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An Arrow-Debreu Economy

The Economy

Present date t = 0 (today) and a future date t = 1
(tomorrow)

(Ω,F ,P) at t = 1

A single consumption good

A finite number of agents indexed by i = 1, . . . , I

Agent i has an endowment (e0i, ẽ1i), where e0i is wealth
today and F-measurable random variable ẽ1i is random
endowment tomorrow

Aggregate endowment is (e0, ẽ1) :=
(

∑I
i=1 e0i,

∑I
i=1 ẽ1i

)
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An Arrow-Debreu Economy

Consumption Plans

Agents choose consumption for t = 0, and claims on
consumption for t = 1

A feasible consumption plan of agent i is a pair (c0i, c̃1i),
where c0i ≥ 0 is wealth consumed today and F-measurable
random variable c̃1i ≥ 0 that consumed tomorrow

The preference of agent i over (c0i, c̃0i) is represented by

Vi(c0i, c̃1i) = u0i(c0i) + βi

∫

u1i(c̃1i)d(wi ◦ P),

where
u0i is utility function for t = 0;
(u1i, wi) is the RDUT pair for t = 1;
βi ∈ (0, 1] is time discount factor

The set of all feasible consumption plans is denoted by C
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Pricing Kernel

The above economy is denoted by

E :=
{

(Ω,F ,P), (e0i, ẽ1i)
I
i=1, C ,

(

Vi(c0i, c̃1i)
)I

i=1

}

A pricing kernel (or state-price density, stochastic discount
factor) is an F-measurable random variable ρ̃, with
P(ρ̃ > 0) = 1, E[ρ̃] < ∞ and E[ρ̃ẽ1] < ∞, such that any
claim x̃ tomorrow is priced at E[ρ̃x̃] today
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An Arrow-Debreu Economy

Arrow-Debreu Equilibrium

An Arrow–Debreu equilibrium of E is a collection
{

ρ̃, (c∗0i, c̃
∗
1i)

I
i=1

}

consisting of a pricing kernel ρ̃ and a collection (c∗0i, c̃
∗
1i)

I
i=1 of

feasible consumption plans, that satisfies the following conditions:

Individual optimality : For every i, (c∗0i, c̃
∗
1i) maximises the

preference of agent i subject to the budget
constraint, that is,

Vi(c
∗
0i, c̃

∗
1i) = max

(c0i,c̃1i)∈C

Vi(c0i, c̃1i)

subject to c0i + E[ρ̃c̃1i] ≤ e0i + E[ρ̃ẽ1i]

Market clearing :
∑I

i=1 c
∗
0i = e0 and

∑I
i=1 c̃

∗
1i = ẽ1
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An Arrow-Debreu Economy

Literature

Mainly on CPT economies, and on existence of equilibria

Qualitative structures of pricing kernel for both CPT and SP/A
economies, assuming existence of equilibrium: Shefrin (2008)
Non-existence: De Giorgi, Hens and Riegers (2009), Azevedo
and Gottlieb (2010)
Under specific asset return distribution: Barberis and Huang
(2008)
One risky asset: He and Zhou (2011)

RDUT economy with convex weighting function: Carlier and
Dana (2008), Dana (2011) – existence



Mathematical Behavioural Finance

An Arrow-Debreu Economy

Standing Assumptions

Agents have homogeneous beliefs P; (Ω,F ,P) admits no
atom.

For every i, e0i ≥ 0, P(ẽ1i ≥ 0) = 1, and
e0i + P(ẽ1i > 0) > 0. Moreover, ẽ1 is atomless,
P(ẽ1 > 0) = 1, and e0 > 0.

For every i, u0i, u1i : [0,∞) → R are strictly increasing,
strictly concave, continuously differentiable on (0,∞), and
satisfy the Inada condition: u′0i(0+) = u′1i(0+) = ∞,
u′0i(∞) = u′1i(∞) = 0. Moreover, u1i(0) = 0.

For every i, wi : [0, 1] → [0, 1] is strictly increasing and
continuously differentiable, and satisfies wi(0) = 0, wi(1) = 1.
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Individual Consumptions

Consider

Max
(c0,c̃1)∈C

V (c0, c̃1) := u0(c0) + β

∫ ∞

0
w
(

P
(

u1(c̃1) > x
))

dx

subject to c0 + E[ρ̃c̃1] ≤ ε0 + E[ρ̃ε̃1]

(1)

where ρ̃ is exogenously given, atomless, and ε0 and ε̃1 are
endowments at t = 0 and t = 1 respectively
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Quantile Formulation

Recall the set of quantile functions of nonnegative random
variables

G = {G : [0, 1) → [0,∞] non-decreasing and right-continuous},

Problem (1) can be reformulated as

Max
c0≥0, G∈G

U(c0, G) := u0(c0) + β

∫ 1

0
u1(G(p))dw̄(p)

subject to c0 +

∫ 1

0
F−1
ρ̃ (1− p)G(p)dp ≤ ε0 + E[ρ̃ε̃1],

(2)

where w̄(p) = 1− w(1 − p)

If (c∗0, G
∗) ∈ [0,∞) ×G solves (2), then (c∗0, c̃

∗
1), where

c̃∗1 = G∗(1− Fρ̃(ρ̃)), solves (1)
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Individual Optimality

Lagrange

Step 1. For a fixed Lagrange multiplier λ > 0, solve

Max
c0≥0, G∈G

u0(c0) + β

∫

1

0

u1(G(p))dw̄(p)

− λ

(

c0 +

∫ 1

0

F−1

ρ̃ (1− p)G(p)dp− ε0 − E[ρ̃ε̃1]

)

.

The solution (c∗0, G
∗) implicitly depends on λ

Step 2. Determine λ by

c∗0 +

∫ 1−

0
F−1
ρ̃ (1− p)G∗(p)dp = ε0 + E[ρ̃ε̃1]

Step 3. c̃∗1 := G∗(1− Fρ̃(ρ̃))



Mathematical Behavioural Finance

Individual Optimality

Finding Quantile

Obviously c∗0 = (u′0)
−1(λ)



Mathematical Behavioural Finance

Individual Optimality

Finding Quantile

Obviously c∗0 = (u′0)
−1(λ)

So ultimately we need to solve

Max
G∈G

U(G;λ) :=

∫

1

0

u1(G(p))dw̄(p)−
λ

β

∫

1

0

F−1

ρ̃ (1− p)G(p)dp

=

∫ 1

0

[

u1(G(p))w′(1− p)−
λ

β
F−1

ρ̃ (1− p)G(p)

]

dp

(3)
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Individual Optimality

Finding Quantile

Obviously c∗0 = (u′0)
−1(λ)

So ultimately we need to solve

Max
G∈G

U(G;λ) :=

∫

1

0

u1(G(p))dw̄(p)−
λ

β

∫

1

0

F−1

ρ̃ (1− p)G(p)dp

=

∫ 1

0

[

u1(G(p))w′(1− p)−
λ

β
F−1

ρ̃ (1− p)G(p)

]

dp

(3)

We have solved this problem ... provided that

M(z) = w′(1−z)

F−1

ρ̃ (1−z)
satisfies some monotone condition!

Difficulty: Such a condition (or literally any condition) is not
permitted in our equilibrium problem!
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Individual Optimality

Calculus of Variation

Set

G0 = {G : [0, 1) → [0,∞] |G ∈ G and G(p) > 0 for all p ∈ (0, 1)}

Calculus of variation shows that solving (3) is equivalent to
finding G ∈ G0 satisfying



















∫ 1

q

u′1(G(p))dw̄(p)−
λ

β

∫ 1

q

F−1
ρ̃ (1− p)dp ≤ 0 ∀q ∈ [0, 1),

∫ 1

0

(
∫ 1−

q

u′1(G(p))dw̄(p)−
λ

β

∫ 1

q

F−1
ρ̃ (1− p)dp

)

dG(q) = 0

(4)
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Individual Optimality

Equivalent Condition

Previous condition is equivalent to






























K(q) ≥
λ

β
N(q) for all q ∈ (0, 1),

K is affine on

{

q ∈ (0, 1) : K(q) >
λ

β
N(q)

}

,

K(0) =
λ

β
N(0), K(1−) = N(1−)

(5)

where


















K(q) = −

∫ 1

q

u′1(G(w̄−1(p)))dp

N(q) = −

∫ 1

q

F−1
ρ̃ (1− w̄−1(p))dw̄−1(p)

(6)

for all q ∈ [0, 1)
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Individual Optimality

Concave Envelope

K = λ
β
N̂ where N̂ is concave envelope of N

Recall K(q) = −
∫ 1
q
u′1(G(w̄−1(p)))dp

We have u′1(G
∗(1− w−1(1− q))) = K ′(q) = λ

β
N̂ ′(q) where

N̂ ′ is right derivative of N̂

G∗(q) = (u′1)
−1

(

λ
β
N̂ ′(1− w(1− q))

)

c̃∗1 = G∗(1− Fρ̃(ρ̃)) = (u′1)
−1

(

λ
β
N̂ ′

(

1− w(Fρ̃(ρ̃))
))



Mathematical Behavioural Finance

Individual Optimality

Complete/Explicit Solution to Individual Consumption

Theorem

(Xia and Zhou 2012) Assume that ρ̃ > 0 a.s., atomless, with
E[ρ̃] < +∞. Then the optimal consumption plan is given by











c∗0 = (u′0)
−1(λ)

c̃∗1 = (u′1)
−1

(

λ

β
N̂ ′

(

1− w(Fρ̃(ρ̃))
)

)

,

where λ is determined by

(u′0)
−1(λ) + E

[

ρ̃(u′1)
−1

(

λ

β
N̂ ′

(

1− w(Fρ̃(ρ̃))
)

)]

= ε0 + E[ρ̃ε̃].
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N(q) = −
∫ 1
q

F−1

ρ̃
(w−1(1−p))

w′(w−1(1−p))
dp
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ρ̃
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dp

N being concave iff
F−1
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w′(p) being non-decreasing, or

M(z) = w′(1−z)

F−1

ρ̃
(1−z)

being non-decreasing!
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Individual Optimality

Concavity of N

N(q) = −
∫ 1
q

F−1

ρ̃
(w−1(1−p))

w′(w−1(1−p))
dp

N being concave iff
F−1

ρ̃
(p)

w′(p) being non-decreasing, or

M(z) = w′(1−z)

F−1

ρ̃
(1−z)

being non-decreasing!

When N is concave:

c̃∗1 = (u′1)
−1

(

λ

β

ρ̃

w′(Fρ̃(ρ̃))

)

It recovers one of the results in Part 2!
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Return to Economy E : Aggregate Consumption

Assumption. Agents have homogeneous probability
weighting function w

Optimal consumption plan of agent i is

c∗0i = (u′0i)
−1(λ∗

i ), c̃
∗
1i = (u′1i)

−1

(

λ∗
i

βi
N̂ ′

(

1− w(Fρ̃(ρ̃))
)

)

,

where λ∗
i satisfies

(u′
0i)

−1(λ∗
i ) + E

[

ρ̃(u′
1i)

−1

(

λ∗
i

βi

N̂ ′
(

1− w(Fρ̃(ρ̃))
)

)]

= e0i + E[ρ̃ẽ1i]
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Return to Economy E : Aggregate Consumption

Assumption. Agents have homogeneous probability
weighting function w

Optimal consumption plan of agent i is

c∗0i = (u′0i)
−1(λ∗

i ), c̃
∗
1i = (u′1i)

−1

(

λ∗
i

βi
N̂ ′

(

1− w(Fρ̃(ρ̃))
)

)

,

where λ∗
i satisfies

(u′
0i)

−1(λ∗
i ) + E

[

ρ̃(u′
1i)

−1

(

λ∗
i

βi

N̂ ′
(

1− w(Fρ̃(ρ̃))
)

)]

= e0i + E[ρ̃ẽ1i]

Aggregate consumption is

c∗0 =

I
∑

i=1

(u′0i)
−1(λ∗

i ), c̃
∗
1 =

I
∑

i=1

(u′1i)
−1

(

λ∗
i

βi
N̂ ′

(

1− w(Fρ̃(ρ̃))
)

)
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A Representative Agent

For λ1 > 0, . . . , λI > 0, set λ = (λ1, . . . , λI) and

h0λ(y) :=

I
∑

i=1

(u′
0i)

−1 (λiy) , h1λ(y) :=

I
∑

i=1

(u′
1i)

−1

(

λiy

βi

)

Define utλ(x) =
∫ x

0
h−1

tλ (z)dz, t = 0, 1

Then

c∗
0
= (u′

0λ∗)−1(1), c̃∗
1
= (u′

1λ∗)−1

(

N̂ ′
(

1− w(Fρ̃(ρ̃))
))

Consider an RDUT agent, indexed by λ∗, whose preference is

Vλ∗(c0, c̃1) := u0λ∗(c0) +

∫

u1λ∗(c̃1)d(w ◦ P) (7)

and whose endowment is the aggregate endowment (e0, ẽ1)

This representative agent’s optimal consumption plan is the
aggregate consumption plan
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Representative RDUT Agent

What’s Next – Idea

Work with the representative agent

Derive explicit expression of pricing kernel assuming
equilibrium exists

Turn an RDUT economy into an EUT one by a measure
change

Use existing results for EUT economy
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Section 4

Asset Pricing
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Asset Pricing

Explicit Expression of Pricing Kernel

Theorem

(Xia and Zhou 2012) If there exists an equilibrium of economy E

where the pricing kernel ρ̃ is atomless and λ∗ is the corresponding
Lagrange vector, then

ρ̃ = w′(1− Fẽ1(ẽ1))
u′1λ∗(ẽ1)

u′0λ∗(e0)
a.s.. (8)

Idea of proof. Market clearing –

ẽ1 = c̃∗1 = (u′1λ∗)−1
(

N̂ ′
(

1− w(Fρ̃(ρ̃))
))

– manipulate quantiles
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Asset Pricing

Interpretations

ρ̃ = w′(1− Fẽ1(ẽ1))
u′

1λ∗
(ẽ1)

u′

0λ∗
(e0)
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Asset Pricing

Interpretations

ρ̃ = w′(1− Fẽ1(ẽ1))
u′

1λ∗
(ẽ1)

u′

0λ∗
(e0)

Pricing kernel is a weighted marginal rate of substitution
between initial and end-of-period consumption

The weight is w′(1− Fẽ1(ẽ1))

An inverse-S shaped weighting w leads to a premium when
evaluating assets in both very high and very low future
consumption states
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Asset Pricing

Implied Utility Function

Define uw by

u′w(x) = w′(1− Fẽ1(x))u
′
1λ∗(x)

Pricing formula rewritten

ρ̃ =
u′w(ẽ1)

u′0λ∗(e0)

A fictitious EUT economy (under P without weighting),
where uw is outcome utility function of a “weighted”
representative agent

uw: implied utility function
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Asset Pricing

Implied Relative Risk Aversion

Implied relative index of risk aversion

Rw(x) := −
xu′′w(x)

u′w(x)
= −

xu′′1λ∗(x)

u′1λ∗(x)
+

xw′′(1− Fẽ1(x))

w′(1− Fẽ1(x))
fẽ1(x)

(9)

It represents overall degree of risk-aversion (or risk-loving) of
RDUT agent, combining outcome utility and probability
weighting



Mathematical Behavioural Finance

Asset Pricing

Existence of Equilibria

Theorem

(Xia and Zhou 2012) If Ψλ(p) ≡ w′(p)u′1λ
(

F−1
ẽ1

(1− p)
)

is
strictly increasing for any λ, and











E[w′(1− Fẽ1(ẽ1))u1i(ẽ1)] < ∞

E

[

w′(1− Fẽ1(ẽ1))u
′
1i

(

ẽ1

I

)]

< ∞

for all i = 1, . . . , I, then there exists an Arrow-Debreu equilibrium
of economy E where the pricing kernel is atomless. If in addition

−
cu′′1i(c)

u′1i(c)
≤ 1 for all i = 1, . . . , I and c > 0,

then the equilibrium is unique.
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Monotonicity of Ψλ

It is defined through model primitives:
Ψλ(p) = w′(p)u′1λ

(

F−1
ẽ1

(1− p)
)

Monotonicity of Ψλ for any λ requires a concave implied
utility function for any initial distribution of the wealth.

Automatically satisfied when w is convex

Possibly satisfied when w is concave or inverse-S shaped
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Asset Pricing

Monotonicity of Ψλ: An Example

Example. Take w(p) = p1−α where α ∈ (0, 1), u1λ(c) =
c1−β

1−β

where β ∈ (0, 1), and ẽ1 follows the Parato distribution

Fẽ1(x) =

{

1−
(

xm

x

)γ
x ≥ xm

0 x < xm.

In this case

Ψλ(p) = w′(p)u′1λ
(

F−1
ẽ1

(1− p)
)

= (1− α)x−β
m p

β
γ
−α

.

This is a strictly increasing function if and only if α < β
γ
.
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Consumption-Based CAPM

r̃: rate of return of a security, and r̄ = E[r̃]

rf : risk free rate

g̃ := ẽ1
e0

− 1: growth rate of aggregate endowment (assumed
to be small)

A rank-dependent consumption-based CAPM (CCAPM):

r̄ − rf ≈

[

α+
w′′(1− Fẽ1(e0))

w′(1− Fẽ1(e0))
fẽ1(e0)e0

]

Cov(g̃, r̃)

where α := −
e0u

′′

1λ∗
(e0)

u′

1λ∗
(e0)

and fẽ1 is density function of ẽ1

Classical EUT based CCAPM: r̄ − rf ≈ αCov(g̃, r̃)
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CCAPM and Interest Rate

Prices and Expected Consumption Growth

Again r̄ − rf ≈
[

α+
w′′(1−Fẽ1

(e0))

w′(1−Fẽ1
(e0))

fẽ1(e0)e0

]

Cov(g̃, r̃)

Recall 1− Fẽ1(e0) = P (ẽ1 > e0)

The subjective expectation (or belief) on general consumption
growth should be priced in for individual assets
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Consumption-Based Real Interest

A rank-dependent consumption-based real interest rate
formula:

1 + rf ≈
1

βw′(1− Fẽ1(e0))

[

1 + αḡ +
w′′(1 − Fẽ1(e0))

w′(1− Fẽ1(e0))
fẽ1(e0)e0ḡ
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Consumption-Based Real Interest

A rank-dependent consumption-based real interest rate
formula:

1 + rf ≈
1

βw′(1− Fẽ1(e0))

[

1 + αḡ +
w′′(1 − Fẽ1(e0))

w′(1− Fẽ1(e0))
fẽ1(e0)e0ḡ

]

Classical EUT based real interest rate theory: 1 + rf ≈ 1+αḡ
β
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Equity Premium and Risk-Free Rate Puzzles

Equity premium puzzle (Mehra and Prescott 1985): observed
equity premium is too high to be explainable by classical
CCAPM

Risk-free rate puzzle (Weil 1989): observed risk-free rate is
too low to be explainable by classical CCAPM
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Equity Premium and Risk-Free Rate Puzzles

Economic Data 1889–1978 (Mehra and Prescott 1985)

Consumption growth riskless return equity premium S&P 500 return

Periods Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1889–1978 1.83 3.57 0.80 5.67 6.18 16.67 6.98 16.54
1889–1898 2.30 4.90 5.80 3.23 1.78 11.57 7.58 10.02

1899–1908 2.55 5.31 2.62 2.59 5.08 16.86 7.71 17.21

1909–1918 0.44 3.07 -1.63 9.02 1.49 9.18 -0.14 12.81

1919–1928 3.00 3.97 4.30 6.61 14.64 15.94 18.94 16.18

1929–1938 -0.25 5.28 2.39 6.50 0.18 31.63 2.56 27.90

1939–1948 2.19 2.52 -5.82 4.05 8.89 14.23 3.07 14.67

1949–1958 1.48 1.00 -0.81 1.89 18.30 13.20 17.49 13.08

1959–1968 2.37 1.00 1.07 0.64 4.50 10.17 5.58 10.59

1969–1978 2.41 1.40 -0.72 2.06 0.75 11.64 0.03 13.11
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Equity Premium Puzzle

The observed equity premium of 6.18% corresponds to a
relative index of risk aversion over 30 (Mankiw and Zeldes
1991)

A measure of 30 means indifference between a gamble equally
likely to pay $50,000 or $100,000 and a certain payoff of
$51,209

No human is that risk averse
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Equity Premium and Risk-Free Rate Puzzles

Our Explanation

Probability weighting, in addition to outcome utility, also
contributes to this total measure of 30

Recall r̄ − rf ≈
[

α+
w′′(1−Fẽ1

(e0))

w′(1−Fẽ1
(e0))

fẽ1(e0)e0

]

Cov(g̃, r̃)

w is typically inverse-S shaped

It is plausible to assume P(ẽ1 > e0) is large (close to 1)

Hence 1− Fẽ1(e0) = P(ẽ1 > e0) lies in the convex domain of
w

Expected rate of return provided by our model is larger than
that by EUT
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Our Explanation (Cont’d)

Recall
1 + rf ≈ 1

βw′(1−Fẽ1
(e0))

[

1 + αḡ +
w′′(1−Fẽ1

(e0))

w′(1−Fẽ1
(e0))

fẽ1(e0)e0ḡ
]

We have argued 1− Fẽ1(e0) is normally close to 1

Therefore, for an inverse-S shaped w, w′(1− Fẽ1(e0)) will be
larger than one

Our interest rate model indicates that an appropriate w can
render a lower risk-free rate than EUT model

The presence of a suitable probability weighting function will
simultaneously increase equity premium and decrease risk-free
rate under RDUT, diminishing the gap seen under EUT
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Economic Data 1889–1978 (Mehra and Prescott 1985)

Consumption growth riskless return equity premium S&P 500 return

Periods Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1889–1978 1.83 3.57 0.80 5.67 6.18 16.67 6.98 16.54
1889–1898 2.30 4.90 5.80 3.23 1.78 11.57 7.58 10.02

1899–1908 2.55 5.31 2.62 2.59 5.08 16.86 7.71 17.21

1909–1918 0.44 3.07 -1.63 9.02 1.49 9.18 -0.14 12.81

1919–1928 3.00 3.97 4.30 6.61 14.64 15.94 18.94 16.18

1929–1938 -0.25 5.28 2.39 6.50 0.18 31.63 2.56 27.90

1939–1948 2.19 2.52 -5.82 4.05 8.89 14.23 3.07 14.67

1949–1958 1.48 1.00 -0.81 1.89 18.30 13.20 17.49 13.08

1959–1968 2.37 1.00 1.07 0.64 4.50 10.17 5.58 10.59

1969–1978 2.41 1.40 -0.72 2.06 0.75 11.64 0.03 13.11
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(e0))

[

1 + αḡ +
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Negative Real Interest Rates

Four periods, 1909–1918, 1939–1948, 1949–1958, and
1969–1978, during which ḡ > 0 but rf < 0

Not possible under EUT, since rf ≥ αḡ > 0 if ḡ > 0

It can be accounted for by rank-dependent CCAPM

Recall
1 + rf ≈ 1

βw′(1−Fẽ1
(e0))

[

1 + αḡ +
w′′(1−Fẽ1

(e0))

w′(1−Fẽ1
(e0))

fẽ1(e0)e0ḡ
]

It requires only a sufficiently large value of βw′(1− Fẽ1(e0)) –
explainable by a proper inverse-S shaped w
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(e0))
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In general, at times when most people believe that economy is
in a downturn, expected rate of return provided by RDUT is
smaller than that provided by EUT model
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Great Depression

Great Depression (1929–1938) is the only 10-year period
during which ḡ < 0
1− Fẽ1(e0) = P(ẽ1 > e0) would have lain in the concave
domain of w due to the overwhelmingly negative outlook of
economy

Recall r̄ − rf ≈
[

α+
w′′(1−Fẽ1

(e0))

w′(1−Fẽ1
(e0))

fẽ1(e0)e0

]

Cov(g̃, r̃)

w′′(1−Fẽ1
(e0))

w′(1−Fẽ1
(e0))

fẽ1(e0)e0 should be negative

Our model would have predicted a lower equity premium

Corresponding premium, 0.18%, is lowest in Table 1

In general, at times when most people believe that economy is
in a downturn, expected rate of return provided by RDUT is
smaller than that provided by EUT model
Hence we should investigate asset pricing by differentiating
periods of economic growth from those of economic depression
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Motivated to re-study RDUT portfolio choice problem
without any monotonicity condition

At equilibrium one cannot distinguish between RDUT and
EUT economies; however, representative risk aversion level is
(possibly substantially) altered

Asset prices not only depend upon level of risk aversion and
beta, but also upon agents’ belief on economic growth

Probability weighting may offer a new way of thinking in
explaining many economic phenomena
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History of financial theory over the last 50 years characterised
by two revolutions

Neoclassical (maximising) finance starting 1960s: Expected
utility maximisation, CAPM, efficient market theory, option
pricing
Behavioural finance starting 1980s: Cumulative prospect
theory, SP/A theory, regret and self-control, heuristics and
biases
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Neoclassical: the world and its participants are rational
“wealth maximisers”

Behavioural: emotion and psychology influence our decisions
when faced with uncertainties, causing us to behave in
unpredictable, inconsistent, incompetent, and most of all,
irrational ways

A relatively new field that attempts to explain how and why
emotions and cognitive errors influence investors and create
stock market anomalies such as bubbles and crashes
It seeks to explore the consistency and predictability in human
flaws so that such flaws can be avoided or even exploited for
profit
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Do We Need Both?

Foundations of the two

Neoclassical finance: Rationality (correct beliefs on
information, risk aversion) – A normative theory
Behavioural finance: The lack thereof (experimental evidence,
cognitive psychology) – A descriptive theory

Do we need both? Absolutely yes!

Neoclassical finance tells what people ought to do
Behavioural finance tells what people actually do
Robert Shiller (2006), “the two ... have always been interwind,
and some of the most important applications of their insights
will require the use of both approaches”
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“Mathematical behavioural finance” leads to new problems in
mathematics and finance

But ... is it justified: to rationally and mathematically
account for irrationalities?

Irrational behaviours are by no means random or arbitrary

“misguided behaviors ... are systamtic and predictable –
making us predictably irrational” (Dan Ariely, Predictably
Irrational, Ariely 2008)

We use CPT/RDUT/SPA and specific value functions as the
carrier for exploring the “predictable irrationalities”

Mathematical behavioural finance: research is in its infancy,
yet potential is unlimited – or so we believe
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