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Partially Observed Stochastic Systems
I

of the system X,
X1 = F(X,, VN

e ['(z,v) is a known function of = and v

e {V,},, white noise (so X, is Markov)l
° Y

Y, = H(X,, W,
e {IW,}, white noisell

e H(x,v)is a known function of z and w
Dften (for math. proofs) H(z,w) = h(z) +w

e {V,},and {W,}, assumed (for math. proofs)
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The Optimal Filter
[

Goal

Estimate, at each time n, the state X,, from all the observa-
tions Y, ={Y,,Y,1,---, Yy} up to that time.

Optimal solution (in the least squares sense)
conditional distribution of X,, given all the observations Y,

To( 1Y 0) = (- { Y0, Yoo, -+, Yo} )
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Stettner’s Equation
I

Tn+1 = gbn(ﬂ_n; Yn—i—l)

Dynamical system in the (infinite dimensional) space of prob-
ability measures

Conditionally Gaussian Case Kalman-Bucy
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The Particle Approximation
[

1
m(dr) = P{X, € dz|Y,} = —

Need two kinds of particles:

e those used to simulate P{X,|Y,, }I
L
e those used to simulate P{X,, 1Y}

1 m
pn—i—l? "'7pn—|—1
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One Step Ahead Prediction
I

e Assume
L fm
form a random sample from the distribution 7, = P{X,|Y }}

e Assume v}, ..,v™ are m independent realizations of the noise
v

Then

Pfl+1 = F(fizm U%)
gives a random sample

1 m
Prni1s " s Pnya

from the conditionaldistribution P{X,,,1|Y,}.
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Filtering, or Updating
[

e Assume
pvlz—l—lv T 7pnm+1
sample from the conditional distribution P{X,, 1Y, }i

e Given a new observation v, ;1

— o) =P{(V,11 = yni1|p)) likelihood of each particle p/,, I

— O[T]H_l - T(G(yn—i—l, pn—i—l)'@Yn (G(yn+1’pn+1>’I
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P{Xpi1 = P%H, Yo1|Ys)
P{Yn+1|Yn)
- P{YnJrl‘pizH)P{XnH = pfz+1|Yn
Zﬁl P{Yoi1|pp 1 JP{ X1 = Dy

) 1
an-l—l'%

N
ijzlan+1
i
an—i—l

ZTzl Qi1

r (observation) white (additive) noise density

P{Xn-l-l — pfﬁ—l‘Yn-l-l} —
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Given this computation we define:

1
[ p!., with probability—— 2!

m
e |

m - il |
| Pl with probabll|tyoé711+1+m+oég,b+1

These particles form a random sample of the conditional dis-
tribution 7,1 = P{X,,1| Y11}
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Algorithm Summary
]

(1994)

1. Initialization: generate an initial random sample of m parti-
cles f7,--, f§"

2. For each time step n, we repeat the following process:

e Generate independent particles v/ from the distribution of
the system noise

» Generate the particles p/,, , using the formulap! ,, = F(f,v
e Given a new observation, compute the likelihood afﬁm
e Resample the p/ ,, to produce the f7,,’s

Proved Results For fixed n particle approximation converges
toward 7,,. (Del Moral, Guillonnet, Lyons, Crisan, - - -)
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In Car Navigation Systems

The data
1

e Static data: representation of the network of roads and streets
on which the vehicles travell

e Dynamic data: sequences of time stamped estimates of the
position of the GPS receiver GPS tracks
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The Street Network

-8311

A Schematic of the Streets of Princeton
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An Example of a Track

-8298.9 -8298.8 —-8298.7 —8298.6 —8298.5 -8298.4 -8298.3 -8298.2 -8298.1 -8298 -8297.9

Beginning Part of a Track Illustrating some of the Pitfalls
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Animation Example

Z. Peng (C)
A. Bibas (matlab)
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Stochastic Volatility Estimation

dSt = St(udt + O'tth),

where o, satisfies
do, = — Moy — op)dt + rdW,.

Descretization:

S
Xt—i—At = gAt = (1 + /LAt) + oV AtEH_At

t

and

Ot+At ™~ n (00 + e_AAt(Ut - UO); \/
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Perfect Observation

State Equation

( Xyt ) _ ( 1+ pdt ) N oV Ater ag
TtiAt oo+ e oy — o) \/%(1 — M A

Observation Equation

- (3)

o
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Including the Parameters in the State Spacs

\Y[eJe[)

State Equation

XAt 1 4 pdt

omnt || oot e A gy — o)
v At

Ct+At Ct

Observation Equation

V;=[1000]

Ut\/EEHAt
\/ cr(1 — eMAT)E L ay
0
0
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Noisy Observations

e 0, unobserved statel
e X, observationl

State Evolution

Ot+At oo+ G_AtAt(Ut ) \/Ct(1 — eMA)EL Ay
Avar | = Y + 0
Ct+At Ct 0

Observation Equation

S
Xt-I—At = t;—At = (1 + ,LLAt) + oV AtGH_At
t
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A. Papavasiliou At =0.004, 1 =0.006, A =2, ¢ =0.5, 0o = 0.1 & 0p = 0.1

Simulated asset price
T T

1
250 350

=% [a] [=] [~] ] [=]




Simulated volatility
T

simulated volatility

r estimated volatility

historical volatility
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