Mathematical Behavioural Finance

Xunyu Zhou

University of Oxford

May 2015 @ IPAM

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Overview of This Lecture Series

Part 1: Introduction and Background

(日) (日) (日) (日) (日) (日) (日) (日)

Overview of This Lecture Series

- Part 1: Introduction and Background
- Part 2: Portfolio Choice and Quantile Formulation

Overview of This Lecture Series

- Part 1: Introduction and Background
- Part 2: Portfolio Choice and Quantile Formulation

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Part 3: Market Equilibrium and Asset Pricing

Part I: Introduction and Background

1 Expected Utility Theory and Challenges

2 Alternative Theories for Risky Choice

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

3 Summary and Further Readings

Section 1

Expected Utility Theory and Challenges

Expected Utility Theory

Expected Utility Theory (EUT): To evaluate gambles (random variables, lotteries) and form preference

Expected Utility Theory

Expected Utility Theory (EUT): To evaluate gambles (random variables, lotteries) and form preference

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

■ Foundation laid by von Neumann and Morgenstern (1947)

Mathematical Behavioural Finance

Expected Utility Theory

- Expected Utility Theory (EUT): To evaluate gambles (random variables, lotteries) and form preference
- Foundation laid by von Neumann and Morgenstern (1947)
- Axiomatic approach: completeness, transivity, continuity and independence

Expected Utility Theory

- Expected Utility Theory (EUT): To evaluate gambles (random variables, lotteries) and form preference
- Foundation laid by von Neumann and Morgenstern (1947)
- Axiomatic approach: completeness, transivity, continuity and independence
- Behaviour of a rational agent necessarily coincides with that of an agent who values uncertain payoffs using expected concave utility

 EUT: Dominant model for decision making under uncertainty, including financial asset allocation

 EUT: Dominant model for decision making under uncertainty, including financial asset allocation

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Basic tenets of human judgement implied by EUT in the context of asset allocation:

- EUT: Dominant model for decision making under uncertainty, including financial asset allocation
- Basic tenets of human judgement implied by EUT in the context of asset allocation:
 - Frame of problem: Investors' preference is independent of how problem is stated (described, or framed)

- EUT: Dominant model for decision making under uncertainty, including financial asset allocation
- Basic tenets of human judgement implied by EUT in the context of asset allocation:
 - Frame of problem: Investors' preference is independent of how problem is stated (described, or framed)
 - Source of satisfaction: Investors evaluate assets according to final asset positions

- EUT: Dominant model for decision making under uncertainty, including financial asset allocation
- Basic tenets of human judgement implied by EUT in the context of asset allocation:
 - Frame of problem: Investors' preference is independent of how problem is stated (described, or framed)
 - Source of satisfaction: Investors evaluate assets according to final asset positions

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

 Attitude towards risk: Investors are always risk averse (concave utility)

- EUT: Dominant model for decision making under uncertainty, including financial asset allocation
- Basic tenets of human judgement implied by EUT in the context of asset allocation:
 - Frame of problem: Investors' preference is independent of how problem is stated (described, or framed)
 - Source of satisfaction: Investors evaluate assets according to final asset positions
 - Attitude towards risk: Investors are always risk averse (concave utility)
 - Beliefs about future: Investors are able to objectively evaluate probabilities of future returns

- EUT: Dominant model for decision making under uncertainty, including financial asset allocation
- Basic tenets of human judgement implied by EUT in the context of asset allocation:
 - Frame of problem: Investors' preference is independent of how problem is stated (described, or framed)
 - Source of satisfaction: Investors evaluate assets according to final asset positions
 - Attitude towards risk: Investors are always risk averse (concave utility)
 - Beliefs about future: Investors are able to objectively evaluate probabilities of future returns
- Neoclassical economics

Paradoxes/Puzzles with EUT

EUT is systematically violated via experimental work, and challenged by many paradoxes and puzzles

- Allais paradox: Allais (1953)
- Ellesberg paradox: Ellesberg (1961)
- Friedman and Savage puzzle: Friedman and Savage (1948)

- Equity premium puzzle: Mehra and Prescott (1985)
- Risk-free rate puzzle: Weil (1989)

Frame Independence

Frame: the form used to describe a decision problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♥ ♥ ♥

Frame Independence

Frame: the form used to describe a decision problemFrame independence: form is irrelevant to behaviour

Frame Independence

- Frame: the form used to describe a decision problem
- Frame independence: form is irrelevant to behaviour
- People can see through all the different ways cash flows might be described

Frame Independence

- Frame: the form used to describe a decision problem
- Frame independence: form is irrelevant to behaviour
- People can see through all the different ways cash flows might be described

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

 Frame independence: the foundation of neoclassical economics/finance

Frame Independence

- Frame: the form used to describe a decision problem
- Frame independence: form is irrelevant to behaviour
- People can see through all the different ways cash flows might be described
- Frame independence: the foundation of neoclassical economics/finance
- Merton Miller: "If you transfer a dollar from your right pocket to your left pocket, you are no wealthier. Franco (Modigliani) and I proved that rigorously"

Frame Dependence: My Parking Ticket

■ I got parking tickets in both HK and UK

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

I paid reluctantly, on the last day

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400

- I paid reluctantly, on the last day
- The PCN in UK said:

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400
- I paid reluctantly, on the last day
- The PCN in UK said:
 - A penalty \pounds 70 is now payable and must be paid in 28 days

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400
- I paid reluctantly, on the last day
- The PCN in UK said:
 - A penalty \pounds 70 is now payable and must be paid in 28 days
 - But ... if you pay in 14 days there is a **discount** of 50% to £35

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400
- I paid reluctantly, on the last day
- The PCN in UK said:
 - A penalty \pounds 70 is now payable and must be paid in 28 days
 - **B**ut ... if you pay in 14 days there is a **discount** of 50% to $\pounds 35$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

I paid immediately ...

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400
- I paid reluctantly, on the last day
- The PCN in UK said:
 - A penalty \pounds 70 is now payable and must be paid in 28 days
 - **B**ut ... if you pay in 14 days there is a **discount** of 50% to $\pounds 35$
- I paid immediately ... filled with gratitude and joy

- I got parking tickets in both HK and UK
- In HK, the penalty charge notice (PCN) read:
 - A penalty HK\$400 is now payable and must be paid in 14 days
 - If you pay after 14 days there is a surcharge of an additional HK\$400
- I paid reluctantly, on the last day
- The PCN in UK said:
 - A penalty $\pounds70$ is now payable and must be paid in 28 days
 - **B**ut ... if you pay in 14 days there is a **discount** of 50% to $\pounds 35$
- I paid immediately ... filled with gratitude and joy
- Behaviour does depend on frame

Reference Point: Tough Jobs

Alan Greenspan "The Age of Turbulence" (2007): Choose between the following two job offers

Alan Greenspan "The Age of Turbulence" (2007): Choose between the following two job offers

 A: Earn \$105,000/year while all your colleagues earn at *least* \$210,000/year

Alan Greenspan "The Age of Turbulence" (2007): Choose between the following two job offers

- A: Earn \$105,000/year while all your colleagues earn at *least* \$210,000/year
- B: Earn \$100,000/year while all your colleagues earn at most \$50,000/year

Alan Greenspan "The Age of Turbulence" (2007): Choose between the following two job offers

- A: Earn \$105,000/year while all your colleagues earn at *least* \$210,000/year
- B: Earn \$100,000/year while all your colleagues earn at most \$50,000/year

B was more popular

Alan Greenspan "The Age of Turbulence" (2007): Choose between the following two job offers

- A: Earn \$105,000/year while all your colleagues earn at *least* \$210,000/year
- B: Earn \$100,000/year while all your colleagues earn at most \$50,000/year
- B was more popular
- Reference point: what matters is *deviation* of wealth from certain benchmark, not wealth itself

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

■ A: Win \$10,000 with 50% chance and \$0 with 50% chance

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

A: Win \$10,000 with 50% chance and \$0 with 50% chance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

B: Win \$5,000 with 100% chance

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

■ A: Win \$10,000 with 50% chance and \$0 with 50% chance

- B: Win \$5,000 with 100% chance
- B was more popular

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

■ A: Win \$10,000 with 50% chance and \$0 with 50% chance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- B: Win \$5,000 with 100% chance
- B was more popular

Experiment 2: Choose between

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

- A: Win \$10,000 with 50% chance and \$0 with 50% chance
- B: Win \$5,000 with 100% chance
- B was more popular

Experiment 2: Choose between

■ A: Lose \$10,000 with 50% chance and \$0 with 50% chance

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

- A: Win \$10,000 with 50% chance and \$0 with 50% chance
- B: Win \$5,000 with 100% chance
- B was more popular
- Experiment 2: Choose between
 - A: Lose \$10,000 with 50% chance and \$0 with 50% chance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

B: Lose \$5,000 with 100% chance

Mathematical Behavioural Finance

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

- A: Win \$10,000 with 50% chance and \$0 with 50% chance
- B: Win \$5,000 with 100% chance
- B was more popular

Experiment 2: Choose between

■ A: Lose \$10,000 with 50% chance and \$0 with 50% chance

- B: Lose \$5,000 with 100% chance
- This time: A was more popular

Mathematical Behavioural Finance

Risk Aversion vs. Risk Seeking

Experiment 1: Choose between

- A: Win \$10,000 with 50% chance and \$0 with 50% chance
- B: Win \$5,000 with 100% chance
- B was more popular

Experiment 2: Choose between

■ A: Lose \$10,000 with 50% chance and \$0 with 50% chance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- B: Lose \$5,000 with 100% chance
- This time: A was more popular

Risk averse on gains, risk seeking on losses

Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win \$100,000 with 50% chance and lose \$50,000 with 50% chance

Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win \$100,000 with 50% chance and lose \$50,000 with 50% chance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

B: Don't take this bet

Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win \$100,000 with 50% chance and lose \$50,000 with 50% chance

- B: Don't take this bet
- B was more popular

Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

- A: Win \$100,000 with 50% chance and lose \$50,000 with 50% chance
- B: Don't take this bet
- B was more popular
- Loss aversion: pain from a loss is more than joy from a gain of the same magnitude

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

A: Win \$50,000 with 0.1% chance

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance
- A was more popular

Probability Distortion (Weighting): Lottery Ticket and Insurance

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance
- A was more popular

Experiment 4: Choose between

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance
- A was more popular

Experiment 4: Choose between

■ A: Lose \$50,000 with 0.1% chance

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance
- A was more popular

Experiment 4: Choose between

- A: Lose \$50,000 with 0.1% chance
- B: Lose \$50 with 100% chance

Probability Distortion (Weighting): Lottery Ticket and Insurance

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance
- A was more popular

Experiment 4: Choose between

- A: Lose \$50,000 with 0.1% chance
- B: Lose \$50 with 100% chance
- This time: B was more popular

Probability Distortion (Weighting): Lottery Ticket and Insurance

Experiment 3: Choose between

- A: Win \$50,000 with 0.1% chance
- B: Win \$50 with 100% chance
- A was more popular

Experiment 4: Choose between

- A: Lose \$50,000 with 0.1% chance
- B: Lose \$50 with 100% chance
- This time: B was more popular

Exaggeration of extremely small probabilities of both winning big and losing big

Equity Premium and Risk-Free Rate Puzzles

 Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical consumption-based capital asset pricing model (CCAPM)

Equity Premium and Risk-Free Rate Puzzles

- Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical consumption-based capital asset pricing model (CCAPM)
 - Mehra and Prescott found historical equity premium of S&P 500 for 1889–1978 to be 6.18%, much higher than could be predicted by EUT-based CCAPM

Equity Premium and Risk-Free Rate Puzzles

- Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical consumption-based capital asset pricing model (CCAPM)
 - Mehra and Prescott found historical equity premium of S&P 500 for 1889–1978 to be 6.18%, much higher than could be predicted by EUT-based CCAPM
 - Subsequent empirical studies have confirmed that this puzzle is robust across different time periods and different countries

Equity Premium and Risk-Free Rate Puzzles

- Equity premium puzzle (Mehra and Prescott 1985): observed equity premium is too high to be explainable by classical consumption-based capital asset pricing model (CCAPM)
 - Mehra and Prescott found historical equity premium of S&P 500 for 1889–1978 to be 6.18%, much higher than could be predicted by EUT-based CCAPM
 - Subsequent empirical studies have confirmed that this puzzle is robust across different time periods and different countries
- Risk-free rate puzzle (Weil 1989): observed risk-free rate is too low to be explainable by classical CCAPM

Expected Utility Theory and Challenges

Economic Data 1889–1978 (Mehra and Prescott 1985)

	Consumption growth		riskless return		equity premium		S&P 500 return	
Periods	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
1889-1978	1.83	3.57	0.80	5.67	6.18	16.67	6.98	16.54
1889-1898	2.30	4.90	5.80	3.23	1.78	11.57	7.58	10.02
1899-1908	2.55	5.31	2.62	2.59	5.08	16.86	7.71	17.21
1909-1918	0.44	3.07	-1.63	9.02	1.49	9.18	-0.14	12.81
1919-1928	3.00	3.97	4.30	6.61	14.64	15.94	18.94	16.18
1929-1938	-0.25	5.28	2.39	6.50	0.18	31.63	2.56	27.90
1939-1948	2.19	2.52	-5.82	4.05	8.89	14.23	3.07	14.67
1949-1958	1.48	1.00	-0.81	1.89	18.30	13.20	17.49	13.08
1959-1968	2.37	1.00	1.07	0.64	4.50	10.17	5.58	10.59
1969-1978	2.41	1.40	-0.72	2.06	0.75	11.64	0.03	13.11

Recall EUT based formulae (single period)

$$\begin{aligned} \bar{r} - r_f &\approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f &\approx \frac{1 + \alpha \bar{g}}{\beta} \end{aligned}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate

Recall EUT based formulae (single period)

$$\begin{aligned} \bar{r} - r_f &\approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f &\approx \frac{1 + \alpha \bar{g}}{\beta} \end{aligned}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate Noting $\beta \leq 1$, we have **upper bound** $\alpha \leq \frac{r_f}{\bar{q}}$ if $\bar{g} > 0$

Recall EUT based formulae (single period)

$$\begin{aligned} \bar{r} - r_f &\approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f &\approx \frac{1 + \alpha \bar{g}}{\beta} \end{aligned}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate Noting $\beta \leq 1$, we have **upper bound** $\alpha \leq \frac{r_f}{\bar{g}}$ if $\bar{g} > 0$ For 1889–1978, $\bar{g} = 1.83\%$, $r_f = 0.80\%$

Recall EUT based formulae (single period)

$$\bar{r} - r_f \approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f \approx \frac{1 + \alpha \bar{g}}{\beta}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate Noting $\beta \leq 1$, we have **upper bound** $\alpha \leq \frac{r_f}{\bar{g}}$ if $\bar{g} > 0$ For 1889–1978, $\bar{g} = 1.83\%$, $r_f = 0.80\%$ So $\alpha \leq \frac{0.80}{1.83} = 0.44$

EUT Based Theories

Recall EUT based formulae (single period)

$$\bar{r} - r_f \approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f \approx \frac{1 + \alpha \bar{g}}{\beta}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate Noting $\beta \leq 1$, we have **upper bound** $\alpha \leq \frac{r_f}{\bar{g}}$ if $\bar{g} > 0$ For 1889–1978, $\bar{g} = 1.83\%$, $r_f = 0.80\%$ So $\alpha \leq \frac{0.80}{1.83} = 0.44$ On the other hand, we have **lower bound** $\alpha \geq \frac{\bar{r} - r_f}{\sigma_{\bar{a}}\sigma_{\bar{r}}}$

EUT Based Theories

Recall EUT based formulae (single period)

$$\bar{r} - r_f \approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f \approx \frac{1 + \alpha \bar{g}}{\beta}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate Noting $\beta \leq 1$, we have **upper bound** $\alpha \leq \frac{r_f}{\bar{g}}$ if $\bar{g} > 0$ For 1889–1978, $\bar{g} = 1.83\%$, $r_f = 0.80\%$ So $\alpha \leq \frac{0.80}{1.83} = 0.44$ On the other hand, we have **lower bound** $\alpha \geq \frac{\bar{r} - r_f}{\sigma_{\tilde{g}}\sigma_{\tilde{r}}}$ For 1889–1978, $\bar{r} = 6.98\%$, $\sigma_{\tilde{a}} = 3.57\%$, $\sigma_{\tilde{r}} = 16.54\%$

EUT Based Theories

Recall EUT based formulae (single period)

$$\bar{r} - r_f \approx \alpha \mathbf{Cov}(\tilde{g}, \tilde{r}), \\ 1 + r_f \approx \frac{1 + \alpha \bar{g}}{\beta}$$

where α : relative risk aversion index, \tilde{g} : consumption growth rate, \tilde{r} : equity return rate, r_f : risk-free rate, β : discount rate Noting $\beta \leq 1$, we have **upper bound** $\alpha \leq \frac{r_f}{\bar{g}}$ if $\bar{g} > 0$ For 1889–1978, $\bar{g} = 1.83\%$, $r_f = 0.80\%$ So $\alpha \leq \frac{0.80}{1.83} = 0.44$ On the other hand, we have **lower bound** $\alpha \geq \frac{\bar{r}-r_f}{\sigma_{\tilde{g}}\sigma_{\tilde{r}}}$ For 1889–1978, $\bar{r} = 6.98\%$, $\sigma_{\tilde{g}} = 3.57\%$, $\sigma_{\tilde{r}} = 16.54\%$ So $\alpha \geq \frac{6.98\%-0.80\%}{3.57\%\times16.54\%} = 10.47$ Mathematical Behavioural Finance Lexpected Utility Theory and Challenges

Puzzles under EUT

 Large gap between upper bound of 0.44 and lower bound of 10.47: a significant inconsistency between EUT based CCAPM and empirical findings of a low risk-free rate and a high equity premium

Puzzles under EUT

- Large gap between upper bound of 0.44 and lower bound of 10.47: a significant inconsistency between EUT based CCAPM and empirical findings of a low risk-free rate and a high equity premium
- Under EUT, a puzzle thus arises: the solution simultaneously requires a small relative risk aversion to account for the low risk-free rate and a large relative risk aversion to account for the high equity premium

Section 2

Alternative Theories for Risky Choice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♥ ♥ ♥

Yaari's Dual Theory

Preference on random payoff $\tilde{X} \ge 0$ represented by (Yaari 1987)

$$V(\tilde{X}) = \int \tilde{X} d(w \circ \mathbf{P}) := \int_0^\infty w \left(\mathbf{P}(\tilde{X} > x) \right) dx$$

where probability weighting (or distortion) $w:[0,1] \rightarrow [0,1]$, \uparrow , w(0) = 0, w(1) = 1

Assuming w is differentiable: $V(\tilde{X}) = \int_0^\infty x d[-w(1-F_{\tilde{X}}(x))] = \int_0^\infty x w'(1-F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$ where $F_{\tilde{X}}$ is CDF of \tilde{X}

• $1 - F_{\tilde{X}}(x) \equiv P(\tilde{X} > x)$ is rank of outcome x of \tilde{X} (the smaller the rank the more favourable the outcome)

Assuming w is differentiable: $V(\tilde{X}) = \int_0^\infty x d[-w(1-F_{\tilde{X}}(x))] = \int_0^\infty x w'(1-F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$ where $F_{\tilde{X}}$ is CDF of \tilde{X}

- $1 F_{\tilde{X}}(x) \equiv P(\tilde{X} > x)$ is rank of outcome x of \tilde{X} (the smaller the rank the more favourable the outcome)
- For example, ranks of supremium, median, and infimum of X:
 0, 1/2, and 1 respectively

Assuming w is differentiable: $V(\tilde{X}) = \int_0^\infty x d[-w(1-F_{\tilde{X}}(x))] = \int_0^\infty x w'(1-F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$ where $F_{\tilde{X}}$ is CDF of \tilde{X}

- $1 F_{\tilde{X}}(x) \equiv P(\tilde{X} > x)$ is rank of outcome x of \tilde{X} (the smaller the rank the more favourable the outcome)
- For example, ranks of supremium, median, and infimum of X:
 0, 1/2, and 1 respectively

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

• $V(\tilde{X})$ depends on ranks of random outcomes

Assuming w is differentiable: $V(\tilde{X}) = \int_0^\infty x d[-w(1 - F_{\tilde{X}}(x))] = \int_0^\infty x w'(1 - F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$ where $F_{\tilde{X}}$ is CDF of \tilde{X}

- $1 F_{\tilde{X}}(x) \equiv P(\tilde{X} > x)$ is rank of outcome x of \tilde{X} (the smaller the rank the more favourable the outcome)
- For example, ranks of supremium, median, and infimum of X:
 0, 1/2, and 1 respectively

- $V(\tilde{X})$ depends on ranks of random outcomes
- Consistent with first-order stochastic dominance: $V(\tilde{X}) \ge V(\tilde{Y})$ if $F_{\tilde{X}}(x) \le F_{\tilde{Y}}(x) \ \forall x$

Risk Preference Dictated by Weighting

$$V(\tilde{X}) = \int_0^\infty x w' (1 - F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$$

■ Risk averse when $w(\cdot)$ is convex (overweighing unfavourable payoffs and underweighing favourable payoffs)

Risk Preference Dictated by Weighting

$$V(\tilde{X}) = \int_0^\infty x w' (1 - F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$$

Risk averse when $w(\cdot)$ is convex (overweighing unfavourable payoffs and underweighing favourable payoffs)

Risk seeking when $w(\cdot)$ is concave

Risk Preference Dictated by Weighting

$$V(\tilde{X}) = \int_0^\infty x w' (1 - F_{\tilde{X}}(x)) dF_{\tilde{X}}(x)$$

Risk averse when $w(\cdot)$ is convex (overweighing unfavourable payoffs and underweighing favourable payoffs)

- \blacksquare Risk seeking when $w(\cdot)$ is concave
- \blacksquare Simultaneous risk averse and risk seeking when $w(\cdot)$ is inverse-S shaped

Probability Weighting Functions

Kahneman and Tversky (1992) weighting

$$w(p) = \frac{p^{\gamma}}{(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}},$$

Tversky and Fox (1995) weighting

$$w(p) = \frac{\delta p^{\gamma}}{\delta p^{\gamma} + (1-p)^{\gamma}},$$

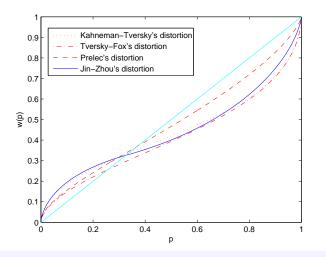
Prelec (1998) weighting

$$w(p) = e^{-\delta(-\ln p)\gamma}$$

■ Jin and Zhou (2008) weighting

$$w(z) = \begin{cases} y_0^{b-a} k e^{a\mu + \frac{(a\sigma)^2}{2}} \Phi\left(\Phi^{-1}(z) - a\sigma\right) & z \le 1 - z_0, \\ C + k e^{b\mu + \frac{(b\sigma)^2}{2}} \Phi\left(\Phi^{-1}(z) - b\sigma\right) & z \ge 1 - z_0 \end{cases}$$

Inverse-S Shaped Functions



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへで

 Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler (1989)

 Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler (1989)

 \blacksquare Preference dictated by an RDUT pair (u,w)

$$\int u(\tilde{X}) d(w \circ \mathbf{P}) \equiv \int_0^\infty w\left(\mathbf{P}\big(u(\tilde{X}) > x\big) \right) dx$$

- Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler (1989)
- \blacksquare Preference dictated by an RDUT pair (u,w)

$$\int u(\tilde{X}) d(w \circ \mathbf{P}) \equiv \int_0^\infty w\left(\mathbf{P}\big(u(\tilde{X}) > x\big) \right) dx$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Two components

- Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler (1989)
- \blacksquare Preference dictated by an RDUT pair (u,w)

$$\int u(\tilde{X}) d(w \circ \mathbf{P}) \equiv \int_0^\infty w\left(\mathbf{P}\big(u(\tilde{X}) > x\big) \right) dx$$

- Two components
 - A concave (outcome) utility function: individuals dislike mean-preserving spread

- Rank-dependent utility theory (RDUT): Quiggin (1982), Schmeidler (1989)
- \blacksquare Preference dictated by an RDUT pair (u,w)

$$\int u(\tilde{X})d(w\circ\mathbf{P})\equiv\int_{0}^{\infty}w\left(\mathbf{P}\big(u(\tilde{X})>x\big)\right)dx$$

Two components

- A concave (outcome) utility function: individuals dislike mean-preserving spread
- A (usually assumed) inverse-S shaped (probability) weighting function: individuals overweight tails

Lopes' SP/A Theory

Security-Potential/Aspiration (SP/A) theory: Lopes (1987)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lopes' SP/A Theory

- Security-Potential/Aspiration (SP/A) theory: Lopes (1987)
- A dispositional factor and a situational factor to explain risky choices

Lopes' SP/A Theory

- Security-Potential/Aspiration (SP/A) theory: Lopes (1987)
- A dispositional factor and a situational factor to explain risky choices
 - Dispositional factor describes people's natural tendency to achieving security and exploiting potential

Lopes' SP/A Theory

- Security-Potential/Aspiration (SP/A) theory: Lopes (1987)
- A dispositional factor and a situational factor to explain risky choices
 - Dispositional factor describes people's natural tendency to achieving security and exploiting potential
 - Situational factor describes people's responses to specific, immediate needs and opportunities

Dispositional Factor

Risk-averse motivated by a desire for security

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへで

- Risk-averse motivated by a desire for security
- Risk-seeking motivated by a desire for *potential*

- Risk-averse motivated by a desire for security
- Risk-seeking motivated by a desire for *potential*
- Lopes applies Yaari's dual theory to model the dispositional factor

- Risk-averse motivated by a desire for security
- Risk-seeking motivated by a desire for *potential*
- Lopes applies Yaari's dual theory to model the dispositional factor

$${\ \ \ } V(\tilde{X}) = \int_0^\infty w(\mathbf{P}(\tilde{X}>x)) dx$$
 where

$$w(p) := \nu p^{q_s+1} + (1-\nu)[1-(1-p)^{q_p+1}]$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

with $q_s,q_p>0$ and $0<\nu<1$

- Risk-averse motivated by a desire for security
- Risk-seeking motivated by a desire for *potential*
- Lopes applies Yaari's dual theory to model the dispositional factor

$${\ \ \ } V(\tilde{X}) = \int_0^\infty w(\mathbf{P}(\tilde{X}>x)) dx$$
 where

$$w(p) := \nu p^{q_s+1} + (1-\nu)[1-(1-p)^{q_p+1}]$$

with $q_s, q_p > 0$ and $0 < \nu < 1$

The nonlinear transformation z^{q_s+1} reflects the security and $1-(1-z)^{q_p+1}$ reflects the potential

Situational Factor

 Aspiration level is a situational variable that reflects individual circumstances, opportunities at hand as well as constraints imposed by the environment

Situational Factor

- Aspiration level is a situational variable that reflects individual circumstances, opportunities at hand as well as constraints imposed by the environment
- Situational factor turns into the constraint

 $\mathbf{P}(\tilde{X} \ge A) \ge \alpha$

Situational Factor

- Aspiration level is a situational variable that reflects individual circumstances, opportunities at hand as well as constraints imposed by the environment
- Situational factor turns into the constraint

$$\mathcal{P}(\tilde{X} \ge A) \ge \alpha$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

• A is the aspiration level, $0 < \alpha < 1$

Kahneman and Tversky's Cumulative Prospect Theory

 Cumulative Prospect Theory (CPT): Kahneman and Tversky (1979), Tversky and Kahneman (1992), Nobel wining 2002

Kahneman and Tversky's Cumulative Prospect Theory

 Cumulative Prospect Theory (CPT): Kahneman and Tversky (1979), Tversky and Kahneman (1992), Nobel wining 2002

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Key ingredients

Kahneman and Tversky's Cumulative Prospect Theory

- Cumulative Prospect Theory (CPT): Kahneman and Tversky (1979), Tversky and Kahneman (1992), Nobel wining 2002
- Key ingredients
 - Reference point or customary wealth (Markowitz 1952)

Kahneman and Tversky's Cumulative Prospect Theory

- Cumulative Prospect Theory (CPT): Kahneman and Tversky (1979), Tversky and Kahneman (1992), Nobel wining 2002
- Key ingredients
 - Reference point or customary wealth (Markowitz 1952)
 - S-shaped value (utility) function (risk-averse on gains, risk-seeking on losses), steeper on losses than on gains (loss aversion)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Kahneman and Tversky's Cumulative Prospect Theory

- Cumulative Prospect Theory (CPT): Kahneman and Tversky (1979), Tversky and Kahneman (1992), Nobel wining 2002
- Key ingredients
 - Reference point or customary wealth (Markowitz 1952)
 - S-shaped value (utility) function (risk-averse on gains, risk-seeking on losses), steeper on losses than on gains (loss aversion)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Probability weighting

Mathematical Behavioural Finance Alternative Theories for Risky Choice

CPT Preference Function

$$V(\tilde{X}) = \int_0^\infty w_+ \left(P\left(u_+\left((\tilde{X} - \tilde{B})^+\right) > x\right) \right) dx - \int_0^\infty w_- \left(P\left(u_-\left((\tilde{X} - \tilde{B})^-\right) > x\right) \right) dx$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where

• \tilde{B} : reference point in wealth (possibly random)

Mathematical Behavioural Finance Alternative Theories for Risky Choice

CPT Preference Function

$$V(\tilde{X}) = \int_0^\infty w_+ \left(P\left(u_+\left((\tilde{X} - \tilde{B})^+\right) > x\right) \right) dx - \int_0^\infty w_- \left(P\left(u_-\left((\tilde{X} - \tilde{B})^-\right) > x\right) \right) dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \tilde{B} : reference point in wealth (possibly random)
- \tilde{X} : random payoff

CPT Preference Function

$$V(\tilde{X}) = \int_0^\infty w_+ \left(P\left(u_+\left((\tilde{X} - \tilde{B})^+\right) > x\right) \right) dx - \int_0^\infty w_- \left(P\left(u_-\left((\tilde{X} - \tilde{B})^-\right) > x\right) \right) dx$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \tilde{B} : reference point in wealth (possibly random)
- \tilde{X} : random payoff
- $w_{\pm}: [0,1] \rightarrow [0,1]$ probability weightings

CPT Preference Function

$$V(\tilde{X}) = \int_0^\infty w_+ \left(P\left(u_+\left((\tilde{X} - \tilde{B})^+\right) > x\right) \right) dx - \int_0^\infty w_- \left(P\left(u_-\left((\tilde{X} - \tilde{B})^-\right) > x\right) \right) dx$$

- \tilde{B} : reference point in wealth (possibly random)
- \tilde{X} : random payoff
- $w_{\pm}: [0,1] \rightarrow [0,1]$ probability weightings
- $u_+(x)\mathbf{1}_{x\geq 0} u_-(x)\mathbf{1}_{x<0}$: overall value function

CPT Preference Function

$$V(\tilde{X}) = \int_0^\infty w_+ \left(P\left(u_+\left((\tilde{X} - \tilde{B})^+\right) > x\right) \right) dx - \int_0^\infty w_- \left(P\left(u_-\left((\tilde{X} - \tilde{B})^-\right) > x\right) \right) dx$$

- \tilde{B} : reference point in wealth (possibly random)
- \tilde{X} : random payoff
- $w_{\pm}: [0,1] \rightarrow [0,1]$ probability weightings
- $u_+(x)\mathbf{1}_{x\geq 0} u_-(x)\mathbf{1}_{x<0}$: overall value function
- Note: Tversky and Kahneman (1992) used discrete random variables

Mathematical Behavioural Finance

Section 3

Summary and Further Readings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mathematical Behavioural Finance

Summary

Rationality – foundation of neoclassical economics

Mathematical Behavioural Finance

Summary

Rationality – foundation of neoclassical economics
Dominant in economics theory and practice

< ロ ト < 団 ト < 三 ト < 三 ト 三 の < ○</p>

Summary

- Rationality foundation of neoclassical economics
- Dominant in economics theory and practice
- Rationality seriously challenged by paradoxes, experiments, empirical findings, and financial crises

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Summary

- Rationality foundation of neoclassical economics
- Dominant in economics theory and practice
- Rationality seriously challenged by paradoxes, experiments, empirical findings, and financial crises
- Behavioural theories with new risk preferences have emerged

Further Readings

- D. Ariely. Predictably Irrational, HarperCollins, New York, 2008.
- D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk, Econometrica, 47:263–291, 1979.
- L. L. Lopes. Between hope and fear: The psychology of risk, Advances in Experimental Social Psychology, 20:255–295, 1987.
- H. Markowitz. The utility of wealth, Journal of Political Economy, 60:151-158, 1952.
- R. Mehra and E.C. Prescott. The equity premium: A puzzle, Journal of Monetary Economics, 15:145–161, 1985.
- J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944.
- J. Quiggin. A Theory of anticipated utility, Journal of Economic and Behavioral Organization, 3:323–343, 1982.
- A. Tversky and D. Kahneman. Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5:297–323, 1992.
- P. Weil. The Equity premium puzzle and the risk free rate puzzle, Journal of Monetary Economics, 24:401–421, 1989.
- M. E. Yaari. The dual theory of choice under risk, Econometrica, 55(1):95–115, 1987.
- X. Zhou. Mathematicalising behavioural finance, Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010; available at http://people.maths.ox.ac.uk/~ zhouxy/download/img-PDF342002.pdf