the back of the queue
- Sometimes **extra execution fee** charged by the exchange
Dark Pools / Crossing Networks

- **Electronic engine** that matches buy and sell orders without routing them to lit exchanges
- **Raison d’être:** move large amounts without impacting the price (no need for iceberg orders)
- **Run by private brokerages**
 - Ex: Liquidnet, Pipeline, ITG’s Posit, Goldman’s SIGMA X.
 - Participants submit (wish) lists of orders to a matching engine
 - Matched orders are executed at the midpoint of the bid-ask spread.
- **Pros:** trade at mid-point can be better than on a lit market
- **Cons:** May have to wait a long time for a match to occur
- Regulated by SEC (in the US) as **Alternative Trading Systems**
 - Little or no public disclosure
 - Not much has been done to increase transparency
- Trading on dark pools ≈ 32% of trades in 2012 (!)
Limit Order Book Data: NASDAQ ITCH

- Large **binary** file
- **Message ID**: unique identifier
- **Market events**: emergency halts, resumptions,
- **Time stamp**: number of seconds (in nanoseconds) since midnight
- **Security symbol**
- **Market**: NYSE, NYSE Amex, NYSE Arca, NASDAQ Capital Market, NASDAQ Global Market, BATS, ...
- **Indicators**: order imbalance, near price, price variation,
- **MPIID** (Market Participant ID) rarely given
- **Order Code**: see next
ITALCH Message Codes for Orders

- **A** - Add order
- **C** - Execution with price improvement
- **D** - Full order deletion
- **E** - Execution at listed price
- **F** - Add order with Market participant ID
- **P** - Execution of a non-displayed order (non-cross)
- **Q** - Cross trade (bid/ask overlap or at market open/close)
- **UD** - Delete order as part of a replace order (U).
- **UA** - Add order as part of a replace order (U). Follows UD.
- **X** - Partial order cancellation (remove specified # of shares)
Example of a Processed File

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>AAPL</td>
<td>34200.6297</td>
<td>A</td>
<td>9876615</td>
<td>100</td>
<td>391</td>
<td>B</td>
<td>404.84</td>
<td>405</td>
</tr>
<tr>
<td>137</td>
<td>AAPL</td>
<td>34200.6309</td>
<td>A</td>
<td>9876860</td>
<td>200</td>
<td>403.5</td>
<td>B</td>
<td>404.84</td>
<td>405</td>
</tr>
<tr>
<td>138</td>
<td>AAPL</td>
<td>34200.634</td>
<td>A</td>
<td>9877547</td>
<td>100</td>
<td>403.5</td>
<td>B</td>
<td>404.84</td>
<td>405</td>
</tr>
<tr>
<td>139</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>Q</td>
<td>0</td>
<td>156060</td>
<td>405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>111772</td>
<td>1</td>
<td>404.9</td>
<td>B</td>
<td>404.84</td>
<td>405</td>
</tr>
<tr>
<td>141</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3326930</td>
<td>25</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>142</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>F</td>
<td>2021313</td>
<td>20</td>
<td>404.9</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>143</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3328043</td>
<td>35</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>144</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>1655778</td>
<td>20</td>
<td>404.84</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>145</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3332806</td>
<td>15</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>146</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>F</td>
<td>7859038</td>
<td>100</td>
<td>404.81</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>147</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3329014</td>
<td>26</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>148</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3329974</td>
<td>5</td>
<td>404.8</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>149</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3331024</td>
<td>5</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>150</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>2300370</td>
<td>20</td>
<td>404.75</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>151</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3531957</td>
<td>3000</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>152</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3324571</td>
<td>50</td>
<td>404.75</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>153</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>4983600</td>
<td>150</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>154</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>4050945</td>
<td>5</td>
<td>404.75</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>155</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>5436522</td>
<td>10</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>156</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>3330195</td>
<td>17</td>
<td>404.69</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>157</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>F</td>
<td>6548347</td>
<td>50</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>158</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>8536495</td>
<td>1</td>
<td>405</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>159</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>1295855</td>
<td>85</td>
<td>405.2</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>160</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>1629298</td>
<td>10</td>
<td>405.3</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>161</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>F</td>
<td>4620020</td>
<td>30</td>
<td>405.36</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>162</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>A</td>
<td>7397081</td>
<td>167</td>
<td>405.38</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>163</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>F</td>
<td>1902664</td>
<td>15</td>
<td>405.5</td>
<td>S</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>164</td>
<td>AAPL</td>
<td>34200.6859</td>
<td>E</td>
<td>1117772</td>
<td>1</td>
<td>404.9</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
<tr>
<td>165</td>
<td>AAPL</td>
<td>34200.6939</td>
<td>E</td>
<td>2021313</td>
<td>20</td>
<td>404.9</td>
<td>B</td>
<td>404.9</td>
<td>405</td>
</tr>
</tbody>
</table>
Apple Mid-Price (sec by sec) on 4/18/13 between 10am and 3pm
Apple Best Bid & Ask (sec by sec) on 4/18/13 between 10am and 3pm

Index
BBid
Apple SPREAD (sec by sec) on 4/18/13 between 10am and 3pm
UBSS Inventory Accumulated in the Sun Shine on April 18, 2013

UBSS Inventory for AAPL on April 18, 2013

Nb Shares

Trade Clock

Nb Shares

Trade Clock
UBSS Cash Accumulated in the Sun Shine on April 18, 2013.
UBSS Wealth Accumulated in the Sun Shine on April 18, 2013

UBSS Wealth for AAPL on April 18, 2013

Trade Clock

Nb Shares

0 10000 20000 30000

−1e+06 −8e+05 −6e+05 −4e+05 −2e+05 0e+00

UBSS Wealth for AAPL on April 18, 2013

Trade Clock

Nb Shares

0 10000 20000 30000

−1e+06 −8e+05 −6e+05 −4e+05 −2e+05 0e+00
Order Book Models

Roughly speaking, LOB is a set of two histograms (Bids and Asks)
Reduced form model: Markov process \((O_t)_t\) on a large state space of order books \(\mathcal{O}\).

- Early models
 - e.g. Smith-Farmer-Guillemot-Krishnamurthy (SFGK) Model
 - Market orders (buys and sells) arrive according to a Poisson process with rate \(\mu/2\)
 - Cancellation of existing limit orders: outstanding limit orders "die" at a rate \(\nu\)

- More modern versions
 - use Hawkes processes instead of Poisson processes
Another Model Capturing Stylized Facts

Cont-Stoikov-Talreja

- $\mathcal{P} = \{1, 2, \cdots, n\}$ price grid in multiples of price tick
- LOB at time t: $O(t) = (O_1(t), O_2(t), \cdots, O_n(t))$
 - $|O_p(t)|$ is the number of outstanding limit orders at price p
 - There are $-O_p(t)$ bid orders at price p if $O_p(t) < 0$
 - There are $O_p(t)$ ask orders at price p if $O_p(t) > 0$

- Admissible state space
 \[
 \mathcal{O} = \left\{ O \in \mathbb{Z}^n; \ \exists 1 \leq k \leq \ell \leq n, \ O_p < 0 \text{ for } p \leq k, \right. \\
 \left. O_p = 0 \text{ for } k < p < \ell, \ O_p > 0 \text{ for } \ell \leq p \right\}
 \]

- **Ask price** at time t:
 \[
 P_A(t) := (n + 1) \wedge \inf\{p; \ 1 \leq p \leq n, \ O_p(t) > 0\}
 \]

- **Bid price** at time t:
 \[
 P_B(t) := 0 \vee \sup\{p; \ 1 \leq p \leq n, \ O_p(t) < 0\}
 \]

- **Mid-price** $\tilde{P}(t) = \frac{1}{2}[P_A(t) + P_B(t)]$

- **Bid-Ask spread** $\tilde{S}(t) = P_A(t) - P_B(t)$
A Typical State of the LOB

Typical Limit Order Book

<table>
<thead>
<tr>
<th>Price</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>4</td>
</tr>
</tbody>
</table>

Price

Volume
LOB Dynamics

- For the sake of **simplicity**, we assume that the changes to the LOB happen **one share at a time**!
- We review the **events** causing the LOB state **transitions**
- Convenient Notation $O_i^{p±1}$ as a transition from O

$$O_i^{p±1} = \begin{cases} O_i & \text{if } i \neq p \\ O_i \pm 1 & \text{if } i = p \end{cases}$$
Limit buy order at price level \(p < P_B(t) \)

Increases the quantity at level \(p \): \(O(t) \leftarrow O(t)^{p-1} \)
Limit buy order at price level $p > P_B(t)$

Increases the quantity at level p: $O(t) \leftrightarrow O(t)^{p-1}$
Limit sell order at price level $p = P_A(t)$

Increases the quantity at level p: $O(t) \leftrightarrow O(t)^{p+1}$
Limit sell order at price level $p < P_A(t)$

Increases the quantity at level p: $O(t) \leftrightarrow O(t)^{p+1}$
Market Buy Order

LOB after the arrival of a Buy Market Order

<table>
<thead>
<tr>
<th>Price</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>105</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>8</td>
</tr>
<tr>
<td>115</td>
<td>10</td>
</tr>
</tbody>
</table>

Decreases the quantity at the ask price: $O(t) \leadsto O(t)^{P_A(t) - 1}$
Cancellation of a Limit Sell Order at price $p = P_A(t)$

Decreases the quantity offered at that price.
Cancellation of a Limit Sell Order or Market Buy

Decreases the quantity at the ask price: \(O(t) \leftrightarrow O(t)^{P_A(t)}^{-1} \). Now the Ask price \(P_A(O) \) changes.
Cancellation of a limit buy order at price $p < P_B(t)$

Decreases the quantity available at price p
Cancellation of a limit sell order at price $p > P_A(t)$

<table>
<thead>
<tr>
<th>Price</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>105</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>8</td>
</tr>
<tr>
<td>115</td>
<td>10</td>
</tr>
</tbody>
</table>

Decreases the quantity available at price p
Practical Assumptions

- Limit buy (respectively sell) orders arrive at a distance of i ticks from the opposite best quote at independent, exponential times with rate $\lambda(i) = Ki^{-\beta}$ for some $K > 0$ and $\beta > 0$.
- Market buy (respectively sell) orders arrive at independent, exponential times with constant rate μ.
- Cancellations of limit orders at a distance of i ticks from the opposite best quote occur at a rate proportional to the number of outstanding orders: If the number of outstanding orders at that level is x, then the cancellation rate is $\theta(i)x$.
- The above events are mutually independent.
Summary

Under these assumptions, \(\mathcal{O} = [O(t)]_{t \geq 0} \) is a continuous-time Markov chain with state space \(\mathcal{O} \) and transition rates:

- \(O \leftrightarrow O^{p-1} \) with rate \(\lambda(P_A(t) - p) \) for \(p < P_A(t) \)
- \(O \leftrightarrow O^{p-1} \) with rate \(\theta(p - P_B(t))|O_p| \) for \(p > P_B(t) \)
- \(O \leftrightarrow O^{p+1} \) with rate \(\lambda(p - P_B(t)) \) for \(p > P_B(t) \)
- \(O \leftrightarrow O^{p+1} \) with rate \(\theta(P_A(t) - p)|O_p| \) for \(p < P_A(t) \)
- \(O \leftrightarrow O^{P_B(t)+1} \) with rate \(\mu \)
- \(O \leftrightarrow O^{P_A(t)-1} \) with rate \(\mu \)

This chain remains in \(\mathcal{O} \) if it starts from there, i.e.

\[
P_B(t) \leq P_A(t), \quad \text{for all} \quad t > 0
\]

if it is true at time \(t = 0 \).
Extensions

With previous models

- Can Compute / Estimate **Probabilities of Conditional Events**
- **Not sufficient for optimal execution strategies**

Need to incorporate other important stylized facts of **order flow.** e.g.

- Limit order arrival rates conditional on distance from e.g. best price on same side
- Existing limit orders cancelled and immediately resubmitted
- Aggressiveness of orders depends on depth
- Fewer market orders when the spread is large
- More limit orders inside spread when depth at best is large
- (Long-range) autocorrelation of signs of consecutive market orders
Optimization Problems

Goal of a LOB model is to

▶ Understand the costs of transactions
▶ Develop efficient (if not optimal) trading procedures

Typical challenge

▶ Sell x_0 units of an asset and maximize the sales revenues, using a limited number of market orders only

$$\sup_{\tau_1 < \cdots < \tau_n < T} \mathbb{E} \left[U \left(\sum_{i=1}^{n} P_B(\tau_i) \right) \right]$$

where U is a utility function and \mathbb{E} is the expectation over a model for the dynamics of the LOB O_t

Searching for optimal strategies / market timing rules is a stochastic control problem in prohibitively high dimension
SCREAMING for
FORENSIC ANALYSIS
Optimal Execution

We already saw that:

- splitting
- and spreading over time

large orders can produce better effective prices. So

- How can we capture market price impact in a model?
- What are the desirable properties of a Price Impact model?
- How can we compute optimal execution trading strategies?
- What happens when several execution strategies interact?
"Amlgren-Chriss Price Impact" Model

- **Unaffected (fair) price** given by a semi-martingale (Wiener process)

- **Mid-price** affected by trading
 - **Permanent price impact** given by a function g of trading speed $v(t)$
 \[dP_{mid}^t = g(v(t))dt + \sigma dW_t\]
 - **Temporary price impact** given by function h of trading speed
 \[P_{trans}^t = P_{mid}^t + h(v(t))\]

- **Problem**: find deterministic continuous transaction path to maximize **mean-variance** reward.
 - Closed form solution when permanent and instantaneous price impact functions g and h are **linear**
 - **Efficient frontier**: Speed of trading and hence risk/return controlled by risk aversion parameter

Widely used in industry
Criticisms

- Mid-price P_t^{mid} arithmetic Brownian motion + drift
 - Can become negative
 - Reasonable only for short times
- Possible issues with rate of trading in continuous time?
- Price impact more complex than instantaneous + permanent
- What is the link between Price Impact and LOB dynamics?
 - e.g. can we combine elegant description of risk-return trade-off in Almgren / Chriss with detail of Smith-Farmer type models?
- Empirical evidence that instantaneous price impact is stochastic in many markets
Optimal Execution

An execution algorithm has three layers:

- At the highest level one decides how to slice the order, when to trade, in what size and for how long.
- At the mid level, given a slice, one decides whether to place market or limit orders and at what price level(s).
- At the lowest level, given a limit or market order, one decides to which venue should this order be routed?

We shall not discuss the last bullet point here.
Optimal Execution Set-Up

Goal: sell \(x_0 > 0\) shares by time \(T > 0\)

- \(X = (X_t)_{0 \leq t \leq T}\) execution strategy
- \(X_t\) position (nb of shares held) at time \(t\). \(X_0 = x_0\), \(X_T = 0\)
- Assume \(X_t\) absolutely continuous (differentiable)
- \(\tilde{P}_t\) mid-price (unaffected price), \(P_t\) transaction price, \(I_t\) price impact

\[
P_t = \tilde{P}_t + I_t
\]

e.g. Linear Impact A-C model:

\[
I_t = \gamma[X_t - X_0] + \lambda \dot{X}_t
\]

- **Objective:** Maximize some form of revenue at time \(T\)

Revenue \(\mathcal{R}(X)\) from the execution strategy \(X\)

\[
\mathcal{R}(X) = \int_0^T (-\dot{X}_t) P_t dt
\]
Specific Challenges

- **First generation**: Price impact models (e.g. Almgren - Chriss)
 - Risk Neutral framework (maximize $\mathbb{E}R(X)$) versus utility criteria
 - More complex portfolios (including options)
 - Robustness and performance constraints (e.g. slippage or tracking market VWAP)

- **Second generation**: Simplified LOB models
 - Simple liquidation problem
 - Performance constraints (e.g. slippage or tracking market VWAP)
 and using **both** market and limit orders
Optimal Execution Problem in A-C Model

\[R(X) = \int_0^T (-\dot{X}_t) P_t dt \]

\[= -\int_0^T \dot{X}_t \tilde{P}_t dt - \int_0^T \dot{X}_t l_t dt \]

\[= x_0 \tilde{P}_0 + \int_0^T X_t d\tilde{P}_t - C(X) \]

with \(C(X) = \int_0^T \dot{X}_t l_t dt \).

Interpretation

- \(x_0 \tilde{P}_0 \) (initial) face value of the portfolio to liquidate
- \(\int_0^T X_t d\tilde{P}_t \) volatility risk for selling according to \(X \) instead of immediately!
- \(C(X) \) execution costs due to market impact
Special Case: the Linear A-C Model

\[
R(X) = x_0 \tilde{P}_0 + \int_0^T X_t d\tilde{P}_t - \lambda \int_0^T \dot{X}_t^2 dt - \frac{\gamma}{2} x_0^2
\]

Easy Case: Maximizing \(\mathbb{E}[R(X)] \)

\[
\mathbb{E}[R(X)] = x_0 P_0 - \frac{\gamma}{2} x_0^2 - \lambda \mathbb{E} \int_0^T \dot{X}_t^2 dt
\]

Jensen’s inequality & constraints \(X_0 = x_0 \) and \(X_T = 0 \) imply

\[
\dot{X}_t^* = -\frac{x_0}{T}
\]

trade at a constant rate independent of volatility!

Bertsimas - Lo (1998)
More Realistic Problem

Almgren - Chriss propose to maximize

$$\mathbb{E}[\mathcal{R}(X)] - \alpha \text{var}[\mathcal{R}(X)]$$

(α risk aversion parameter – late trades carry volatility risk)

For **DETERMINISTIC** trading strategies X

$$\mathbb{E}[\mathcal{R}(X)] - \alpha \text{var}[\mathcal{R}(X)] = x_0 P_0 - \frac{\gamma}{2} x_0^2 - \int_0^T \left(\frac{\alpha \sigma^2}{2} X_t^2 + \lambda \dot{X}_t^2 \right) dt$$

maximized by (standard variational calculus with constraints)

$$\dot{X}_t^* = x_0 \frac{\sinh \kappa (T - t)}{\sinh \kappa T} \quad \text{for} \quad \kappa = \sqrt{\frac{\alpha \sigma^2}{2 \lambda}}$$

For **RANDOM** (adapted) trading strategies X, more difficult as

Mean-Varience not amenable to dynamic programming
Maximizing Expected Utility

Choose $U : \mathbb{R} \to \mathbb{R}$ increasing concave and

$$\text{maximize} \quad \mathbb{E}[U(R(X_T))]$$

Stochastic control formulation over a state process $(X_t, R_t)_{0 \leq t \leq T}$.

$$v(t, x, r) = \sup_{\xi \in \Xi(t, x)} \mathbb{E}[u(R_T)|X_t = x, R_T = r]$$

value function, where $\Xi(t, x)$ is the set of admissible controls

$$\left\{ \xi = (\xi_s)_{t \leq s \leq T}; \text{progressively measurable, } \int_t^T \xi_s^2 ds < \infty, \int_t^T \xi_s ds = x \right\}$$

$$X_s = X_s^{\xi} = x - \int_t^s \xi_u du, \quad \dot{X}_s = -\xi_s, \quad X_T = x$$

and (choosing $\tilde{P}_t = \sigma W_t$)

$$R_s = R_s^{\xi} = R + \sigma \int_t^s X_u dW_u - \lambda \int_t^s \xi_u^2 du, \quad dR_s = \sigma X_s dW_s - \lambda \xi_s^2 ds, \quad R_T = r$$
Finite Fuel Problem

Non Standard Stochastic Control problem because of the constraints
\[\int_0^T \xi_s ds = x_0. \]

Still, one expects

- For any admissible \(\xi \), \([v(t, X_t^\xi, R_t^\xi)]_{0 \leq t \leq T}\) is a super-martingale
- For some admissible \(\xi^* \), \([v(t, X_t^{\xi^*}, R_t^{\xi^*})]_{0 \leq t \leq T}\) is a true martingale

If \(v \) is smooth, and we set \(V_t = v(t, X_t^\xi, R_t^\xi) \), Itô's formula gives

\[
dV_t = \left(\partial_t v(t, X_t, R_t) + \frac{\sigma^2}{2} \partial_{rr}^2 v(t, X_t, R_t)
- \lambda \xi^2 \partial_r v(t, X_t, R_t) - \xi_t \partial_x v(t, X_t, R_t) \right) dt
+ \sigma \partial_x v(t, X_t, R_t) dW_t
\]
Hamilton-Jabobi-Bellman Equation

One expects that \(v \) solves the HJB equation (nonlinear PDE)

\[
\partial_t v + \frac{\sigma^2}{2} \partial_{xx} v - \inf_{\xi \in \mathbb{R}} \left[\xi^2 \lambda \partial_r v + \xi \partial_x v \right] = 0
\]

in some sense, with the (non-standard) terminal condition

\[
v(T, x, r) = \begin{cases}
U(r) & \text{if } x = X_0 \\
-\infty & \text{otherwise}
\end{cases}
\]
Solution for CARA Exponential Utility

For \(u(x) = -e^{-\alpha x} \) and \(\kappa \) as before

\[
v(t, x, r) = e^{-\alpha r + x_0^2 \alpha \lambda \kappa \coth \kappa (T - t)}\]

solves the HJB equation and the unique maximizer is given by the DETERMINISTIC

\[
\xi_t^* = x_0 \kappa \frac{\cosh \kappa (T - t)}{\sinh \kappa T}
\]

Schied-Schöneborn-Tehranchi (2010)

- Optimal solution same as in Mean - Variance case
- Schied-Schöneborn-Tehranchi’s trick shows that optimal trading strategy is generically deterministic for exponential utility
- Open problem for general utility function
- Partial results in infinite horizon versions
Shortcomings

- Optimal strategies
 - are DETERMINISTIC
 - do not react to price changes
 - are time inconsistent
 - are counter-intuitive in some cases

- Computations require
 - solving nonlinear PDEs
 - with singular terminal conditions
Recent Developments

- In the spirit of Almgren-Chriss mean-variance criterion, maximize

\[\mathbb{E} \left[R(X) - \tilde{\lambda} \int_0^T X_t P_t dt \right] \]

- The solution happens to be \textbf{ROBUST}

- \(\tilde{P}_t \) can be a semi-martingale, optimal solution does not change
Recent Developments

Almgren - Li (2012), Hedging a large option position

- $g(t, \tilde{P}_t)$ price at time t of the option (from Black-Scholes theory)
- Revenue

$$\mathcal{R}(X) = g(T, \tilde{P}_T) + X_T \tilde{P}_T - \int_0^T \tilde{P}_t \dot{X}_t dt - \lambda \int_0^T \dot{X}_t^2 dt$$

- Using Itô’s formula and the fact that g solves a PDE,

$$\mathcal{R}(X) = R_0 + \int_0^T [X_t + \partial_x g(t, \tilde{P}_t)] dt - \lambda \int_0^T \dot{X}_t^2 dt \quad R_0 = x_0 \tilde{P}_0 + g(0, \tilde{P}_0)$$

- Introduce $Y_t = X_t + \partial_x g(t, \tilde{P}_t)$ for hedging correction

$$\begin{align*}
 d\tilde{P}_t &= \gamma \dot{X}_t dt + \sigma dW_t \\
 dY_t &= [1 + \gamma \partial_{xx} g(t, \tilde{P}_t)] dt + \sigma \partial_{xx} g(t, \tilde{P}_t) dW_t
\end{align*}$$

- Minimize

$$E \left[G(\tilde{P}_T, Y_T) + \int_0^T \left(\frac{\sigma^2}{2} Y_t^2 - \gamma \dot{X}_t Y_t + \lambda \dot{X}_t^2 \right) dt \right]$$

Explicit solution in some cases (e.g. $\partial_{xx}^2 g(t, x) = c$, G quadratic)
Transient Price Impact

Flexible price impact model

- **Resilience function** $G : (0, \infty) \to (0, \infty)$ measurable bounded
- Admissible $\underline{X} = (X_t)_{0 \leq t \leq T}$ cadlag, adapted, **bounded variation**
- Transaction price

$$P_t = \tilde{P}_t + \int_0^t G(t - s) \, dX_s$$

- Expected cost of strategy X given by

$$-x_0 P_0 + \mathbb{E}[C(X)]$$

where

$$C(X) = \int \int G(|t - s|) dX_s dX_t$$
Transient Price Impact: Some Results

- No **Price Manipulation** in the sense of Huberman - Stanzl (2004) if $G(| \cdot |)$ positive definite
- Optimal strategies (if any) are **deterministic**
- Existence of an optimal X^* \iff solvability of a Fredholm equation
- Exponential Resilience $G(t) = e^{-\rho t}$

$$dX^*_t = -\frac{x_0}{\rho T + 2} \left(\delta_0(dt) + \rho dt + \delta_T(dt) \right)$$

- X^* purely discrete measure on $[0, T]$ when $G(t) = (1 - \rho t)^+$ with $\rho > 0$
 - $dX^*_t = -\frac{x_0}{2} [\delta_0(dt) + \delta_T(dt)]$ if $\rho < 1/T$
 - $dX^*_t = -\frac{x_0}{n+1} \sum_{i=0}^{n} \delta_{iT/n}(dt)$ if $\rho < n/T$ for some integer $n \geq 1$

Obizhaeva - Wang (2005), Gatheral - Schied (2011)
Optimal Execution in a LOB Model

- Unaffected price \tilde{P}_t (e.g. $\tilde{P}_t = P_0 + \sigma W_t$)
- Trader places only market sell orders
 - Placing buy orders is not optimal
- Bid side of LOB given by a function $f : \mathbb{R} \to (0, \infty)$ s.t. $\int_0^\infty f(x)dx = \infty$. At any time t
 \[
 \int_a^b f(x)dx = \text{bids available in the price range } [\tilde{P}_t + a, \tilde{P}_t + b]
 \]
- The shape function f does not depend upon t or \tilde{P}_t

Optimal Execution Tracking a Benchmark

R.C. - M. Li

Goal: sell \(v > 0 \) shares by time \(T > 0 \) (finite horizon)

- \(P_t \) **mid-price** (unaffected price),
 \[P_t = P_0 + \int_0^t \sigma(u)dW_u, \quad 0 \leq t \leq T, \]

- \(V(t) \) volume traded in the market up to (and including) time \(t \)

- **Market VWAP** = \(\frac{1}{V} \int_0^T P_t dV(t) \)

- Fraction of shares still to be executed in the market
 \[X(t) = \frac{V - V(t)}{V} = \frac{T - t}{T} \]

(deterministic \(V(t) \) used to change clock). **Convenient simplification**!
Broker Problem

v_t volume executed by the broker up to time t

\[x_t = \frac{V - V_t}{V} \]

fraction of shares left to be executed by the broker at time t

\[x_t = 1 - \ell_t - m_t \]

Where

- ℓ_t cumulative volume executed through limit orders
- m_t cumulative volume executed through market orders
- Broker average liquidation price
 \[\text{vwap} = \frac{1}{V} \int_0^T \left(P_t - \frac{S}{2} \right) dm_t + \left(P_t + \frac{S}{2} \right) d\ell_t \]
- **Objective:** Minimize discrepancy between vwap and VWAP
Naive Model for the Dynamics of the Order Book

Controls of the broker:

- \((m_t)_{0 \leq t \leq T}\) non-decreasing adapted process
- \((L_t)_{0 \leq t \leq T}\) predictable process

\[\ell_t = \int_0^t \int_{[0,1]} y \wedge L_u \, \mu(du, dy) = \sum_{i=1}^{N_t} Y_i \wedge L_{\tau_i} \]

where

\[\mu(du, dy) \]

is the point measure (Poisson) compensator \(\nu_t(du)\nu(t)dt\).

\[x_t = 1 - \int_0^t \int_{[0,1]} y \wedge L_u \, \mu(du, dy) - m_t = 1 - \sum_{i=1}^{N_t} Y_i \wedge L_{\tau_i} - m_t \]

So the dynamics of \(x_t\) are given by

\[dx_t = - \int_{[0,1]} y \wedge L_t \, \mu(dt, dy) - dm_t, \]

with initial condition \(x_0^- = 1\).
Optimization Problem

Goal of the broker

\[
\sup_{(L, m) \in A} \mathbb{E} \left[U(vwap - VWAP) \right],
\]

For the CARA exponential utility, approximately

\[
\inf_{(L, m) \in A} \mathbb{E} \left[\exp \left(-\gamma \left(\frac{S}{2} + \int_0^T [x_{u:L:m} - X(u)]dP_u - Sdm_u \right) \right) \right],
\]

We will work with a **Mean - Variance** criterion

\[
\inf_{(L, m) \in A} \mathbb{E} \left[\int_0^T \gamma \frac{\sigma(u)^2}{2} [x_{u:L:m} - X(u)]^2 du + S m_T \right],
\]

- **S spread**
- **X(u) = (T - u)/T** fraction of shares left to be executed in the market.
Stochastic Control Problem

Singular control problem of a pure jump process

Value function

\[J(t, x) = \inf_{(L,m) \in A(t,x)} J(t, x, L, m) \]

where

\[J(t, x, L, m) = \mathbb{E} \left[\int_t^T \gamma \frac{\sigma(u)^2}{2} [x_u^L, m - X(u)]^2 du + Sm_T \right] . \]

\(J(t, x) \) is non-decreasing in \(t \) for \(x \in [0, 1] \) fixed. (\(A(t_2, x) \subset A(t_1, x) \) whenever \(t_1 \leq t_2 \))
Tough Luck: Problem is NOT Convex

The set \(\mathcal{A} \) of admissible controls is not convex.

For any number \(\ell \in (0, 1) \), the two controls \((L_1, m_1)\) and \((L_2, m_2)\) by:

\[
L_t^1 = 1_{\{t \leq \tau_1\}} + \sum_{k=2}^{\infty} x_{\tau_{k-1}} \mathbf{1}_{\{\tau_{k-1} < t \leq \tau_k\}}, \quad \text{and} \quad m_t^1 = x_{T-1} \mathbf{1}_{\{T \leq t\}},
\]

and:

\[
L_t^2 = \frac{\ell}{2} 1_{\{t \leq \tau_1\}} + \sum_{k=2}^{\infty} x_{\tau_{k-1}} \mathbf{1}_{\{\tau_{k-1} < t \leq \tau_k\}}, \quad \text{and} \quad m_t^2 = x_{T-1} \mathbf{1}_{\{T \leq t\}},
\]

are admissible, but the pair \((L, m)\) defined by

\[
L_t = \frac{1}{2} (L_t^1 + L_t^2), \quad \text{and} \quad m_t = \frac{1}{2} (m_t^1 + m_t^2),
\]

IS NOT
Closest Related Works

- Poisson random measure $\mu(dt, dy)$ for claim sizes Y_t
- **insurer** pays $Y_t \wedge \alpha_t$ up to a **retention level** α_t
- **re-insurer** covers the excess $(Y_t - \alpha_t)^+$

Wealth process of the Insurance Company

$$X_t = x + \int_0^t p(\alpha_s)ds - \int_0^t y \wedge \alpha_s \mu(ds, dy) - \int_0^t dD_s$$

- $p(\alpha)$ insurer net premium (after paying the reinsurance company)
- D_t cumulative dividends paid up to (and including) time t

$$\sup_{(\alpha_t), (D_t)} \mathbb{E} \left[\int_0^\tau e^{-ru} dD_u \right]$$

- time of bankruptcy $\tau = \inf\{t \geq 0; X_t \leq 0\}$

Similarities & Differences

Similarities
- $\alpha_t \leftrightarrow$ standing limit orders L_t
- $D_t \leftrightarrow$ cumulative market orders m_t

Differences
- We work in a **finite horizon** (PDEs instead of ODEs)
- We use a **Mean - Variance** criterion
- We exhibit a **classical** solution (as opposed to a viscosity solution)
- We derive a **system of ODEs** identifying
 - the value function
 - the optimal strategy
Technical Assumptions

\(\nu_t(dy) \nu(t) dt \) intensity of Poisson measure \(\mu(dt, dy) \) with \(\nu_t([0,1]) = 1 \).

- \(\int_0^T \sigma(t)^2 dt < \infty \)
- \(\sup_{0 \leq t \leq T} \nu(t) < \infty \)
- \(t \mapsto \frac{\sigma(t)^2}{\nu(t)}(X(t) - x) \) is increasing for each \(x \in [0,1] \)
- \(t \mapsto \frac{1}{\nu(t)} \nu_t(\cdot) \) is decreasing (in the sense of stochastic dominance)
Hamilton-Jabobi-Bellman Equation (QVI)

\[\min \left[[A\phi](t, x), \partial_t \phi(t, x) + [B\phi](t, x) \right] = 0. \]

where

\[[A\phi](t, x) = S - \partial_x \phi(t, x) \]

and

\[[B\phi](t, x) = \gamma \frac{\sigma(t)^2}{2} [X(t) - x]^2 + \nu(t) \inf_{0 \leq L \leq x} \int_{[0,1]} [\phi(t, x - y \wedge L) - \phi(t, x)] \nu_t(dy) \]

with terminal condition

\[\phi(T-, x) = Sx, \quad (\text{notice that } \phi(T, x) = 0) \]

and boundary condition:

\[\phi(t, 0) = \int_t^T \frac{\gamma \sigma(u)^2}{2} X(u) du. \]
Classical Solution

Theorem

The value function is the unique solution of

\[-\dot{J}(t, x) = \min \left[\inf_{0 \leq y \leq x} -\dot{J}(t, x), \right. \]

\[\gamma \frac{\sigma(t)^2}{2} [X(t) - x]^2 + \nu(t) \int_{[0,1]} [J(t, (x - y) \lor \tilde{L}(t, y)) - J(t, x)] \nu_t(dy) \]

with

\[J(t, 0) = \gamma \int_0^t \frac{\sigma(u)^2}{2} X(u)^2 du, \quad \text{and} \quad J(T, x) = Sx\]

where

\[\tilde{L}(t, x) = \arg \min_{0 \leq y \leq x} J(t, y)\]

- \(J\) is \(C^{1,1}\)
- \(x \mapsto J(t, x)\) convex for \(t\) fixed
- \(t \mapsto J(t, x)\) non-decreasing for \(x\) fixed
Free Boundary (No-Trade Region)

\[[0, T] \times [0, 1] = A \cup B \cup C \]

with

\(A = \{ (t, x); \partial_x J(t, x) < 0 \} = \{ (t, x); 0 \leq t < \tau_\ell(x) \} \)

\(B = \{ (t, x); 0 \leq \partial_x J(t, x) \leq S \} = \{ (t, x); \tau_\ell(x) \leq t \leq \tau_m(x) \} \)

\(C = \{ (t, x); \partial_x J(t, x) = S \} = \{ (t, x); \tau_m(x) \leq t \} \)

where

\(\tau_\ell(x) = \inf\{ t > 0; \partial_x J(t, x) \geq 0 \} \)

\(\tau_m(x) = \inf\{ t > 0; \partial_x J(t, x) \geq S \} \)

\[\tau_\ell(x) \leq T(1 - x) \leq \tau_m(x) \]
Optimal Trading Strategy

- If $t > \tau_m(x_t)$ i.e. $(t, x_t) \in C$ (never happens)
 - place market orders
 \[\Delta m_t > 0 \] (just enough to get into B)
- If $t = \tau_m(x_t)$ i.e. $(t, x_t) \in \partial C$
 - place market orders at a rate $dm_t = -\dot{\tau}_m(x_t) dt$
 (just enough so not to exit B)
- If $\tau_\ell(x_t) \leq t < \tau_m(x_t)$ i.e. $(t, x_t) \in B \cup \partial A$
 - place $L_t = x_t - \tilde{L}(t)$ limit orders
 (as much as possible without getting ahead too much)
- If $t < \tau_\ell(x_t)$ i.e. $(t, x_t) \in A$ (never happens)
 - no trade
Premises for Predatory Trading

- Large Trader facing a Forced Liquidation
- Especially if the need to liquidate is known by other traders
 - hedge funds with (nearing) margin call
 - traders who use portfolio insurance, stop loss orders, ...
 - some institutions / funds cannot hold on to downgraded instruments
 - Index-replication funds (at re-balancing dates) e.g. Russell 3000

Forced liquidation can be **very costly** because of **price impact**

Business Week

...if lenders know that a hedge fund needs to sell something quickly, they will sell the same asset, driving the price down even faster. Goldman Sachs and other counter-parties to LTCM did exactly that in 1998.

When you smell blood in the water, you become a shark when you know that one of your number is in trouble . . . you try to figure out what he owns and you start shorting those stocks . . .

Cramer (2002)
Typical Predatory Trading Scenario

- Distressed trader (**prey**) needs to unload a large position
 - Size will have impact on price
- **Predator** initially **trades in the same direction** as the prey
 - Effect is to withdraw liquidity
 - Market impact of the liquidation becomes greater
 - Price fall is exaggerated (**over-shooting**)
- Predator **reverses direction**, profiting from the price over-shoot
- Predator **closes position** for a profit.

Brunnermeier - Pedersen (2005)
Carlin - Lobo - Viswanathan (2005)
Schied - Schöneborn (2008)
Multi-Player Game Model

- One risk free asset and one risky asset
- Trading in continuous time, interest rate \(r = 0 \)
- \(n + 1 \) strategic players and a number of noise traders
- \(X_0(t), X_1(t), \cdots, X_n(t) \) risky asset positions of the strategic players
- Trades at time \(t \) are executed at the price (Chriss-Almgren price impact model)

\[
P(t) = \tilde{P}(t) + \gamma \sum_{i=0}^{n} [X_i(t) - X_i(0)] + \lambda \sum_{i=0}^{n} \dot{X}_i(t)
\]

where \(\tilde{P}(t) \) is a mean zero martingale (say a Wiener process).
Goal of the Mathematical Analysis

- Understand predation
- Illustrate benefits of
 - Stealth trading
 - Sunshine trading

Modeling extreme markets
- **Elastic** markets:
 - temporary impact $\lambda >>$ permanent impact γ
- **Plastic** markets:
 - permanent impact $\gamma >>$ temporary impact λ
Assumptions of the One Period Game

- Each strategic player \(i \in \{0, 1, \cdots, n\} \) knows
 - all other strategic players initial asset positions \(X_j(0) \) for \(j \neq i \)
 - Their target \(X_j(T) \) at some fixed time point \(T > 0 \) in the future
- Objective (all players are risk neutral)
 - Players maximize their expected return by choosing an optimal trading strategy \(X_i(t) \) satisfying their constraints \(X_i(0) \) and \(X_i(T) \)

One distressed trader / prey (e.g. seller), player 0

\[
X_0(0) = x_0 > 0, \quad X_0(T) = 0
\]

\(n \) predators players 1, 2, \(\cdots \), \(n \)

\[
X_i(0) = X_i(T) = 0, \quad i = 1, \cdots, n
\]
Optimization Problem

A strategy \(X_i = (X_i(t))_{0 \leq t \leq T} \) is **admissible** (for player \(i \)) if it is an a

- adapted process
- with continuously differentiable sample paths

Given a set \(\mathcal{X} = (X_0, X_1, \cdots, X_n) \) of admissible strategies

- Each player \(i \in \{0, 1, \cdots, n\} \) tries to maximize his expected return
 \[
 J^i(\mathcal{X}) = \mathbb{E}\left[\int_0^T (-\dot{X}_i(t)) P(t) dt \right]
 \]

under the constraint

\[
P(t) = \tilde{P}(t) + \gamma \sum_{i=0}^n [X_i(t) - X_i(0)] + \lambda \sum_{i=0}^n \dot{X}_i(t)
\]

- Search for **Nash Equilibrium**
Deterministic Strategies

If we restrict the admissible strategies $X = (X_0, X_1, \cdots, X_n)$ to be deterministic

$$J^i(X) = \mathbb{E} \left[\int_0^T (-\dot{X}_i(t))P(t)dt \right] = \int_0^T (-\dot{X}_i(t))\overline{P}(t)dt$$

where

$$\overline{P}(t) = P(0) + \gamma \sum_{i=0}^{n} [X_i(t) - X_i(0)] + \lambda \sum_{i=0}^{n} \dot{X}_i(t)$$

THE SOURCE OF RANDOMNESS IS GONE!

Solution in the Deterministic Case

Unique Optimal Strategies

\[X_i(t) = ae^{-\frac{n}{n+2} \frac{\gamma}{\lambda} t} + b_i e^{\frac{\gamma}{\lambda} t} \]

where

\[
\begin{align*}
 a &= \frac{n}{n+2} \frac{\gamma}{\lambda} \left(1 - e^{-\frac{n}{n+2} \frac{\gamma}{\lambda} T}\right)^{-1} \frac{1}{n+1} \sum_{i=0}^{n} [X_i(T) - X_i(0)] \\
 b_i &= \frac{\gamma}{\lambda} \left(e^{\frac{\gamma}{\lambda} T} - 1\right)^{-1} \left(X_i(T) - X_i(0) - \frac{1}{n+1} \sum_{i=0}^{n} [X_i(T) - X_i(0)]\right)
\end{align*}
\]

Carlin - Lobo - Viswanathan (2005)
$n = 1$ predator, $\gamma/\lambda = 0.3$
$n = 1$ predator, $\gamma = \lambda$
\(n = 1 \) predator, \(\gamma = 15.5\lambda \)
Fancy Plots of the Holdings of the Distressed Trader & Predator

Holdings of Distressed Trader (black) & Predator (red)
Impact of the Number of Predators: $\gamma = \lambda$
Impact of the Number of Predators: $\gamma = 15.5\lambda$
Expected Price: $\gamma = \lambda$
Expected Price: $\gamma = 15\lambda$
Impact of Nb of Predators on Expected Returns

Expected Returns of Distressed Trader $GOL=1 \& GOL=15$

Expected Returns of Predators $GOL=1 \& GOL=15$
Two Period Model

- Prey has to liquidate $X_0 > 0$ by time T_1, i.e. $X_0(T_1) = 0$
- Predators can stay in the game longer $X_i(0) = X_i(T_2) = 0$ for some $T_2 > T_1$ for $i = 1, \cdots, n$
- Prey does not trade in second period $[T_1, T_2]$, i.e. $X_0(t) = 0$ for $T_1 \leq t \leq T_2$.

Markovian Structure \Rightarrow

Solution determined by predators’ positions at time T_1
Nash Equilibrium for Deterministic Strategies

UNIQUE Nash Equilibrium

- **ALL** Predators have the same position at time T_1

\[
X_i(T_1) = \frac{A_2 n^2 + A_1 n + A_0}{B_3 n^3 + B_2 n^2 + B_1 n + B_0} X_0, \quad i = 1, \ldots, n
\]

- Coefficients depend upon n but converge as $n \to \infty$
- Asymptotic formulas for expected returns
- Asymptotic comparison of **Stealth** versus Sunshine trading for some regimes of γ/λ

Schöneborn - Schied (2008)