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Overview: The Standard Model
e Underlying driver:
B.M. z; ~ N(0,t)
e Asset price process:

dSt

— = (T‘t — dt)dt + ordzt
St

with 7, d, o functions of ¢ only

e “Black-Scholes+” framework



1. Standard Path-Dependent Options

e Vanilla Option Payoff (not path dependent): Cp(S, K) = (Sp — K)*

e Path-Dependent Options: payoff depends on some function of the path taken
by the asset from onset to expiry.

e Extremum-Dependent Options: payoff depends on maximum or minimum
price achieved on the path.

o Mo =max(S(t),0<t<T)
o M_o =min(S5(t),0<t<T)

e Barrier Options: vanilla option knocks in/out if barrier level is crossed
during the option’s life. (Merton, 1973; Rubinstein & Reiner, 1991)

e Down-and-out call: DOC(S, K; M_o, B) = (Sp — K)* Inf B
e Up-and-out put: UOPp(S, K; Myoo, B) = (K — Sp) ™" Ip_n, .,

e Down-and-in call: DICp(S, K; M—_oo, B) = (S — K)" Ip_p1

e Down-and-out binary: DOBp(S; Moo, B) =1y __p



1. Standard Path-Dependent Options (continued)

e Double Barrier Options: knock in/out depends on both up and down
barrier levels (and possibly order in which they’re crossed). (Beaglehole,
1992; Kunitomo & Tkeda, 1992; Jamshidian, 1997)

e Double barrier binary:

DBBy(S; M—oo, B-; Moo, B+) = (Ing o~ ) (I, -1,

e Lookback Options: payoftf involves extremum in place of strike or fi-

nal spot. (Goldman, Sosin, & Gatto, 1979; Garman, 1989; Conze &
Viswanathan, 1991)

e Lookback call: LCT(S; M_x) = ST — M_
e Lookback put: LPp(S; Myso) = Mioo — ST
e Call on maximum: C47(S, K; Myiso) = (Myoo — K)7T



1. Standard Path-Dependent Options (continued)

e Averaging or Asian Options: payoff involves average in place of strike or final
spot. (Boyle & Emanuel, 1985; Ingersoll, 1987; Ritchken, Sankarasubrama-
niam, & Vijh, 1989; Levy, 1990; Reiner, 1990; Geman & Yor, 1992)

e A= M = % OTdtS(t)
o G = My=exp (% fOT dtlnS(t)>
e Arithmetic average price call: APCp(S,K;A) = (A— K)*

e Arithmetic average strike call: ASCp(S;A) = (S —A)T
e Geometric average price call: GPCp(S, K;G) = (G — K)™

e Quasi-Path-Dependent Options: path dependence is endogenous to value (Amer-
ican Options).



2. Effects of Discrete Sampling

e Assumptions of continuous-sampling solutions are often unrealistic and/or im-
practical
e Markets aren’t always open
e Intra-day prices may not be reliable or verifiable
e Continuous monitoring and hedging are infeasible
e Parameters may not be constant

e Most path-dependent option contracts are specified in terms of discrete, periodic
samples

e The market has long recognized that discreteness has significant effects on value,
particularly for extremum-dependent options

e There is a need to construct valuation tools that address this problem



2. Effects of Discrete Sampling (continued)

e Barrier Options

e Monte Carlo and Lattice Calculations

e Discrete sampling substantially affects values and deltas (Flesaker, 1992;
Anderson & Brotherton-Ratcliffe, 1996; Cheuk & Vorst, 1996)

e Convergence is slow and much tweaking needs to be done to get decent
numbers in reasonable time (Broadie, Glasserman, & Kou, 1996)

e Adjustment Techniques

e Traders have long recognized that moving the barrier out by a factor
exp(Bov/dt) with 8 ~ O(1) gives good agreement with simulation results

e Broadie, Glasserman, & Kou (1996, 1997) show that = —((1/2)/v27 ~

0.5826. This is qu1te accurate for frequent samples and barriers some
distance from spot.

e Term structures and fewer sample dates remain a problem.



2. Effects of Discrete Sampling (continued)

e Exact Solutions

1. DOB Rebate at Maturity given sampling points t1, ...,

tn

o0 o
DOBy(Sp) = e "nin / dsy - - - / dSn P(S1, ..., Sn)
B

B
In(S;/So) — [t
oivti

S e . 2
3 ,uz—rz_dz_gz' 3

Let x; =

then P(z) = P(x1,..., ) = exp(—aZ -p 1 -7

. : -t
with p; j = min (OZ\/t_’ 0‘7\/_‘7>

oA/t oivti
oo
DOBjy = e_T”t”/ dxq - / dxy, P(T)
b1

:e_r”t/ / dxy P(Z)
[©.@)

—TntnN( bl, _bn,

o



2. Effects of Discrete Sampling (continued)

2. DIB Rebate at Maturity
DIBy = e " [1 — Np(=bi, ..., —bn; b))

2'. DIB Rebate at Maturity: alternative approach:

b1 &) bo
DIBy = e~ "nin [ / dx1 P(x1) + / dzq / dza P(x1,%2) +
—00 bl — 00

o0 0.9 bn
. +/ drq - - / dxn_1/ dxyn P(x1,...,Tn)
by bn—1 —00

_ ¢~ altn [Nl(bl) + No(—by, by; ) +
—|— Nn<_b1, ceey _bn—17 b?’L) ﬁ<n*))}

n
- e_rnt” Z Nm(_b17 e _bm—17 bm? ﬁ(m*))
m=1

(mx)
1,]

with p; i = (= 1)s(5.m) (= Ds(jm) Pi.j
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2. Effects of Discrete Sampling (continued)

3. DIB Rebate at Hit

n
DIBy =3 e ™" Nuy(=b1, oo, =byn1, b3 5™)
m=1
4. UOB Rebate at Maturity
UOBy = e_r”t”Nn(bl, )

5. UIB Rebate at Maturity
UIBy=e " [1 — Np[by, ..., bu; )]

n
— e_rntn Z Nm(b17 ) bm—17 _bm’ ﬁ(m*))
m=1

6. UIB Rebate at Hit

n
UIBy =Y e "mm Nyy(by, ..., b1, —bm; ™))

m=1
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2. Effects of Discrete Sampling (continued)

7. Down-and-Out Call (assume K > B)

00 00 00
DOCy = G_T”t”/ dSy - - - / dSn_1/ dSn, P(S) (Sn — K)
B B K

o o o
= e_rnt”/ dry - - - / d:cn_lf dxn, P(T) X
bl bn—l kn

(Soeﬁntn+0n\/a$n _ K> with k@ — ZCZ’S@:K

e Second term evaluates immediately to:

—KG_TntnNn(_bly ceey _bn—L _kTU ﬁ)

e After completing the square, first term becomes:

Soe” M Ny (01v/E = bl oovs Op— 1/ In—1 — bp—1, on/tn — kn; D)
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2. Effects of Discrete Sampling (continued)

e Comparison of down-and-out values (Sy = 100, K = 100, o = 0.30,
r =0.10, d = 0.0, t, = 0.2):

Barrier

n=1

n==2

n=3

n=4

n=2>5

= 00

85

6.344113

6.340525

6.339121

6.338034

6.336949

6.307575

36

6.344113

6.337903

6.335075

6.333001

6.331169

6.282648

87

6.344113

6.333696

6.328333

6.324650

6.321448

6.243846

38

6.344113

6.327154

6.317508

6.310990

6.305634

6.185283

39

6.344113

6.317284

6.300736

6.289562

6.280755

6.099473

90

6.344113

6.302820

6.275634

6.257115

6.242916

5.977242

91

6.344113

6.282212

6.239300

6.209664

6.187290

5.807772

92

6.344113

6.253629

6.188379

6.142611

6.108260

5.578772

93

6.344113

6.215000

6.119205

6.050986

5.999755

5.276814

94

6.344113

6.164077

6.028022

5.929839

5.855778

4.887793

95

6.344113

6.098541

5.911267

H. 774722

5.671105

4.397503

96

6.344113

6.016117

5.765902

5.982235

5.442059

3.792265

97

6.344113

5.914725

5.689737

5.300551

5.167245

3.059563

98

6.344113

5.792627

5.381732

5.079834

4.848107

2.188607

99

6.344113

5.648567

5.142211

4.772477

4.489172

1.170793

100

6.344113

5.481901

4.872973

4.433121

4.097933

0.000000
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2. Effects of Discrete Sampling (continued)

e Comparison of down-and-out values (Sy = 100, K = 100, o = 0.30,
r =0.10, d = 0.0, t, = 0.2):

n=1
6-
(D) =
o . n=2
c_U .
>
c
o n=3
= s
n=4
4.5 | =5
n=oo
—  87.5 90 925 95 \ 9.5 100
I Barrier Level
3.5 |
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2. Effects of Discrete Sampling (continued)

e Lookback Options

e Monte Carlo and Lattice Calculations

e Discrete sampling substantially affects values and deltas (Reiner, 1991;
Anderson & Brotherton-Ratcliffe, 1996; Levy & Mantion, 1997)

e Convergence is slow; substantial tweaking and extrapolation techniques
are necessary (Babbs, 1992; Broadie, Glasserman, & Kou, 1996)
e Adjustment Techniques

e Since lookbacks can be expressed as integrals of binary barrier options,
Broadie, Glasserman, & Kou (1996) show that the barrier adjustment
method may be applied. Again, this is quite accurate for frequent sam-
ples and strikes some distance from spot.

e Term structures and fewer sample dates remain a problem.
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2. Effects of Discrete Sampling (continued)

e Fixact Solutions

8. Call on Maximum as a special case of the “Best of N Call”

00 S1 S
Cto(Sp) = e Tntn / 45, S, / Sy - - - / dSy P(Sy, ... Sn) +

K —00 —00

...K(l/[;dSl---/[;dSn P(Sl,...,Sn)>]

(ri — di)t; — (rj — dj)i;

I _ 2 2
Let ki’j = ) , 245 = \/‘O-i t; — ajtj‘
n
C4o = Spe"tn Z eTm—dm)tm o
m=1
> by _
Nn(—’m_kll,ma cooy OmNVtm—Kms - n,m_k;%m; p(mT)>

2
_Ke_rntn[l — Nn(kl, ooy kn—l; kn7 ﬁ)]
(mf)
3J

2

with p given by processes relative to m

1
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2. Effects of Discrete Sampling (continued)

9. Lookback Put in terms of Call on Maximum

Given an existing maximum M o
maX(Sla ) STL? M+OO,O) o STL — [max(g) o M—FOO,O} " + M—I—OO,O o S?’L
LPy(Sp, Myoo,0) = CH+0(S0, Mo0) + Moo g™ — Spe™ntn

10. Put on Minimum by symmetry
C—() = Ke_mtn[l - Nn(_kla ey _kn—la _kn; ﬁ)] o

n
Soe_rntn Z €<7"m_dm)tm><
m=1
o S
Nn(kll,m_T’ma ey km—om Vim, - k7/1,m_ 7;7m7 p(mT)>

11. Lookback Call in terms of Put on Minimum
By symmetry
LCy(S0, M_0.0) = C—0(S0, M_o00) — M_sg ge” " 4 Spedntn

17



2. Effects of Discrete Sampling (continued)

e Asian Options

e Discrete sampling effects recognized from early studies (Ritchken, Sankara-
subramaniam, & Vijh, 1989; Turnbull & Wakeman, 1990; Rubinstein, 1991;

Curran, 1992) and are readily incorporated into simulations and approxima-
tion methods.

e While substantial, effects of discreteness are not so pronounced as for extre-
mum-dependent options.

e For geometric averages, all results are closed-form univariate normals. For
arithmetic averages, “exact” solutions are generally not possible, though see
next point.

e Term structures and fewer sample dates are naturally treated in all available
approaches, but with one exception (Carverhill & Clewlow, 1990) a clean,
robust, convergent (exact?) numerical method remains elusive.

e American (Bermuda) Options

e Discrete sampling effects also long-known (Geske, 1979). “Exact” solutions
available, but require self-consistent solution of stopping boundary (Sheikh,
1992) as for compound options.

e Adjustment techniques (Ait-Sahlia, 1995) inspired recent barrier analysis.

18



2. Effects of Discrete Sampling (continued)

e Options with Intrinsically Discrete Path Dependence

e Compound and Chooser Options
e Call on Call: COC(S;) = (C(St, K7) — K3) ™
e Call on Put: COP(S;) = (Py(Sy, K7) — Kp)*
e Put on Call: POCy(S;) = (K — Cy(St, K7))™*
e Put on Put: POP;(S) = (K¢ — Pi(St, K7)) ™
e Chooser: CORP;(St) = max(Cy(Sy, KCp) — KCy, Pi(St, KPr) — KFP,,0)
e All can be valued exactly using No(e,e:e) and self-consistent solution for
exercise points.
e Installment Options
e Installment Call: INC;(St;t;) = (INCiy1(St;t;) — Ki) T
e Installment Put: INP;(Sy;t;) = (INP11(St;t) — K;)T
e Natural extensions of compound calls to n mandatory call dates.

e All can be valued exactly using Ny (e;e) and self-consistent solution for
exercise points.

19



2. Effects of Discrete Sampling (continued)

e Puttable Cliquets

e Consider the payoff of a series of forward starting options:

n
CLCFUp =Y (Sm — kSm-1)*

m=1

n
CLCFNp = (Sn/Sm-1—k)*

m=1

e Final puttability:
PCLCFUr = (CLCFUp — K)™T

PCLCFNp = (CLCFNy — K)*

e Although optionlet returns are independent in Black-Scholes framework,
valuation is analogous to arithmetic average option problem.

e Puttability can be made “Bermudian,” i.e., K,, can be introduced for
each reset date.

20



3. Discrete-Time Propagators and Factorization

e All of these valuation problems share a couple of interesting properties.
e Sampling, reset, or exercise are limited to a discrete set of dates

e Between these dates, return densities (and valuation densities) are indepen-

dent of absolute levels and /or paths, but depend only on incremental returns
themselves

e Whether we choose to work forward in time, propagating probability or backward
in time, propagating values, these facts have significant implications.

e Barrier Option

e Begin at t; with P(S;;t;) (this has already been truncated if barrier
crossed at t;)

e Convolve P(S;;t;) with I1(S;11,S;;t;,tiv1)
+00
P(Sit1;tiv1) :/0 dS; P(Si;t;) T(Siy1, S5 i, tiv1)

e Now, set to zero any probability outside of the barrier

21



3. Discrete-Time Propagators and Factorization (continued)

e Bermuda Option

e Begin at ¢; with V(S;41;t;11) (early exercise opportunities have already
been evaluated)

e Convolve V (S;11;t;11) with eriti_ri"'lti“'lH(SZ‘_H, Sistitiv)
+00
V(Sisti) = 6%_”““*1/0 dSit1 V(Sit1;tiv1) I(Siv1, Sis b tiga)

e Now, apply early exercise condition

e In both cases, it is more convenient to work with log coordinates:
Let y; = In(S;/Sp)

+00
P(yitr1;tizy) = / dy; P(yi;ti) (Y1 — vis tis tis1)

—00

400
V(yist;) = eliti™ r”lt’“/ dyit1 V (Yit1;ti+1) Wwiv1 — vis i, tiv1)

—00

22



3. Discrete-Time Propagators and Factorization (continued)

e Lookback Options

e As is, neither approach appears applicable since P(M,;11) depends
on both M ; and §;

e However, consider factorization:

max(Yp—1,Yn) = Yn—1 + max(0,yn — yn—1)

max(yn—Qa Yn—1, yn) — max(yn—Za max(yn—la yn))
= max(Yn—2, Yn—1 + Mmax(0, yn — Yn—1))
= Yp—2+ max((), Yn—1—Yn—2+ max((), Yn — yn—l))

max(y1, .-, Yn—1, Yn) = y1 + max(0,y2 — y1 + max(0,y3 — y2 + ...
+max(0, yp—1—Yn—2+max(0, yn—yn—1))...))

e We can apply a sort of “backward” algorithm here, successively truncating
the distribution at zero, then convolving with the distribution for the
previous timestep.

+00
P(mioci — yi) ~ / d(Yi+1 = ¥i) P(Micoi+1 — Yir1) MWit1 — vi)

—00

23



3. Discrete-Time Propagators and Factorization (continued)

e Implementation Issues

e Consider n timesteps and a discrete approximation to P and II on a grid of
M points

e Generally, the integration of P and II is an O(M?) process (analogous to
matrix - vector)

e The total operation count appears to be O(nM?). What accuracy can we
get with some reasonable integration rule (trapezoidal? higher order?)?

e Why are we doing nothing to take into account the independent convolution
property of our integrands?

24



4. Fast Fourier Transform Algorithm

e Convolution integrals have one particularly useful property:

e Define the characteristic function or Fourier transform:

Py =B = [ ay et pry
+00
e Then if P(y) = /_ dz P'(y — 2) II(2)

P(k) = P (k)II(k)

e This is just the product rule for the characteristic function of the sum of two
independent random variables.

e Although this tells us that Fourier space is a very convenient place to evaluate
convolution integrals, it doesn’t tell us anything about how to get there.

e Once we've discretized, it appears that we’ve just replaced one quadratic-time
algorithm by another and added complex arithmetic to the soup.

e Let’s pursue this anyway...

25



4. Fast Fourier Transform Algorithm (continued)

e Approximate distribution by a set of M equally spaced points separated by Ay.

e Choose Ay large enough that truncation of tails is arbitrarily small (M/2Ay
= 8 s.d. or so). We will want to do this so that our points are indexed
—M/2, —(M/2 —1),...,—1,0,1,..., M/2 — 1, but for calculational reasons it’s
better to pretend that the negative indices —2 into M — ¢ so that our actual
indices are 0,1,..., M/2 — 1, M/2,...M. As we’ll see later, that’s ok.

e Now consider the characteristic function of a discrete distribution (and how it
approximates that of a continuous distribution):

N +00 M ' M |
P(k) = / dy oty P(y) ~ Z [P(iAy)Ay] AN Ayz P] oRiAY
- =0 i=0

e The inversion relationship to recover P(y) is:

P(y) ! /+OO dk e="*Y P(k)

e How should we choose (discretely) to represent the characteristic function?
What’s our best approximation?

26



4. Fast Fourier Transform Algorithm (continued)

e Key observation is that:

M M
A 27 27 .
P k+—>: P; exp [L(k—l——)iA]: B exp [tkiAy| = P (k

e So, we can restrict our representation to the region k € [0, 27 /Ay).

e We know that in some sense there are only M pieces of information, so this
suggests we choose a discrete representation:

21
k; = :7=0,....M —1
] MAya] ) )

e Then we app;roximate P; = AyP(y;) by the trapezoidal rule:
P = % /O B Qe e=RIAY (1)
~ o (775 ) |3 P0) + exo (354 P55 ) -
_|_exp<—2(M]\21)7m‘) . (z(ﬂjﬁyw) 1p (2_7; }
= @[HO) + ..+ exp(_Q(M]\/_ll)Mi)P

27




4. Fast Fourier Transform Algorithm (continued)

e Hence:

M—-1 .. . —1
1 —2mL)1 1 ~ /2wy 1 2L\ [ =
P oo ) [ (57 = 2 = (55 [P

J=0 ]

e But this is an exact inversion relationship!

e All this corresponds to is a mapping from y; to k; with basis:

2wy .
k; = exp (MAy) 7 =0,... M —1

e Orthogonal elements

e Natural embedding on a circle

1 —2mej
e Invertible transformation with y; = 2 &P ( szy>
Yy

e Consistent with trapezoidal rule, or for smooth integrands higher order in-
tegration rules

e Construction of discrete approximation to characteristic function still appears
to be a matrix multiplication problem ... except if we choose M carefully!

28



4. Fast Fourier Transform Algorithm (continued)

e If M has a factor of 2, then we can write (Numerical Recipes):

ok (24 N omik(27 + 1
= exp (#) Py + Z exp < (]\j >> Pojy1

e Evidently, we can replace a transform of O(M) by two transforms of O(M/2)

o If M is a power of 2, we can do this logy(M) times, leaving a single complex
multiplication

e Total operation count for the transform is O(M logy(M)), not O(M?)!!

29



4. Fast Fourier Transform Algorithm (continued)

e Resulting pricing algorithm is O(n M logy(M)))

e Asymptotically for large M, accuracy is limited only by truncation steps and
evaluation of non-smooth payoffs. With some attention to integration rules at
discontinuities, convergence can be accelerated.

e These algorithms are natural candidates for Richardson extrapolation.

e In addition to option values, we have access to probability densities for discrete
knockout, extremum, etc. processes!

30



5. Examples

e Knock-out (Barrier) Options
e Lookbacks

e Puttable Cliquets

31



e Convergence studies

5.1. Knock-out Options

e Choose parameters from Broadie, Glasserman, and Kou (1996)
DOC(S =100, K =100, H =95,t, =0.2,0 =0.6,7 =0.1,d = 0.0,n = 4)
Exact Value: 9.49053470836

1

ET

Extrap

M

Trap Rule

2-pt Extrap

Cubic Fit

2-pt Extrap

64

9.361364785

9.480920962

128

9.456771994

9.488574397

9.489909126

9.490508337

256

9.49690

256

9.481978524

9.490380701

9.490506658

9.490546494

504

9.49349

9.4899

512

9.488396701

9.490536093

9.490532960

9.490534713

1240

9.49189

9.4907

1024

9.490000875

9.490535599

9.490534600

9.490534709

2308

9.49124

9.4905

2048

9.490401492

9.490535031

9.490534702

9.490534708

4524

9.49090

9.4905

4096

9.490501418

9.490534727

9.490534708

9.490534708

8632

9.49072

9.4905

8192

9.490526385

9.490534708

9.490534708

9.490534708

16384

9.490532627

9.490534708

9.490534708

9.490534708
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5.1. Knock-out Options (continued)

e Effects of Number of Sampling Points

e Choose parameters from Broadie, Glasserman, and Kou (1997)

DOC(S =100, K = 100,t, = 0.2,0 = 0.3,7 = 0.1,d = 0.0)

Barrier

n=1

n==2

n=3

n=4

n=2>5

n =10

n =25

n = 50

1 = OO

90

6.3441

6.3028

6.2756

6.2571

6.2429

6.1971

6.1368

6.0982

5.9772

91

6.3441

6.2822

6.2393

6.2097

6.1873

6.1188

6.0320

5.9771

5.8078

92

6.3441

6.2536

6.1884

6.1426

6.1083

6.0076

5.8860

5.8097

5.5788

93

6.3441

6.2150

6.1192

6.0510

5.9998

5.8538

5.6875

5.5843

5.2768

94

6.3441

6.1641

6.0280

5.9298

5.8508

5.6477

5.4239

5.2879

4.8878

95

6.3441

6.0985

5.9113

5.7747

5.6711

5.3804

5.0814

4.9068

4.3975

96

6.3441

6.0161

5.7659

5.5822

5.4421

5.0463

4.6475

4.4266

3.7923

97

6.3441

5.9147

5.5897

5.3506

5.1672

4.6447

4.1158

3.8340

3.0596

98

6.3441

5.7926

5.3817

5.0798

4.8481

4.1822

3.4941

3.1263

2.1886

99

6.3441

5.6486

5.1422

4.7725

4.4892

3.6728

2.8124

2.3364

1.1708

100

6.3441

5.4819

4.8730

4.4331

4.0979

3.1371

2.1227

1.9513

0.0000
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5.1. Knock-out Options (continued)

e Effects of Number of Sampling Points

Opti on Val ue

92 94 96 98 100

Barrier Level
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5.1. Knock-out Options (continued)

e Probability Density vs. Number of Sampling Points

DO(S =100, H = 95,¢, = 0.2,0 = 0.3,7 = 0.1,d = 0.0)

0.4

© ©
N w

+ Log Return Density Tinmes Std. Dev.
o
|_\

~100 105 110 115 120
Ter m nal Level
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5.1. Knock-out Options (continued)

e Effects of Number of Sampling Points on Double Barrier Binary

e Adapt parameters from Broadie, Glasserman, and Kou (1997)
100 DBB(S =100, Hy =105, H- =95, t, =0.2,0 = 0.3, r = 0.1, d = 0.0)

n Value
1128.395201390
2115.168622926
3| 9.758497477
4| 6.952587190
5| 5.287021405
10| 2.191938686
25| 0.697448889
50| 0.317632619
100| 0.161476402
oo| 0.017493814
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5.2. Lookback Options

e Convergence studies

e Choose parameters from Broadie, Glasserman, and Kou (1996)
LP(S =100, K =100,t, =0.2,0 =0.3,7 =0.1,d = 0.0,n = 4)
Exact Value: 6.5743660937

Trinom

Extrap

Trap Rule

2-pt Extrap

64

6.477127220

200

6.56845

128

6.550227368

6.5745940846

400

6.57140

6.57435

256

6.568341830

6.5743799838

300

6.57288

6.57436

512

6.572860675

6.5743669564

1600

6.57362

6.57436

1024

6.573989779

6.5743661475

3200

6.57399

6.57436

2048

6.574272018

6.5743660971

6400

6.57418

6.57437

4096

6.574342575

6.5743660939

8192

6.574360214

6.5743660937

16384

6.574364624

6.5743660937
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5.2. Lookback Options (continued)

e Effects of Number of Sampling Points

e Choose parameters from Broadie, Glasserman, and Kou (1997)
LP(S =100,t, =0.5,0 =0.3,r =0.1,d = 0.0)

2ol

17.5 |
:noo
=160

(6]

=
a1

| N=80
- n=40
[ n=20
| Nn=10

Opti on Val ue

12.

(6]

10 i n=5
L n=3
L n=2

[ n:l L L L L 1 L L L L 1 L L L L 1 n n n n 1
I 100 105 - 110 115 120
5t Exi sting Maxi mum
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5.2. Lookback Options (continued)

e Probability Density vs. Number of Sampling Points

e Continue with parameters from Broadie, Glasserman, and Kou (1997)
LP(S =100,t, =0.5,0 =0.3,r =0.1,d = 0.0)

N

¥

pev.

n=2 \‘\

A

LOg iaxi mum pensity = Std.

Ter m nal Maxi num
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5.3. Puttable Cliquets

e Choose 5 one year at-the-money optionlets, fixed notional, S = 100, o = 0.3,
r=0.1,d= 0.0

Exact Value of Cliquet Without Put: 56.085

e Explore effects of varying put level and exercise dates
e For Bermudian options, consider cases of constant and discounted put levels

e Examine put values
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5.3. Puttable Cliquets (continued)

e Put value versus put strike:

35 | 12345}
30 |
[ 2345}
= 25|
T [ 345}
S 2| 45}
o [
> 5)
< 15 -
10 |
51
20 40 80 80 100
Put Level
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6.0. Conclusions

e The convolution method is a powerful, general, elegant technique for the
valuation of path-dependent options with discrete sampling and /or exercise
points.

e Particularly for moderate numbers of sample points, the approach is superior
to available methods.

e Convergence properties are strong, particularly when some attention is de-
voted to regularizing contact points. Extrapolation techniques are readily
applicable.

e Even for regions near barriers, values are extremely accurate.

e The convolution method allows access to probability densities of discretely
sampled path “measures” not readily accessible by other means.
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