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Standard Assumptions in Finance

Black-Scholes theory
I Price given by a single number
I infinite liquidity

I one can buy or sell any quantity at this price
I with NO IMPACT on the asset price

I Fixes to account for liquidity frictions
I Transaction Costs (Constantinides, Davis, Paras,

Zariphopoulou, Shreve, Soner, .......)
I liquidity ∼ transaction cost (Cetin-Jarrow-Protter)

Not satisfactory for
I Large trades (over short periods)
I High Frequency Trading

Need Market Microstructure
I e.g. understand how are buy and sell orders executed?



New Markets

I Quote Driven Markets
I Market Maker or Dealer centralizes buy and sell orders and

provides liquidity by setting bid and ask quotes.
Ex: NYSE specialist system

I Order Driven Markets
I electronic platforms aggregate all available orders in a

Limit Order Book (LOB)
Ex: NASDAQ, NYSE, ICE, BATS, CHX, LSE, ....

I Same stock traded on several venues
I Price discovery made difficult as most instruments can be

traded off market without printing the trade to a publicly
accessible data source

I Competition between markets leads to lower fees and smaller
tick sizes

I Creation of Dark Pools
I Increase in updating frequency of order books



High Frequency Trading

Speculative figures – Sound plausible
I HFT accounts for 60 – 75% of all share volume.
I 10% of that is predatory ≈ 600 million shares per day
I At $0.01-$0.02 per share, predatory HFT is profiting $6-$12

million a day or $1.5-$3 billion e year

Algorithmic Trading – Source of concern
I Moving computing facilities closer to trading platform (latency)
I Relying on / competing with Benchmark Tracking execution

algorithms



Pros & Cons

Pros
I Smaller tick size;
I HF traders provide extra liquidity
I Dark pools reduce trade execution costs from price impact
I Markets are more efficient

Cons
I Expensive technological arms race
I Dark trading incentivizes price manipulation, fishing and

predatory trading
I Little or no oversight possible by humans (e.g. flash crash) &

increased systemic risk
I HF trading algorithms do not use economic fundaments (e.g.

value & profitability of a firm)



Some Highly Publicized Mishaps

Flash Crash of May 6, 2010
I Dow Jones IA plunged about 1000 points (recovered in minutes)
I Biggest one-day point decline (998.5 points)

I At 2:32 pm a mutual fund program started to sell 75,000 E-Mini
S&P 500 contracts (≈ 4.1 billion USD) at an execution rate of 9%

I HT trading programs were among the buyers: quickly bought and
resold contracts to each other

I hot-potato volume effect, combined sales drove the E-mini price
down 3% in just 4 minutes

Other Notable Crashes
I Associated Press’ Twitter account hack

I White House bombed
I President Obama injured
I DJIA lost 140 points and recovered in minutes

I Several mini flash crashes on NASDAQ in 2012



Limit Order Book (LOB)

List of all the waiting buy and sell orders

I Prices are multiple of the tick size
I For a given price, orders are arranged in a First-In-First-Out

(FIFO) stack
I At each time t

I The bid price Bt is the price of the highest waiting buy order
I The ask price At is the price of the lowest waiting sell order

I The state of the order book is modified by order book events:
I limit orders
I market orders
I cancelations

I consolidated order book: If the stock is traded in several
venues, one aggregates over all (visible) trading venues.

I Here, little or no discussion of pools



The Role of a LOB
I Crucial in high frequency finance: explains transaction costs.
I Liquidity providers post trading intentions: Bids and Offers.
I Liquidity takers execute certain orders: adverse selection.
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Figure : Snapshot of Apple order book at 8:43 (NASDAQ)



DELL Limit Order Book on May 18, 2013



Limit Orders

A limit order sits in the order book until it is
I either executed against a matching market order
I or it is canceled

A limit order
I may be executed very quickly if it corresponds to a price near the

bid and the ask
I may take a long time if

I the market price moves away from the requested price
I the requested price is too far from the bid/ask.

I can be canceled at any time

Typically, a limit order waits for a match
I transaction cost is known
I execution time is uncertain



Market Orders

A market order is an order to buy/sell a certain quantity of the asset
at the best available price in the book.

I Agents can put a market order that, for a buy (resp. sell) order,
I the first share(s) will be traded at the ask (resp. bid) price
I the remaining one(s) will be traded some ticks upper (resp. lower)

in order to fill the order size.
I The ask (resp. bid) price is then modified accordingly.
I When either the bid or ask queue is depleted by

I market orders
I cancelations

the price is updated up or down to the next level of the order
book.

Typically a market order consumes the cheapest limit orders
I immediate execution (if the book is filled enough)
I price per share instead uncertain (depends upon the order size)



Cancellations

I Agents can put a cancellation of x orders in a given queue
reduces the queue size by x

I When either the bid or ask queue is depleted by market orders
and cancelations, the price moves up or down to the next level
of the order book.



LOB Dynamics Summary
I Actual trades come in two forms
I Agents can put a limit order and wait that this order matches

another one
I transaction cost is known
I execution time is uncertain

I Agents can put a market order that consumes the cheapest limit
orders in the book

I immediate execution (if the book is filled enough)
I price per share instead depends on the order size

For a buy (resp. sell) order, the first share will be traded at the
ask (resp. bid) price while the last one will be traded some ticks
upper (resp. lower) in order to fill the order size. The ask (resp.
bid) price is then modified accordingly.

I Agents can put a cancellation of x orders in a given queue
reduces the queue size by x

I When either the bid or ask queue is depleted by market orders
and cancelations, the price moves up or down to the next level of
the order book.



Impact of Large Market Order Fills

I Current mid-price
pmid = (pBid + pAsk )/2 = 13.98

I Fill size N = 76015 (e.g. buy)
I n1 shares available at best bid

p1, n2 shares at price p2 > p1,
· · ·

I nk shares at price pk > pk−1

N = n1 + n2 + n3 + · · ·+ nk

I colorblueTransaction cost

n1p1+n2p2+· · ·+nk pk = 1064578

I Effective price

peff =
1
N
(n1p1 + n2p2 + · · ·+ nk pk )

= 14.00484

I New mid-price pmid = 13.995
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A LOB Idiosyncrasy: Hidden Liquidity

I Some exchanges (e.g. NASDAQ & NYSE) allow Hidden Orders
I Made visible to the broader market after being executed
I Controversial

I barrier to the implementation of a fully transparent market
I impediment to price discovery and information dissemination

Results of First Empirical Analyzes
I Encourage fishing
I After it is revealed that a hidden order was executed

I rash increase of order placement inside the bid-ask after
I HF Traders divided in two groups

I Traders try to take advantage of the remaining hidden liquidity
I Traders try to steal execution priority from the fully hidden orders



”Partially Hidden” Orders: Iceberg Orders

I Dark liquidity posted inside the LOB
I Two components: the shown quantity and the hidden

remainder
I Order queued with the lit part of the LOB, only the shown

quantity is visible
I When the order reaches the front of the queue, only the display

quantity is filled
I Trade (price & quantity filled) revealed
I hidden part put at the back of the queue
I Sometimes extra execution fee charged by the exchange



Dark Pools / Crossing Networks

I Electronic engine that matches buy and sell orders without
routing them to lit exchanges

I Raison d’être: move large amounts without impacting the price
(no need for iceberg orders)

I Run by private brokerages
I Ex: Liquidnet, Pipeline, ITG’s Posit, Goldman’s SIGMA X.
I Participants submit (wish) lists of orders to a matching engine
I Matched orders are executed at the midpoint of the bid-ask spread.
I Pros: trade at mid-point can be better than on a lit market
I Cons: May have to wait a long time for a match to occur

I Regulated by SEC (in the US) as Alternative Trading Systems
I Little or no public disclosure
I Not much has been done to increase transparency

I Trading on dark pools ≈ 32% of trades in 2012 (!)



Limit Order Book Data: NASDAQ ITCH

I Large binary file
I Message ID: unique identifier
I Market events: emergency halts, resumptions, ....
I Time stamp: number of seconds (in nanoseconds) since

midnight
I Security symbol
I Market: NYSE, MYSE Amex, NYSE Arca, NASDAQ Capital

Market, NASDAQ Global Market, BATS, ...
I Indicators: order imbalance, near price, price variation, .....
I MPID (Market Participant ID) rarely given
I Order Code: see next



ITCH Message Codes for Orders

I A - Add order
I C - Execution with price improvement
I D - Full order deletion
I E - Execution at listed price
I F - Add order with Market participant ID
I P - Execution of a non-displayed order (non-cross)
I Q - Cross trade (bid/ask overlap or at market open/close)
I UD - Delete order as part of a replace order (U).
I UA - Add order as part of a replace order (U). Follows UD.
I X - Partial order cancellation (remove specified # of shares)



Example of a Processed File
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UBSS Inventory Accumulated in the Sun Shine on
April 18, 2013
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UBSS Cash Accumulated in the Sun Shine on
April 18, 2013.
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UBSS Wealth Accumulated in the Sun Shine on
April 18, 2013
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Order Book Models

Roughly speaking, LOB is a set of two histograms (Bids and Asks)
Reduced form model: Markov process (Ot )t on a large state space of
order books O.

I Early models
I e.g. Smith-Farmer-Guillemot-Krishnamurthy (SFGK) Model
I Market orders (buys and sells) arrive according to a Poisson

process with rate µ/2
I Cancellation of existing limit orders: outstanding limit orders ”die”

at a rate ν
I More modern versions

I use Hawkes processes instead of Poisson processes



Another Model Capturing Stylized Facts
Cont-Stoikov-Talreja

I P = {1,2, · · · ,n} price grid in multiples of price tick
I LOB at time t O(t) = (O1(t),O2(t), · · · ,On(t))

I |Op(t)| is the number of outstanding limit orders at price p
I There are −Op(t) bid orders at price p if Op(t) < 0
I There are Op(t) ask orders at price p if Op(t) > 0

I Admissible state space

O =

{
O ∈ Zn; ∃1 ≤ k ≤ ` ≤ n, Op < 0 for p ≤ k ,

Op = 0 for k < p < `, Op > 0 for ` ≤ p
}

I Ask price at time t :
PA(t) := (n + 1) ∧ inf{p; 1 ≤ p ≤ n, Op(t) > 0}

I Bid price at time t :
PB(t) := 0 ∨ sup{p; 1 ≤ p ≤ n, Op(t) < 0}

I Mid-price P̃(t) = 1
2 [PA(t) + PB(t)]

I Bid-Ask spread S̃(t) = PA(t)− PB(t)



A Typical State of the LOB
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LOB Dynamics

I For the sake of simplicity, we assume that the changes to the
LOB happen

one share at a time!

I We review the events causing the LOB state transitions
I Convenient Notation Op±1 as a transition from O

Op±1
i =

{
Oi if i 6= p
Oi ± 1 if i = p



Limit buy order at price level p < PB(t)
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Limit buy order at price level p > PB(t)
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Limit sell order at price level p = PA(t)
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Limit sell order at price level p < PA(t)
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Market buy order
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Cancellation of a Limit Sell Order at price p = PA(t)
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Cancellation of a Limit Sell Order or Market Buy
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Decreases the quantity at the ask price: O(t) ↪→ O(t)PA(t)−1. Now the
Ask price PA(O) changes



Cancellation of a limit buy order at price p < PB(t)
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Cancellation of a limit sell order at price p > PA(t)
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Practical Assumptions

I Limit buy (respectively sell) orders arrive at a distance of i ticks
from the opposite best quote at independent, exponential times
with rate λ(i) = Ki−β for some K > 0 and β > 0

I Market buy (respectively sell) orders arrive at independent,
exponential times with constant rate µ

I Cancellations of limit orders at a distance of i ticks from the
opposite best quote occur at a rate proportional to the number of
outstanding orders: If the number of outstanding orders at that
level is x , then the cancellation rate is θ(i)x .

I The above events are mutually independent.



Summary

Under these assumptions, O = [O(t)]t≥0 is a continuous-time Markov
chain with state space O and transition rates:

I O ↪→ Op−1 with rate λ(PA(t)− p) for p < PA(t)
I O ↪→ Op−1 with rate θ(p − PB(t))|Op| for p > PB(t)
I O ↪→ Op+1 with rate λ(p − PB(t)) for p > PB(t)
I O ↪→ Op+1 with rate θ(PA(t)− p)|Op| for p < PA(t)
I O ↪→ OPB(t)+1 with rate µ
I O ↪→ OPA(t)−1 with rate µ

This chain remains in O if it starts from there, i.e.

PB(t) ≤ PA(t), far all t > 0

if it is true at time t = 0.



Extensions

With previous models
I Can Compute / Estimate Probabilities of Conditional Events
I Not sufficient for optimal execution strategies

Need to incorporate other important stylized facts of order flow. e.g.

I Limit order arrival rates conditional on distance from e.g. best price on
same side

I Existing limit orders cancelled and immediately resubmitted
I Aggressiveness of orders depends on depth
I Fewer market orders when the spread is large
I More limit orders inside spread when depth at best is large
I (Long-range) autocorrelation of signs of consecutive market orders



Optimization Problems

Goal of a LOB model is to
I Understand the costs of transactions
I Develop efficient (if not optimal) trading procedures

Typical challenge
I Sell x0 units of an asset and maximize the sales revenues, using

a limited number of market orders only

sup
τ1<···<τn<T

E
[
U(

n∑
i=1

PB(τi ))

]
where U is a utility function and E is the expectation over a
model for the dynamics of the LOB Ot

Searching for optimal strategies / market timing rules is a
stochastic control problem in prohibitively high dimension






SCREAMING for

FORENSIC ANALYSIS



Optimal Execution

We already saw that:

I splitting
I and spreading over time

large orders can produce better effective prices. So

I How can we capture market price impact in a model?
I What are the desirable properties of a Price Impact model?
I How can we compute optimal execution trading strategies?
I What happens when several execution strategies interact?



”Amlgren-Chriss Price Impact” Model

I Unaffected (fair) price given by a semi-martingale (Wiener
process)

I Mid-price affected by trading
I Permanent price impact given by a function g of trading speed

v(t)
dPmid

t = g(v(t))dt + σdWt

I Temporary price impact given by function h of trading speed

P trans
t = Pmid

t + h(v(t))

I Problem: find deterministic continuous transaction path to
maximize mean-variance reward.

I Closed form solution when permanent and instantaneous price
impact functions g and h are linear

I Efficient frontier: Speed of trading and hence risk/return
controlled by risk aversion parameter

Widely used in industry



Criticisms

I Mid-price Pmid
t arithmetic Brownian motion + drift

I Can become negative
I Reasonable only for short times

I Possible issues with rate of trading in continuous time?
I Price impact more complex than instantaneous + permanent
I What is the link between Price Impact and LOB dynamics?

I e.g. can we combine elegant description of risk-return trade-off in
Almgren / Chriss with detail of Smith-Farmer type models?

I Empirical evidence that instantaneous price impact is
stochastic in many markets



Optimal Execution

An execution algorithm has three layers:

I At the highest level one decides how to slice the order, when to
trade, in what size and for how long.

I At the mid level, given a slice, one decides whether to place
market or limit orders and at what price level(s).

I At the lowest level, given a limit or market order, one decides to
which venue should this order be routed?

We shall not discuss the last bullet point here.



Optimal Execution Set-Up

Goal: sell x0 > 0 shares by time T > 0
I X = (Xt )0≤t≤T execution strategy
I Xt position (nb of shares held) at time t . X0 = x0, XT = 0
I Assume Xt absolutely continuous (differentiable)
I P̃t mid-price (unaffected price), Pt transaction price, It price

impact
Pt = P̃t + It

e.g. Linear Impact A-C model:

It = γ[Xt − X0] + λẊt

I Objective: Maximize some form of revenue at time T
Revenue R(X ) from the execution strategy X

R(X ) =

∫ T

0
(−Ẋt )Ptdt



Specific Challenges

I First generation: Price impact models (e.g. Almgren - Chriss)
I Risk Neutral framework (maximize ER(X )) versus utility criteria
I More complex portfolios (including options)
I Robustness and performance constraints (e.g. slippage or tracking

market VWAP)

I Second generation: Simplified LOB models
I Simple liquidation problem
I performance constraints (e.g. slippage or tracking market VWAP)

and using both market and limit orders



Optimal Execution Problem in A-C Model

R(X ) =

∫ T

0
(−Ẋt )Ptdt

= −
∫ T

0
Ẋt P̃tdt −

∫ T

0
Ẋt Itdt

= x0P̃0 +

∫ T

0
XtdP̃t − C(X )

with C(X ) =
∫ T

0 Ẋt Itdt .

Interpretation
I x0P̃0 (initial) face value of the portfolio to liquidate

I
∫ T

0 XtdP̃t volatility risk for selling according to X instead of
immediately!

I C(X ) execution costs due to market impact



Special Case: the Linear A-C Model

R(X ) = x0P̃0 +

∫ T

0
XtdP̃t − λ

∫ T

0
Ẋ 2

t dt − γ

2
x2

0

Easy Case: Maximizing E[R(X )]

E[R(X )] = x0P0 −
γ

2
x2

0 − λE
∫ T

0
Ẋ 2

t dt

Jensen’s inequality & constraints X0 = x0 and XT = 0 imply

Ẋ ∗t = −x0

T

trade at a constant rate independent of volatility !
Bertsimas - Lo (1998)



More Realistic Problem

Almgren - Chriss propose to maximize

E[R(X )]− αvar[R(X )]

(α risk aversion parameter – late trades carry volatility risk)

For DETERMINISTIC trading strategies X

E[R(X )]− αvar[R(X )] = x0P0 −
γ

2
x2

0 −
∫ T

0

(
ασ2

2
X 2

t + λẊ 2
t

)
dt

maximized by (standard variational calculus with constraints)

Ẋ ∗t = x0
sinhκ(T − t)

sinhκT
for κ =

√
ασ2

2λ

For RANDOM (adapted) trading strategies X , more difficult as
Mean-Variance not amenable to dynamic programming



Maximizing Expected Utility
Choose U : R→ R increasing concave and

maximize E[U(R(X T )]

Stochastic control formulation over a state process (Xt ,Rt )0≤t≤T .

v(t , x , r) = sup
ξ∈Ξ(t,x)

E[u(RT )|Xt = x ,RT = r ]

value function, where Ξ(t , x) is the set of admissible controls{
ξ = (ξs)t≤s≤T ; progressively measurable,

∫ T

t
ξ2

s ds <∞,
∫ T

t
ξsds = x

}

Xs = X
ξ
s = x −

∫ s

t
ξudu, Ẋs = −ξs, Xt = x

and (choosing P̃t = σWt )

Rs = R
ξ
s = R+σ

∫ s

t
XudWu−λ

∫ s

t
ξ2

udu, dRs = σXsdWs−λξ2
s ds, Rt = r



Finite Fuel Problem

Non Standard Stochastic Control problem because of the
constraints ∫ T

0
ξsds = x0.

Still, one expects

I For any admissible ξ, [v(t ,X
ξ

t ,R
ξ

t )]0≤t≤T is a super-martingale

I For some admissible ξ∗, [v(t ,X
ξ∗

t ,R
ξ∗

t )]0≤t≤T is a true martingale

If v is smooth, and we set Vt = v(t ,X
ξ

t ,R
ξ

t ), Itô’s formula gives

dVt =

(
∂tv(t ,Xt ,Rt) +

σ2

2
∂2

rr v(t ,Xt ,Rt)

−λξ2
t ∂r v(t ,Xt ,Rt)− ξt∂x v(t ,Xt ,Rt)

)
dt

+ σ∂x v(t ,Xt ,Rt)dWt



Hamilton-Jabobi-Bellman Equation

One expects that v solves the HJB equation (nonlinear PDE)

∂tv +
σ2

2
∂2

xxv − inf
ξ∈R

[ξ2λ∂r v + ξ∂xv ] = 0

in some sense, with the (non-standard) terminal condition

v(T , x , r) =

{
U(r) if x = X0

−∞ otherwise



Solution for CARA Exponential Utility

For u(x) = −e−αx and κ as before

v(t , x , r) = e−αr+x2
0αλκ cothκ(T−t)

solves the HJB equation and the unique maximizer is given by the
DETERMINISTIC

ξ∗t = x0κ
coshκ(T − t)

sinhκT
Schied-Schöneborn-Tehranchi (2010)

I Optimal solution same as in Mean - Variance case
I Schied-Schöneborn-Tehranchi’s trick shows that optimal

trading strategy is generically deterministic for exponential
utility

I Open problem for general utility function
I Partial results in infinite horizon versions



Shortcomings

I Optimal strategies
I are DETERMINISTIC
I do not react to price changes
I are time inconsistent
I are counter-intuitive in some cases

I Computations require
I solving nonlinear PDEs
I with singular terminal conditions



Recent Developments

Gatheral - Schied (2011), Schied (2012)
I In the spirit of Almgren-Chriss mean-variance criterion, maximize

E
[
R(X )− λ̃

∫ T

0
XtPtdt

]
I The solution happens to be ROBUST

I P̃t can be a semi-martingale, optimal solution does not change



Recent Developments
Almgren - Li (2012), Hedging a large option position

I g(t , P̃t) price at time t of the option (from Black-Scholes theory)
I Revenue

R(X ) = g(T , P̃T ) + XT P̃T −
∫ T

0
P̃t Ẋtdt − λ

∫ T

0
Ẋ 2

t dt

I Using Itô’s formula and the fact that g solves a PDE,

R(X ) = R0+

∫ T

0
[Xt +∂x g(t , P̃t)]dt−λ

∫ T

0
Ẋ 2

t dt R0 = x0P̃0+g(0, P̃0)

I Introduce Yt = Xt + ∂x g(t , P̃t) for hedging correction{
dP̃t = γẊtdt + σdWt

dYt = [1 + γ∂2
xx g(t , P̃t)]dt + σ∂2

xx g(t , P̃t)dWt

I Minimize

E
[
G(P̃T ,YT ) +

∫ T

0

(
σ2

2
Y 2

t − γẊtYt + λẊ 2
t

)
dt
]

Explicit solution in some cases (e.g. ∂2
xxg(t , x) = c, G quadratic)



Transient Price Impact

Flexible price impact model
I Resilience function G : (0,∞)→ (0,∞) measurable bounded
I Admissible X = (Xt )0≤t≤T cadlag, adapted, bounded variation
I Transaction price

Pt = P̃t +

∫ t

0
G(t − s) dXs

I Expected cost of strategy X given by

−x0P0 + E[C(X )]

where
C(X ) =

∫ ∫
G(|t − s|)dXsdXt



Transient Price Impact: Some Results

I No Price Manipulation in the sense of Huberman - Stanzl
(2004) if G(| · |) positive definite

I Optimal strategies (if any) are deterministic
I Existence of an optimal X ∗ ⇔ solvability of a Fredholm equation
I Exponential Resilience G(t) = e−ρt

dX ∗t = − x0

ρT + 2

(
δ0(dt) + ρdt + δT (dt)

)
I X ∗ purely discrete measure on [0,T ] when G(t) = (1− ρt)+ with
ρ > 0

I dX∗
t = − x0

2 [δ0(dt) + δT (dt)] if ρ < 1/T
I dX∗

t = − x0
n+1

∑n
i=0 δiT/n(dt) if ρ < n/T for some integer n ≥ 1

Obizhaeva - Wang (2005), Gatheral - Schied (2011)



Optimal Execution in a LOB Model

I Unaffected price P̃t (e.g. P̃t = P0 + σWt )
I Trader places only market sell orders

I Placing buy orders is not optimal
I Bid side of LOB given by a function f : R→ (0,∞) s.t.∫∞

0 f (x)dx =∞. At any time t∫ b

a
f (x)dx = bids available in the price range [P̃t + a, P̃t + b]

I The shape function f does not depend upon t or P̃t

Obizhaeva - Wang (2006), Alfonsi - Fruth - Schied (2010), Alfonsi
- Schied - Schulz (2011), Predoiu - Shaikhet - Shreve (2011)



Optimal Execution Tracking a Benchmark
R.C. - M. Li

Goal: sell v > 0 shares by time T > 0 (finite horizon)

I Pt mid-price (unaffected price),

Pt = P0 +

∫ t

0
σ(u)dWu, 0 ≤ t ≤ T ,

I V (t) volume traded in the market up to (and including) time t

I Market VWAP= 1
V

∫ T
0 PtdV (t)

I Fraction of shares still to be executed in the market

X (t) =
V − V (t)

V
=

T − t
T

(deterministic V (t) used to change clock). Convenient
simplification !



Broker Problem

vt volume executed by the broker up to time t

xt =
v − vt

v

fraction of shares left to be executed by the broker at time t

xt = 1− `t −mt

Where
I `t cumulative volume executed through limit orders
I mt cumulative volume executed through market orders
I Broker average liquidation price

vwap= 1
v

∫ T
0

(
Pt − S

2

)
dmt +

(
Pt + S

2

)
d`t

I Objective: Minimize discrepancy between vwap and VWAP



Naive Model for the Dynamics of the Order Book
Controls of the broker:

I (mt )0≤t≤T non-decreasing adapted process
I (Lt )0≤t≤T predictable process

`t =

∫ t

0

∫
[0,1]

y ∧ Lu µ(du,dy) =

Nt∑
i=1

Yi ∧ Lτi

where
µ(du,dy)

point measure (Poisson) compensator νt (du)ν(t)dt .

xt = 1−
∫ t

0

∫
[0,1]

y ∧ Lu µ(du,dy)−mt = 1−
Nt∑

i=1

Yi ∧ Lτi −mt

So the dynamics of xt are given by

dxt = −
∫

[0,1]

y ∧ Lt µ(dt ,dy)− dmt ,

with initial condition x0− = 1.



Optimization Problem
Goal of the broker

sup
(L,m)∈A

E
[
U(vwap− VWAP)

]
,

For the CARA exponential utility, approximately

inf
(L,m)∈A

E
[

exp
(
− γ

(
S
2

+

∫ T

0
[xL,m

u − X (u)]dPu − S dmu

)]
,

We will work with a Mean - Variance criterion

inf
(L,m)∈A

E
[ ∫ T

0
γ
σ(u)2

2
[xL,m

u − X (u)]2du + S mT

]
,

I S spread
I X (u) = (T − u)/T fraction of shares left to be executed in the

market.



Stochastic Control Problem

Singular control problem of a pure jump process

Value function
J(t , x) = inf

(L,m)∈A(t,x)
J(t , x ,L,m)

where

J(t , x ,L,m) = E
[ ∫ T

t
γ
σ(u)2

2
[xL,m

u − X (u)]2du + SmT

]
.

J(t , x) is non-decreasing in t for x ∈ [0,1] fixed. (A(t2, x) ⊂ A(t1, x)
whenever t1 ≤ t2)



Tough Luck: Problem is NOT Convex

The set A of admissible controls is not convex.

For any number ` ∈ (0,1), the two controls (L1,m1) and (L2,m2) by:

L1
t = 1{t≤τ1} +

∞∑
k=2

xτk−11{τk−1<t≤τk}, and m1
t = xT−1{T≤t},

and:

L2
t =

`

2
1{t≤τ1} +

∞∑
k=2

xτk−11{τk−1<t≤τk}, and m2
t = xT−1{T≤t},

are admissible, but the pair (L,m) defined by

Lt =
1
2

(L1
t + L2

t ), and mt =
1
2

(m1
t + m2

t ),

IS NOT



Closest Related Works
I Poisson random measure µ(dt ,dy) for claim sizes Yt

I insurer pays Yt ∧ αt up to a retention level αt

I re-insurer covers the excess (Yt − αt )
+

Wealth process of the Insurance Company

Xt = x +

∫ t

0
p(αs)ds −

∫ t

0
y ∧ αs µ(ds,dy)−

∫ t

0
dDs

I p(α) insurer net premium (after paying the reinsurance company)
I Dt cumulative dividends paid up to (and including) time t

sup
(αt )t ,(Dt )t

E
[ ∫ τ

0
e−rudDu

]
I time of bankruptcy τ = inf{t ≥ 0; Xt ≤ 0}

Jeanblanc-Shyryaev (1995) optimal dividend distribution for Wiener
process, Asmunssen- Hjgaard-Taksar (1998) optimal dividend
distribution for diffusion, Mnif-Sulem (2005) prove existence and
uniqueness of a viscosity solution,
Goreac (2008) multiple contracts



Similarities & Differences

Similarities
I αt ↔ standing limit orders Lt

I Dt ↔ cumulative market orders mt

Differences
I We work in a finite horizon (PDEs instead of ODEs)
I We use a Mean - Variance criterion
I We exhibit a classical solution (as opposed to a viscosity

solution)
I We derive a system of ODEs identifying

I the value function
I the optimal stratagy



Technical Assumptions

νt (dy)ν(t)dt intensity of Poisson measure µ(dt ,dy) with νt ([0,1]) = 1.

I
∫ T

0 σ(t)2dt <∞
I sup0≤t≤T ν(t) <∞

I t ↪→ σ(t)2

ν(t) (X (t)− x) is increasing for each x ∈ [0,1]

I t ↪→ 1
ν(t)νt ( · ) is decreasing (in the sense of stochastic

dominance)



Hamilton-Jabobi-Bellman Equation (QVI)

min
[
[Aφ](t , x), ∂tφ(t , x) + [Bφ](t , x)

]
= 0.

where
[Aφ](t , x) = S − ∂xφ(t , x)

and

[Bφ](t , x) = γ
σ(t)2

2
[X (t)−x ]2+ν(t) inf

0≤L≤x

∫
[0,1]

[φ(t , x−y∧L)−φ(t , x)]νt (dy)

with terminal condition

φ(T−, x) = Sx , (notice that φ(T , x) = 0)

and boundary condition:

φ(t ,0) =

∫ T

t

γσ(u)2

2
X (u)du.



Classical Solution
Theorem
The value function is the unique solution of

− J̇(t , x) = min
[

inf
0≤y≤x

−J̇(t , x),

γ
σ(t)2

2
[X (t)− x ]2 + ν(t)

∫
[0,1]

[J(t , (x − y) ∨ L̃(t , y))− J(t , x)]νt (dy)

]
with

J(t ,0) = γ

∫ t

0

σ(u)2

2
X (u)2du, and J(T , x) = Sx

where
L̃(t , x) = arg min

0≤y≤x
J(t , y)

I J is C1,1

I x ↪→ J(t , x) convex for t fixed
I t ↪→ J(t , x) non-decreasing for x fixed
I ∂x J̇(t , x) ≥ 0



Free Boundary (No-Trade Region)

[0,T ]× [0,1] = A ∪ B ∪ C

with
I A = {(t , x); ∂xJ(t , x) < 0} = {(t , x); 0 ≤ t < τ`(x)}
I B = {(t , x); 0 ≤ ∂xJ(t , x) ≤ S} = {(t , x); τ`(x) ≤ t ≤ τm(x)}
I C = {(t , x); ∂xJ(t , x) = S} = {(t , x); τm(x) ≤ t}

where
I τ`(x) = inf{t > 0; ∂xJ(t , x) ≥ 0}
I τm(x) = inf{t > 0; ∂xJ(t , x) ≥ S}

τ`(x) ≤ T (1− x) ≤ τm(x)



Optimal Trading Strategy

I If t > τm(xt ) i.e. (t , xt ) ∈ C (never happens)
I place market orders

∆mt > 0 (just enough to get into B)
I If t = τm(xt ) i.e. (t , xt ) ∈ ∂C

I place market orders at a rate dmt = −τ̇m(xt)dt

(just enough so not to exit B)
I If τ`(xt ) ≤ t < τm(xt ) i.e. (t , xt ) ∈ B ∪ ∂A

I place Lt = xt − L̃(t) limit orders
(as much as possible without getting ahead too much)

I If t < τ`(xt ) i.e. (t , xt ) ∈ A (never happens)
I no trade



Premises for Predatory Trading

I Large Trader facing a Forced Liquidation
I Especially if the need to liquidate is known by other traders

I hedge funds with (nearing) margin call
I traders who use portfolio insurance, stop loss orders, . . .
I some institutions / funds cannot hold on to downgraded instruments
I Index-replication funds (at re-balancing dates) e.g. Russell 3000

Forced liquidation can be very costly because of price impact

Business Week

...if lenders know that a hedge fund needs to sell something quickly, they will
sell the same asset, driving the price down even faster. Goldman Sachs and

other counter-parties to LTCM did exactly that in 1998.

When you smell blood in the water, you become a shark . . . . when you
know that one of your number is in trouble . . . you try to figure out what he

owns and you start shorting those stocks . . .

Cramer (2002)



Typical Predatory Trading Scenario

I Distressed trader (prey) needs to unload a large position
I Size will have impact on price

I Predator initially trades in the same direction as the prey
I Effect is to withdraw liquidity
I Market impact of the liquidation becomes greater
I Price fall is exaggerated (over-shooting)

I Predator reverses direction, profiting from the price over-shoot
I Predator closes position for a profit.

Brunnermeier - Pedersen (2005)
Carlin - Lobo - Viswanathan (2005)
Schied - Schöneborn (2008)



Multi-Player Game Model

I One risk free asset and one risky asset
I Trading in continuous time, interest rate r = 0
I n + 1 strategic players and a number of noise traders
I X0(t),X1(t), · · · ,Xn(t) risky asset positions of the strategic

players
I Trades at time t are executed at the price (Chriss-Almgren

price impact model)

P(t) = P̃(t) + γ

n∑
i=0

[Xi (t)− Xi (0)] + λ

n∑
i=0

Ẋi (t)

where P̃(t) is a mean zero martingale (say a Wiener process).



Goal of the Mathematical Analysis

I Understand predation
I Illustrate benefits of

I Stealth trading
I Sunshine trading

Modeling extreme markets
I Elastic markets:

I temporary impact λ >> permanent impact γ
I Plastic markets:

I permanent impact γ >> temporary impact λ



Assumptions of the One Period Game

I Each strategic player i ∈ {0,1, · · · ,n} knows
I all other strategic players initial asset positions Xj(0) for j 6= i
I Their target Xj(T ) at some fixed time point T > 0 in the future

I Objective (all players are risk neutral)
I Players maximize their expected return by choosing an optimal

trading strategy Xi(t) satisfying their constraints Xi(0) and Xi(T )

One distressed trader / prey (e.g seller), player 0

X0(0) = x0 > 0, X0(T ) = 0

n predators players 1,2, · · · ,n

Xi (0) = Xi (T ) = 0, i = 1, · · · ,n



Optimization Problem

A strategy Xi = (Xi (t))0≤t≤T is admissible (for player i) if it is an a
I adapted process
I with continuously differentiable sample paths

Given a set X = (X0,X1, · · · ,Xn) of admissible strategies
I Each player i ∈ {0,1, · · · ,n} tries to maximize his expected

return

J i (X ) = E[

∫ T

0
(−Ẋi (t))P(t)dt ]

under the constraint

P(t) = P̃(t) + γ
n∑

i=0

[Xi(t)− Xi(0)] + λ
n∑

i=0

Ẋi(t)

I Search for Nash Equilibrium



Deterministic Strategies

If we restrict the admissible strategies X = (X0,X1, · · · ,Xn) to be
DETERMINISTIC

J i (X ) = E[

∫ T

0
(−Ẋi (t))P(t)dt ] =

∫ T

0
(−Ẋi (t))P(t)dt

where

P(t) = P(0) + γ

n∑
i=0

[Xi (t)− Xi (0)] + λ

n∑
i=0

Ẋi (t)

THE SOURCE OF RANDOMNESS IS GONE !

Carlin - Lobo - Viswanathan (2005) Schied - Schoenborn (2008)



Solution in the Deterministic Case

Unique Optimal Strategies

Xi (t) = ae−
n

n+2
γ
λ t + bie

γ
λ t

where

a =
n

n + 2
γ

λ

(
1− e−

n
n+2

γ
λ T
)−1 1

n + 1

n∑
i=0

[Xi (T )− Xi (0)]

bi =
γ

λ

(
e

γ
λ T − 1

)−1(
Xi (T )− Xi (0)− 1

n + 1

n∑
i=0

[Xi (T )− Xi (0)]

)

Carlin - Lobo - Viswanathan (2005)



n = 1 predator, γ/λ = 0.3



n = 1 predator, γ = λ



n = 1 predator, γ = 15.5λ



Fancy Plots of the Holdings of the Distressed Trader & Predator



Impact of the Number of Predators: γ = λ



Impact of the Number of Predators: γ = 15.5λ



Expected Price: γ = λ



Expected Price: γ = 15λ



Impact of Nb of Predators on Expected Returns



Two Period Model

I Prey has to liquidate X0 > 0 by time T1, i.e. X0(T1) = 0
I Predators can stay in the game longer Xi (0) = Xi (T2) = 0 for

some T2 > T1 for i = 1, · · · ,n
I Prey does not trade in second period [T1,T2], i.e. X0(t) = 0 for

T1 ≤ t ≤ T2.

Markovian Structure =⇒

Solution determined by predators’ positions at time T1



Nash Equilibrium for Deterministic Strategies

UNIQUE Nash Equilibrium
I ALL Predators have the same position at time T1

Xi (T1) =
A2n2 + A1n + A0

B3n3 + B2n2 + B1n + B0
X0, i = 1, · · · ,n

I Coefficients depend upon n but converge as n→∞
I Asymptotic formulas for expected returns
I Asymptotic comparison of Stealth versus Sunshine trading for

some regimes of γ/λ
Schöneborn - Schied (2008)
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