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Part III

QUICKEST DETECTION OF APPEARING

OF THE ARBITRAGE POSSIBILITIES

1 Setting of the Problem

Suppose that we are observing a random process X = (Xt) on an interval [0; T ]. The
objects � and � introduced below are essential throughout the paper:

� { a parameter or a random variable; this is the time at which the observed process
X = (Xt)t�0 changes its probability characteristics;

� { a stopping (Markov) time which serves as the time of "alarm"; it warns of the coming
of the time � .

In connection with the technical analysis of the �nancial data, it is of interest to
consider the schemes in which � is interpreted as the time of the appearance of an arbitrage
("transition from a martingale to a submartingale", for example) or as the time of the
appearance of a change-point.

We will concentrate our attention on the model in which the observed process X has
the following form (see Figure 1):

Xt = r(t� �)+ + �Bt;

i.e.

dXt =

(
� dBt; t < �;

r dt+ � dBt; t � �:

-
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Figure 1

One can associate the following two events with a time � (recall that � is interpreted
as the time of "alarm"):

f� < �g and f� � �g:
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The �rst event (f� < �g) corresponds to the "false alarm": the alarm time � comes
before the time � . The second event (f� � �g) corresponds to the case where the alarm
is raised in due time, i.e. after the time � .

The above reasoning leads to several formulations of the quickest detection problem
for the time � . These formulations are given below.

Suppose that � = �(!) is a random variable (� � 0). Then the �rst formulation
(Variant A) of the quickest detection problem for � is as follows. (This formulation can
be called conditionally-extremal).

Variant A. For a given � 2 (0; 1), �nd a stopping time � �� such that

A (�) = inf
�2M�

E(� � � j � � �) = E(� �� � � j � �� � �);

where
M� = f� : P(� < �) � �g:

Variant B. For a given c > 0, �nd

B (c) = inf
�

�
P(� < �) + cE(� � �)+

	
and the corresponding optimal (Bayes) stopping time. (Note that

E(� � �)+ = E(� � � j � � �)P(� � �) ):

In the following Variants C and D, � is an unknown parameter.

Variant C. Find

C (T ) = inf
�2MT

sup
�

esssup
!

E�

�
(� � �)+ j F�

�
(!)

and the corresponding optimal stopping time. Here,

M
T = f� : E1� = Tg;

P�( � ) = Law( � j�):

Variant D. Find
D (T ) = inf

�2MT

sup
�

E�(� � � j � � �)

and the corresponding optimal stopping time.

The following Variant E of the quickest detection problem is interesting due to the
unusual assumptions made on the nature of � and on the character of the observation
procedure.

First, the assumption that � is a random variable (or an unknown parameter) is
replaced by the assumption that � appears after the stationary regime of the observations
is established. (Of course, the time � is preceded by a long period of observations that
contains many alarms of the appearance of "change-points"). Second, we suppose that
the observation procedure in Variant E is multistage.

2



Informally, Variant E (to be more precise, its particular case; a more general formu-
lation, Variant E0 , is given in Subsection 9 of Section 3 below) is formulated as follows.

Let 	t = 	(t;Xs; s � t) be a functional of the observations with 	0 = 0, t � 0.
Suppose that the alarm of the appearance of a "change-point" is based on the observation
of 	 and the alarm procedure has the following form.

We observe the process (Xt)t�0 and use it to construct a process 	 = (	t)t�0 . Once
this process has reached a level a > 0, we raise an alarm of the appearance of a "change-
point". Let us call this time �1 . After this time, the process 	 is returned to zero, i.e.
for t > �1 , we observe the process 	(t � �1;Xs � X�1 ; �1 < s � t). The next alarm is
raised at a time �1+ �2 . In a similar way, this procedure (let us call it � ) is repeated after
the time �1 + �2 with the alarm raised at a time �1 + �2 + �3 and so on.

Let us denote the process constructed above (which is a "renewal process") by 	� =
(	�

t )t�0 (see Figure 2). We will suppose that this process has a limit distribution F �( ) =
limt!1 P1(	�

t �  ), where P1 denotes the distribution of the process X under the
assumption that there is no change-point (i.e. for the case where � =1).

-
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Figure 2. (The function f � = f �( ) is the den-
sity of the stationary distribution F � = F �( ))

Let the mean time between two false alarms for the above observation procedure (it
is determined by a functional 	 and a level a > 0) be equal to T , i.e. E1�i = T
i = 1; 2; : : : . Here, E1 is the expectation taken with respect to the measure P1 . Then
the mean time of the delay after the appearance of � is given by

R�(T ) =

Z a

0

(E 0 �a)F
�(d );

where E 0 �a is the expectation of the hitting time of the level a by the process 	� under
the assumption that 	�

0 =  . Here, E0 is the expectation with respect to the measure
P0 .

The formulation of the quickest detection problem for the multistage observations and
the stationary regime is as follows:

Variant E. Find among all the methods determined by a pair (	; a) the in�mum

E(T ) = inf
f	;ag

R�(T )
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assuming that the mean time of delay between two false alarms is equal to T > 0.

Our aim is to describe the optimal or asymptotically optimal methods for Variants A,
B, C, D, E.

2 Solution of the Problem

1. Suppose that we observe a continuous-time random process X = (Xt)t�0 de�ned as

Xt = r(t� �)+ + �Bt; (1)

i.e.

dXt =

(
� dBt; t < �;

r dt+ � dBt; t � �;

where � is the time of the appearance of the arbitrage possibility and B = (Bt)t�0 is a
standard Brownian motion.

We will need the following notations:

P� = Law(Xj�);

Lt =
dP0

dP1
(t;X);

where
dP�
dP1

(t;X) =
d(P� j FX

t )

d(P1 j FX
t )
; � 2 [0;1]:

For our model, we have

Lt =
dP0

dP1
(t;X) =

dP0

dPt
(t;X);

dP�
dP1

(t;X) =
dP�
dPt

(t;X) =
Lt
L�
; � � t:

The following two statistics  = (t)t�0 and  = ( t)t�0 , de�ned as

t = max
��t

Lt
L�

and

 t =

Z t

0

Lt
L�

d�

are essential in all the subsequent considerations.
We call  = (t)t�0 the exponential CUSUM (cumulative sum) process or the expo-

nential CUSUM-statistics. For model (1), we have

Lt = eHt; Ht =
r

�2
Xt �

r2

2�2
t

and

t = exp
n
Ht �min

��t
H�

o
: (2)
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In the statistical literature (see, for example, [8], [16]), the statistics  = ( t)t�0 is
called the Shiryaev-Roberts statistics.

For model (1), we have

 t =

Z t

0

eHt�H�d�:

Remark 1. Let us consider the discrete-time case. We assume that the disorder (the
change-point) can appear at the times � = 0; 1 : : : . If � = 0, then the observed sequence
x0; x1; : : : is a sequence of independent identically distributed random variables with the
distribution density f1(x). If � � 1, then the observed sequence x0; : : : ; x��1; x�; x�+1; : : :
is again a sequence of independent random variables such that x0; : : : ; x��1 have the
distribution density f0(x) and x�; : : : ; x�+1 have the distribution density f1(x).

In this case,

Ln =
nY
i=0

f1(x)

f0(x)
= exp

� nX
i=0

log
f1(xi)

f0(xi)

�
:

Let

Sn =
nX
i=0

log
f1(xi)

f0(xi)
; n � 0:

Then Ln = eSn and (compare with (2))

n = max
0���n

Ln
L�

= max
0���n

expfSn � S�g = exp
n
Sn � min

0���n
S�

o
: (3)

Set eSn = Sn � min
0���n

S�:

Obviously, eS0 = 0 and, for n � 1, we have

eSn = max

�
0; eSn�1 + log

f1(xn)

f0(xn)

�
:

In the papers [6], [7], this recurrent relation was used to de�ne the cumulative sum

(CUSUM) process eS = (eSn)n�0 . This, together with representation (2), explains the
above-mentioned name "exponential CUSUM-process" for the statistics  = (t)t�0 .

Here, t has the form t = e
eHt with eHt = Ht �min0���tH� (compare with (3)).

The following statistics  = ( n)n2N serves as a discrete-time analog of the statistics
 = ( t)t�0 :

 n =
nX
�=1

Ln
L��1

:

The statistics  de�ned by the above equality satis�es the recurrent relation

 n = (1 +  n�1)
f1(xn)

f0(xn)
; n � 1

with  0 = 0. 2

Remark 2. Instead of the process Ht�min��tH� that appears in (2), one can consider
the process max��tH� �Ht .
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If Ht = Bt , then, by P. L�evy's theorem,

Law
�
max
��t

B� �Bt; t � 0
�
= Law(jBtj; t � 0):

Due to this equality, the process maxB�B is often called the reected Brownian motion.
If Ht = B�

t with B�
t = �t+Bt , then (see [2])

Law
�
max
��t

B�
� �B�

� ; t � 0
�
= Law

�
jY �
t j; t � 0

�
;

where Y � = (Y �
t )t�0 is the so-called "bang-bang process" de�ned as the solution of the

stochastic di�erential equation

dY �
t = �� sgn Y �

t dt+ dBt; Y �
0 = 0:

2

2. We will now turn to the quickest detection problem in Variants A and B. First
of all, we will make an assumption on the distribution of the random variable � = �(!)
(recall that � corresponds to the "change-point" in the observed process (1)).

Let us assume that � takes values in [0;1) and it has the following distribution:

P(� = 0) = �;

where � 2 [0; 1], and
P(� � t j � > 0) = e��t;

where � > 0 is a known constant.
Let

�t = P(� � t j FX
t )

be the posterior probability (constructed through the observation of the process X ) that
the change-point has appeared within the time-interval [0; t] (here, FX

t = �(Xs; s � t)).
Set

't =
�t

1 � �t
:

Applying the Bayes formula, we get

't =
P(� � t j FX

t )

P(� > t j FX
t )

=
�

1� �
e�t

dP0

dP1
(t;X) + e�t

Z t

0

dP�
dP1

(t;X)�e���d�

=
�

1� �
e�tLt + �e�t

Z t

0

Lt
L�

e��td�:

(4)

Set

Ut = e�tLt
�

1� �
;

Vt = �e�t
Z t

0

Lt
L�

e���d�:
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Applying Itô's formula and taking the equality dLt =
r
�2
LtdXt into account, we get

dUt = �Ut dt+
r

�2
Ut dXt; U0 =

�

1� �
;

dVt = �(1 + Vt) dt +
r

�2
Vt dXt; V0 = 0:

Therefore, the process 't = Ut + Vt satis�es the equation (see [11], [12])

d't = �(1 + 't) dt +
r

�2
't dXt; '0 =

�

1� �
:

Applying once again Itô's formula, we conclude that the posterior probability (�t)t�0
satis�es the following stochastic di�erential equation (see [11], [12]):

d�t =
�
� �

r2

�2
�2t

�
(1 � �t) dt+

r

�2
�t(1 � �t) dXt; �0 = �: (5)

Let us denote 't by 't(�) in order to emphasize the dependence of 't on �. Apply-
ing (4) with � = 0, we get

't(�)

�
= e�t

Z t

0

Lt
L�

e��� d�:

Consequently,

lim
�!0

't(�)

�
=  t

�
=

Z t

0

Lt
L�

d�

�
; (6)

and the statistics  satis�es the following stochastic di�erential equation (it was obtained
by the author in [11], [12]):

d t = dt+
r

�2
 t dXt;  0 = 0: (7)

3. We will �rst solve the quickest detection problem in the Bayes formulation (Vari-
ant B). Set

B (c;�) = inf
�

�
P�(� < �) + cE�(� � �)+

	
; (8)

where the subscript � indicates that the prior probability of the event f� = 0g equals � .
Using (8), we get

B (c;�) = inf
�
E�

n
(1� ��) + c

Z �

0

�s ds
o �

= ��(�)
�
: (9)

It is useful to introduce the innovation representation of the process X :

dXt = r�t dt+ � dBt;

where B = (Bt)t�0 is again a Brownian motion (with respect to the �ltration (FX
t )t�0 ).

See [3] for details.
In view of this representation, stochastic di�erential equation (5) takes the following

form:

d�t = �(1 � �t) dt +
r

�
�t(1� �t) dBt: (10)
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Consequently, the in�nitesimal generator of the di�usion process (�t)t�0 has the form

L = a(�)
d

d�
+

1

2
b2(�)

d2

d�2
; (11)

where

a(�) = �(1 � �);

b2(�) =
� r
�

�2
�2(1� �)2:

Remark 3. It follows from (10) thatZ t

0

�s ds =
�0 � �t
�

+
1

�

r

�

Z t

0

�s(1 � �s) dBs + t:

Consequently, at least for � satisfying the inequality E�� <1, we derive from (9) that
B (c;�) can be represented as

B (c;�) = inf
�
E�

n�
1 +

c

�
�
�
�
�
1 +

c

�

�
�� + c�

o �
= ��(�)

�
: (12)

2

Following the standard scheme of solving the quickest detection problems of the
type (9) or (12) (see 16) consider the corresponding free-boundary (Stefan) problem (see
Figure 3):

L�(�) = �c�; � 2 [0; B); (13)

�(B) = 1�B; � 2 [B; 1]; (instantaneous stopping), (14)

�0(B) = �1 (smooth �t), (15)

�0(0) = 0; (16)

where L is the in�nitesimal generator de�ned by (11).

-
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Figure 3. The line �0(�) = 1 � � corresponds

to the risk of the instantaneous stopping.

A general solution of equation (13) includes two arbitrary constants. An additional
unknown constant is the point B . Thus, we have three unknown parameters that can be
found using conditions (14) for � = B , (15) and (16).
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These considerations lead to the following solution of problems (13){(16):

�(�) =

8<:(1 �B�)�

Z B�

�

y�(x) dx; � 2 [0; B�];

1 � �; � 2 [B�; 1]

with

y�(x) = �C

Z x

0

e��[G(x)�G(y)]
dy

y (1� y)2
;

G(y) = log
y

1� y
�

1

y
;

� = �
. r2

2�2
; C = c

. r2

2�2
:

The parameter B� is de�ned as the root of the equation

C

Z B�

0

e��[G(B�)�G(y)]
dy

y (1 � y)2
= 1: (17)

(For more details, see [11]{[13]).
The standard technique of the "veri�cation theorems" (see, for example, [15; p. 756])

shows that the obtained solution �(�) is equal to ��(�) and the time �� = ��(B�) with

��(B�) = infft : �t � B�g

is optimal for any 0 � � � 1. Namely, for any � = �(!) with P(� = 0) = � and
P(� � t j � > 0) = e��t (here, � 2 [0; 1] and � > 0), we have

��(�) = E�

n
(1� ���) + c

Z ��

0

�s ds
o

and
B (c;�) = P�(�� < �) + cE�(�� � �)+:

4. In order to solve the conditionally-extremal problem in Variant A, we use the
method of the Lagrange multipliers and the obtained solution for Variant B.

Let B� = B�(�; c) be the value de�ned from equation (17) and M� = f� : P�(� <
�) � �g, where � is a �xed value in [0; 1] and � is a constant that de�nes the upper
boundary for the probability of the false alarm P�(� < �).

One can show that there exists a value c� such that

B�(�; c�) = 1� �:

Then the stopping time ��(B�) = ��(B�(�; c�)) belongs to M� and we have

B (c�; �) = inf
�

�
P�(� < �) + c�E�(� � �)+

	
= P�

�
��(B�) < �

�
+ c�E�

�
��(B�)� �

�+
= E�

�
1� ���(B�)

�
+ c�E�

�
��(B�)� �

�+
= �+ c�E�

�
��(B�)� �

�� ��(B�) � �
�
(1 � �):
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Since the time ��(B�(�; c�)) is optimal for Variant B, this time is also optimal in the
class M� . Furthermore, the mean delay in discovering the change point, i.e.

R(�; �) = E�

�
��(B�)� �

�� ��(B�) � �
�
;

is given by the following formula (see [12], [13]):

R(�; �) =

R 1��

0

hR x
0
e�

�

�
[G(x)�G(y)] dy

y (1�y)2

i
dx

(1 � �) �

with � = r2

2�2 .
Now, let �! 0, �! 1 in such a way that

1� �

�
! T; (18)

where T > 0 is a constant. Then

R(T )� limR(�; �) =
1

�

�
eb(�Ei(�b))� 1 + b

Z 1

0

e�bz
log(1 + z)

z
dz

�
;

where

b =
1

�T
; �Ei(�y) =

Z 1

y

e�z

z
dz: (19)

Using the above formula, we get for � = 1:

R(T ) =

(
log T � 1� C +O( 1

T
); T !1;

T
2 +O(T 2); T ! 0;

(20)

where C = 0:577 : : : is the Euler constant.
Let us mention the following important property in connection with the passage to

the limit � ! 0, � ! 1 (together with condition (18)). Suppose that � = 0 and
P(� � t) = e��t . Let (a; b) 2 (A;B). Then

P
�
� 2 (a; b) j � 2 (A;B)

�
�!

b� a

B �A
:

In other words, using the limit procedure as � ! 1, we get from the exponential
distribution on [0;1) a generalized distribution on [0;1) that is conditionally uniform
in the following sense: the conditional distribution of � under the condition that � appears
within (A;B) is the uniform distribution on (A;B).

This assumption on the distribution of � is rather natural in the case where there is
no information on the distribution of � . Thus, the use of the exponential distribution,
combined with the passage to the limit as � ! 0, can be regarded as a useful technical
means for the study of the schemes with the conditionally uniform distribution.

5. The above reasoning shows that the time � �� = ��(B�(�; c�)), i.e. the time

� �� = inffT : �t � 1� �g; (21)
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is optimal in the class M� :

inf
�2M�

E(� � � j � � �) = E(� �� � � j � �� � �):

Using the above notation 't =
�t

1��t
, we can express (21) as

� �� = inf
n
t :
't(�)

�
�

1� �

��

o
:

For  t = lim�!1
't(�)
�

(see (6), (7)), we �nd that, in the case � = 0,

d t = dt+
r2

�2
 t dXt;  0 = 0

or, equivalently,

 t = t+
r

�2

Z t

0

 s dXs:

If � =1, then

 t = t+
r

�

Z t

0

 s dBs:

Passing to the limit �! 0, �! 1 in such a way that

1� �

�
! T;

we �nd that
� �� ! � �(T ) = infft :  t � Tg:

Consequently,

 ��(T ) = � �(T ) +
r

�

Z ��(T )

0

 s dBs:

It follows that
T = E1 ��(T ) = E1�

�(T ):

In other words, the constant T has a simple intuitive meaning: it is the mean time up
to the false alarm. The value

R(T ) = lim�
�!0;�!1; 1��

�
!T

	R(�; �)
is the mean delay time in discovering the change-point (arbitrage). It follows from (20)
that, for large T , this time has order log T while, for small T , this time has order T=2
(for the case � = r2

2�2 = 1).

6. We will now turn to the parametric minimax formulations of the quickest detection
problems. In these formulations, � is supposed to be a parameter with values in [0;1).

The formulation in Variant C is to �nd

C (T ) = inf
�2MT

sup
�

esssup
!

E�

�
(� � �)+ j F�

�
(!)

11



and the corresponding optimal stopping time. Here,

M
T = f� : E1� = Tg

and F� = FX
� = �(Xs; s � �).

For � 2MT , we set

C(� ) = sup
�

esssup
!

E�

�
(� � �)+ j F�

�
(!):

The main idea in �nding the optimal stopping time in Variant C is to give a lower
estimate for C(� ) (� belongs to MT ).

The author showed in [14] that the following estimate is true (see details below in
Subsection 7):

C(� ) �
E1

R �
0
t dt

E1�
; (22)

where  = (t)t�0 is the exponential CUSUM-statistics introduced above:

t = sup
��t

Lt
L�
:

Here,

Lt =
dP0

dPt
(t;X) = exp

n r

�2
Xt �

r2

2�2
t
o
:

Suppose that � = r2

2�2
= 1 and set

� �(B) = infft : t � Bg; 0 = 1:

Using the Markov property of the process  = (t)t�0 , one can show that

C(� �(B)) = E0�
�(B)

(the proof of this property is given in Subsection 7 below).
Let us now �nd B = BT such that

� �(B) 2MT = f� : E1� = Tg:

Using the standard method of the di�erential backward Kolmogorov equation and taking
equality (27) (it is given below) into account, we deduce that

E1�
�(B) = B � 1 � logB;

and consequently, BT is de�ned from the equation

BT � 1 � logBT = T:

By the Markov property of the process  , we get by analogy with E1�
�(B),

E0�
�(BT ) =

BT logBT + 1 �BT

BT

: (23)

12



Using the inequalities

E0�
�(BT ) � C(� �(BT ));

C(� ) �
E1

R �
0
t dt

E1�
;

we get

E0�
�(BT ) � C(� �(BT )) � inf

�2MT

C(� ) �
inf
�2MT

E1

R �
0
t dt

sup
�2MT

E1�

=
inf
�2MT

E1

R �
0
t dt

BT

=
E1

R ��(BT )

0
t dt

BT

=
BT logBT + 1 �BT

BT

:

(24)

From (23) and (24), it follows that � �(BT ) is the optimal stopping time in the class
M

T = f� : E1� = Tg:
C (T ) = C(� �(BT ))

and

C (T ) =
BT logBT + 1 �BT

BT

�

(
log T � 1 +O

�
1
T

�
; T !1;

T
2
+O(T 2); T ! 0:

Thus, the exponential CUSUM-process  = (t)t�0 de�ned as

t = sup
��t

Lt
L�

is the optimal statistics in Variant C.
It is interesting to note that, for Variant C, the statistics  = ( t)t�0 is asymptotically

optimal.
Indeed, take

 t =

Z t

0

Lt
L�

d�

and set
��T = infft :  t � Tg:

Then E1�
�
T = T . Using (7) and (1), we �nd that

E0�
�
T = eb(�Ei(�b)); b =

1

T

(the function Ei is de�ned in (19)). By the arguments similar to those used to obtain (24)
(see also Section 7 below), we can show that

E0�
�
T � C(��T ) �

1

T
E1

Z ��
T

0

 s ds:

13



For b! 0, we have

eb(�Ei(�b)) = �C � log b+O(b);

where C = 0:577 : : : is the Euler constant. Thus, for T !1, we have

E0�
�
T = log T � C +O

� 1
T

�
: (25)

It can also be shown that

1

T
E1

Z ��
T

0

 s ds = log T � C � 1 +O
� 1
T

�
: (26)

Consequently,

log T � C +O
� 1
T

�
�C(��T)� log T � C � 1 +O

� 1
T

�
:

On the other hand, as we have already seen,

C (T ) = log T � 1 +O
� 1
T

�
:

Thus, the statistics  = ( t)t�0 is asymptotically (T !1) optimal in Variant C.

7. We now turn to the proof of the basic inequality (22) that was used to prove that
the exponential CUSUM-statistics is optimal in Variant C.

Set
C�(� ;!) = E�

�
(� � �)+ j F�

�
(!):

We have

t = sup
��t

Lt
L�

=
Lt

inf��t L�
=
Lt
Nt

;

dt = d

�
Lt
Nt

�
=
dLt
Nt

�
Lt dNt

(Nt)2
=

r

�2
t dXt � t

dNt

Nt

:

Note that t � 1 and N changes its values only on the set f(t; !) : t = 1g. Hence,

dt =
r

�2
t dXt � t I(t = 1)

dNt

Nt

:

Denote

Ht = �

Z t

0

s I(s = 1)
dNs

Ns

:

Then

dt = dHt +
r

�2
t dXt; 0 = 1; (27)

and therefore,

t = Lt

h
1 +

Z t

0

dH�

L�

i
:

14



We have

C(� )E1H� = E1

�
C(� )H�

�
= E1

�
C(� )

Z 1

0

I(� � � (!)) dH�(!)
�

� E1

Z 1

0

C�(� ;!) I(� � � (!)) dH�(!);

where C�(� ;!) is de�ned above and C(� ) is de�ned in Subsection 6.
Since

(� � �)+ =

Z 1

�

I(u � � ) du;

we get

C�(� ;!) =

Z 1

�

E�

�
I(u � � ) j F�

�
(!) du

=

Z 1

�

E1

�
Lu
L�

I(u � � )

����F��(!) du = E1

�Z �

�

Lu
L�

du

����F��(!):
We used here the fact that � = I(u � � ) is Fu -measurable and

E�(� j F�) = E1

�
�
Lu
L�

����F��:
As a result,

C(� )E1H� � E1

Z 1

0

I(� � � (!))E1
�Z �

�

Lu
L�

du
���F�� dH�

= E1

Z �

0

E1

�Z �

�

Lu
L�

du
���F�� dH�:

Set eH� =

Z �

0

dHs

Ls
; �� =

Z �

0

Ls ds:

Then

C(� )E1H� � E1

Z �

0

E1

�Z �

�

Lu
L�

du
���F�� dH� = E1

Z �

0

E1

�Z �

�

Lu du
���F�� d eH�

= E1

Z �

0

E1

�Z �

0

Lu du
���F�� d eH� � E1

Z �

0

E1

�Z �

0

Lu du
���F�� d eH�

= E1

Z �

0

E1(�� j F�) d eH� � E1

Z �

0

�� d eH�:

The process M� = E1(�� j F�) is a P1 -martingale and

E1

Z �

0

M� d eH� = E1M�
eH� � E1M0

eH0 = E1�� eH� :

15



Thus,

C(� )E1H� � E1�� eH� � E1

Z �

0

�� d eH� = E1

Z �

0

eH� d��

= E1

Z �

0

eH� L� d� = E1

Z �

0

L�

�Z �

0

dHs

Ls

�
d�

= E1

Z �

0

�Z �

0

L�
Ls

dHs

�
d� = E1

Z �

0

[� � L�] d�

= E1

Z �

0

� d� � E1

Z �

0

L� d�:

We have

t = 1 +Ht +

Z t

0

r

�2
s dXs:

Hence,
E1� = 1 + E1H� ;

and, from the obtained inequality

C(� )E1H� � E1

Z �

0

� d� � E1

Z �

0

L� d�;

we get

C(� )[E1� � 1] � E1

Z �

0

� d� � E1

Z �

0

L� d�: (28)

Now, note that, at least for bounded stopping times � ,

C(� ) = sup
�

esssup
!

E�

�
(� � �)+ j F�

�
(!) � E0� = E1(�L� ) = E1

Z �

0

L� d� (29)

as d(tLt) = Lt dt+ t dLt . In the general case of �nite � , we have

C(� ) � E0� � E0(� ^N)L�^N = E1

Z �^N

0

L� d� " E1

Z �

0

L� d�:

From (28) and (29), we get

C(� )E1� � E1

Z �

0

� d�:

Thus,

C(� ) �
E1

R �
0 � d�

E1�

and

C (T ) = inf
�2MT

C(� ) �
inf
�2MT

E1

R �
0 � d�

sup
�2MT

E1�
;

where
M

T = f� : E1� = Tg:
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We will now give a proof of the property

E0�
�(B) = C(� �(B));

where

� �(B) = infft : t � Bg;

C(� �(B)) = sup
�

esssup
!

E�

�
(� �(B)� �)+ j F�

�
(!):

On the set f! : � �(B) � �g, we have:

E�

�
(� �(B)� �)+ j F�

�
(!) = 0:

Consider the set
f! : � �(B) > �g = f! : u < B; u � �g:

By the Markov property of the process  = (t), we have on the set

f! : � �(B) > �g \ f� = xg

that
E�

�
(� �(B)� �)+ j F�

�
(!) = f(x);

i.e. this conditional expectation is the function only of the value x of � . It is clear that
max1�x�B f(x) = f(1) and

f(1) = E0�
�(B):

Hence,
C(� �(B)) = E0�

�(B):

8. Let us now consider the quickest detection problem in Variant D. One should �nd

D (T ) = inf
�2MT

sup
�

E�(� � � j � � �)

and the optimal stopping time in the class MT .
We will follow the same scheme as that used in Variant C. Let us �rst prove that

E0�
�
T � D (T ) � inf

�2MT

E1

R �
0  s ds

T
; (30)

where
��T = infft � 0 :  t � Tg:

We have

D�(� ) = E�(� � � j � � �) = E�

�
(� � �)+ j � � �

�
=

Z 1

�

E�

�
I(u � � ) j � � �

�
du

=

Z 1

�

E�I(u � � )

E�I(� � � )
du =

Z 1

�

E�I(u � � )

E1I(� � � )
du =

Z 1

�

E1

�
Lu
L�
I(u � � )

�
E1I(� � � )

du:
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Thus,

D (T )E1I(� � �) � D�(� )E1I(� � � ) =

Z 1

�

E1

�
Lu
L�

I(u � � )

�
du = E1

Z �

�

Lu
L�

du:

Integrating on � (from 0 to 1), we get

D (T )E1� � E1

Z 1

0

�Z �

�

Lu
L�

du

�
d� = E1

Z �

0

�Z �

0

L�
Lu

du

�
d� = E1

Z �

0

 � d�:

As a result,

E0�
�
T = sup

�

E�(�
�
T � � j��T � �) � inf

�2MT

sup
�

E�(� � � j � � �)

� inf
�2MT

E1

R �
0
 s ds

E1�
= inf

�2MT

E1

R �
0
 s ds

T
;

(31)

where MT = f� : E1� = Tg.
Similarly to Variant C, we have here

sup
�

E�(�
�
T � � j��T � �) = E0�

�
T :

This, together with (31), leads to the desired inequalities (30).
It has already been mentioned in Subsection 6 that, for large T , formulas (25) and (26)

are true. Combining these formulas with inequalities (30), we deduce that the statistics
 = ( t)t�0 is asymptotically (T !1) optimal.

9. Variant E. In Section 1, we considered a particular case of the observation proce-
dure for which the observations are multistage, i.e. the observations are continued after
each alarm. It is also important that the change-point should be preceded by a long pe-
riod of observations and a stationary regime of observations should be established within
this period. The change-point can appear only after this stationary regime has been
established.

The analysis of the observation procedure that was described in Section 1 shows that
any observation procedure is eventually described by a sequence of stopping times � =
(�1; �2; : : : ) such that �1; �2; : : : are independent identically distributed random variables
with respect to the measure P1 . For this procedure, the alarms are raised at the times
�1; �1 + �2; : : : :

-
0 �1 �1 + �2 �1 + � � �+ �{(�) � �1 + � � �+ �{(�) + �{(�)+1

r r r r r r

Figure 4

For � > 0, de�ne {(�) (it takes values in 0; 1; : : : ) from the inequality

�0 + �1 + � � �+ �{(�) < � � �0 + �1 + � � �+ �{(�) + �{(�)+1;

where �0 = 0.
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For a �xed � and an observation procedure � = (�1; �2; : : : ), the mean delay time in
discovering the time � equals

R�
�(T ) = E�(�1 + � � �+ �{(�)+1 � �)

(we assume here that E1�i = T > 0).
Let

F �
� (u) = P�

�
� � (�1 + � � �+ �{(�)) � u

�
:

Then

R�
�(T ) =

Z 1

0

E�

�
�1 + � � �+ �{(�)+1 � � j � � (�1 + � � � + �{(�)) = u

�
dF �

� (u)

=

Z 1

0

Eu(�1 � u j �1 > u) dF �
� (u):

We will suppose that the observation procedure � = (�1; �2; : : : ) is such that the
distribution of Law(�ijP1) is nonlattice. Then the general renewal theory guarantees
that there exists a limit distribution

F �
1(u) = w- lim

�!1
F �
� (u):

By the well-known Basic Renewal Theorem,

F �
1(u) =

1

T

Z u

0

(1� F (x)) dx;

where F (x) = P1(�1 � x).
Suppose now that the method � is such that, for �!1,

R�
�(T ) =

Z 1

0

Eu(�1 � uj�1 � u) dF �
� (u)

!

Z 1

0

Eu(�1 � uj�1 � u) dF �
1(u)

=
1

T

Z 1

0

Eu(�1 � uj�1 � u)P1(�1 � u) du

=
1

T

Z 1

0

Eu(�1 � uj�1 � u)Pu(�1 � u) du

=
1

T

Z 1

0

Eu(�1 � u)+ du
�
= R�(T )

�
:

For the Bayes setting with Law(�) = exp(�), we have

E(� � �)+ = �

Z 1

0

e��u Eu(�1 � u)+ du:
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Fix T > 0 and let �! 0, �! 1 in such a way that 1��
��

= T . Then

1

T

Z 1

0

Eu(�1 � u)+ du =

= lim
f�!0; �!1; 1��

��
=Tg

�
R1
0
e��u Eu(�1 � u)+ du

(1� �)=�

= lim
f�!0; �!1; 1��

��
=Tg

E(�1 � �)+

1 � �

= lim
f�!0; �!1; 1��

��
=Tg

E(�1 � �j�1 � �):

From these formulas and the asymptotic (�! 0, �! 1, 1��
�
! T ) optimality of the

statistics  = ( t)t�0 , we conclude that this statistics is optimal for

Variant E0 . Find

E
0(T ) = inf

�2MT

1

T

Z 1

0

E�(� � �)+d�: (32)

Note that, in this formulation, the parameter � can be regarded as a generalized ran-
dom variable with the "uniform distribution on [0;1)". Formulation (32) deals only
with one stopping time (in other words, with one stage of observations). However,
this formulation is directly related to the multistage procedure described above because
E 0(T ) = lim�!1R�

�(T ).

10. Table 1 sums up the results described above. These results are related to the
optimality and the asymptotic optimality of the statistics (�t)t�0 , (t)t�0 and ( t)t�0 in
various formulations of the quickest detection problem of the change-point (or arbitrage).

3 Some Comments

1. The researchers working in the �eld of �nance as well as the market operators can be
grouped, regarding their approach to the analysis of the dynamics of prices, as follows:

f1g "fundamentalists";
f2g "quantitative analysts";
f3g "technicians".
"Fundamentalists" make their decisions by looking at the state of the "economy at

large" or by analyzing some of its sectors. The development prospects are of particular
interest to them. The basis of their analysis is the assumption that the actions of the
market operators are "rational". The second group ("quantitative analysts") emerged in
the 1950s as the followers of L. Bachelier. This group is closer to the "fundamentalists"
than to the "technicians" due to the fact that the "quantitative analysts" attach more
signi�cance to the rational aspects of the investors' behaviour than to the tones of the
market.

It should be pointed out that the theoretical basis for groups f1g and f2g is currently
stronger compared to that of group f3g. We believe that the problems considered in
this paper are directly related to the technical analysis of the �nancial data and to the
decision-making procedures.
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� Variants Optimality of statistics

r.v.
exp(�) A: inf

�2M�

E(� � �j� � �)
� = (�t) is optimal

�t = P(� � tjFX
t )

r.v.
exp(�) B: inf

�

�
P(� < �) + cE(� � �)+

	
� = (�t) is optimal

parameter

� 2 R+
C: inf

�2MT

sup
�

esssup
!

E�

�
(� � �)+jF�

�  = (t) is optimal

t = sup
��t

Lt
L�

(exponential CUSUM)

parameter

� 2 R+

D: inf
�2MT

sup
�

E�(� � �j� � �)

 = ( t) is asymptoti-
cally (T !1) optimal

 = (t) is asymptoti-
cally (T !1) optimal

� is a
generalized
r.v.

E0: inf
�2MT

1

T

Z 1

0

E�(� � �)+d�

 = ( t) is optimal

 t =

Z t

0

Lt
L�

d�

M� = f� : P(� � �) � �g;

M
T = f� : E1� = Tg:

Table 1. Optimal and asymptotically
optimal statistics for Variants A{E0
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2. The formulations of the quickest detection problem have a long history. Variants
A and B were considered by the author in [10], [11], [12], [13]. The formulation of
Variant C was proposed in [4]. In this paper, the asymptotic optimality of the statistics
 = (n)n�0 was proved for the discrete-time case. The proof of the asymptotic optimality
of  = (t)t�0 in the continuous-time case was given in our paper [14]. In particular, this
paper contains the lower estimate (22) that is essential in the proof of the asymptotic
optimality. For the discrete-time case, the corresponding estimate was proved in the
paper [5].

The formulation of Variant D was considered in many papers. See, for instance, [8]
and the collection of works [1].

It seems that our approach to the proof of the asymptotic optimality of the statistics
 = ( t)t�0 and  = (t)t�0 (based on the lower estimate (30)) has not previously been
considered.

Finally, the optimality of the statistics  = ( t)t�0 in Variants E and E0 was proved
in the author's papers [11] and [12].
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