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Remark. The proof of the given statement see in [ESF; Chapter V, xx4a{4f].

Continuous time case. Let S = (S1; : : : ; Sd) be a semimartingale on a �ltered

probability space (
;F; (Ft)t>0;P). Weassume thatF0 isP-trivial andF =
W
t>0

Ft.

Definition 13. Themodel (B;S) = (1; S1; : : : ; Sd) is complete if for eachF-mea-
surable bounded function there exists a pair (x;H), where x 2 R andH is a d-dimenÄ

sional process such that

(i) H 2 L(S), i.e. there exists the stochastic integralH � S;

(ii) there exists constants a and b such that

P
�
a 6 (H � S)t 6 b; 8 t > 0

�
= 1;

(iii) P-almost surely there exists the limit

(H � S)1 = lim
t!1

(H � S)t

and
f = x+ (H � S)1 (P-a.s.):

Remark 1. Condition (ii) may seen a bit unnatural. However, it cannot be elimÄ

inated in the Theorem 2 below.

Definition 14. Let S = (S1; : : : ; Sd) be d-dimensional semimartingale. We say
that P-localmartingaleM has the representation property relative toS if there exists

S-integrable predictable processH = (H1; : : : ; Hd) such that (P-a.s.)

Mt =M0 + (H � S)t; t > 0:

Theorem 2. Suppose that MT (P) 6= ?. Then the following conditions are

equivalent :

(i) the model is complete;

(ii) jMT (P)j = 1;

(iii) there exists a measure eP 2MT (P) such that any eP-local martingale M has

the representation property relative to S.

Remark 2. There are examples of the semimartingales S for which jMT (P)j = 1

(and thus, the model is complete), whereas LM(P) = ? (see Appendix I).

Part II.

Martingale measures and their constructions

1. The \First" and the \Second" fundamental theorems show clearly how \marÄ

tingalemeasures" are important for solving the problem\Arbitrage orNoArbitrage".

It is reasonable to start our discussion of the construction of the martingale meaÄ

sures that are (locally) absolutely continuous or equivalent to the original basic meaÄ
sure P involved in the de�nition of the �ltered probability space (
;F; (Fn)n>0;P)
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with a discrete (with respect to time) version a result established by I. Girsanov for

processes of di�usion type, which became the prototype for a number of results for

martingales, local martingales, semimartingales and so on.
Set hn = ��n + �n"n where �n and �n areFn�1-measurableF0 = f?;
g and

" = ("1; "2; : : : ) is a sequence ofFn-measurable iid random variables, "n � N (0; 1),

�n > 0.

From these assumptions it follows that

Law(hn j Fn�1;P) = N (�n; �
2
n)

which allows one to call h = (hn) a conditionally Gaussian sequence (with respect
to P) with (conditional) expectation

E(hn j Fn�1) = �n

and variance

D(hn j Fn�1) = �2n:

SettingHn =
nP
k=1

hk, An =
nP
k=1

�k,Mn =
nP

k=1

�k"k we get

(1) �Hn = ��n�+ �n�Wn

where �xn = xn � xn�1, � = 1, �Wn = "n, which one can regard as a discrete
counterpart to the stochastic di�erential

(2) dHt = ��t dt+ �t dWt

of some Itô processH = (Ht)t>0 generated by aWiener processW = (Wt)t>0 with

the local drift � = (�t)t>0 and the local volatility � = (�t)t>0.

Our construction of the measure eP is based on the sequence of (positive) random

variables

(3) Zn = exp

� nX
k=1

�k
�k
"k �

1

2

nX
k=1

�
�k
�k

�2�
:

Lemma 1. 1) The sequence Z = (Zn)n>1 is P-martingale with EZn = 1, n > 1.

2) Let F =
W
Fn and assume that

(4) E exp

�
1

2

1X
k=1

�
�k
�k

�2�
<1 (the \Novikov condition").

Then Z = (Zn)n>1 is a uniformly integrable martingale with limit (P-a.s.)

Z1 = limZn such that

(5) Z1 = exp

� 1X
k=1

�
�k
�k

�
"k �

1

2

1X
k=1

�
�k
�k

�2�

and Zn = E(Z1 j Fn), EZ1 = 1.
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Lemma 2. 1) Let h = (hn)n6N be a conditionally Gaussian sequence such that

Law(hn j Fn�1;P) = N (�n; �
2
n); n 6 N:

Let FN = F and ePN be the measure de�ned by formula ePN (d!) = ZN (!)P(d!).

Then the sequence h = (hn)n6N is conditionally Gaussian with respect to ePN
and

Law(hn j Fn�1; ePN ) = N (0; �2n); n 6 N:

If Hn =
nP

k=1

hk then one may �nd a (new) sequence of the iid random variables

e" = (e"n)n>1, e"n � N (0; 1), such that (ePN -a.s.)

Hn =

nX
k=1

�ke"k; n 6 N;

so, with respect to the measure ePN the sequenceH = (Hn)n6N is a local martingale

(= a martingale transform).

2) If �2n, n 6 N , are independent on !, then h = (hn)n6N is a sequence of indeÄ

pendent Gaussian random variables with respect to ePN :

Law(hn j Fn�1; ePN ) = N (0; �2n); n 6 N:

3) If F =
W
Fn and EZ1 = 1 (i.e. Z = (Zn)n>1 is a uniformly integrable marÄ

tingale) then the sequence h = (hn)n>1 is the conditionally Gaussian with respect

to eP1 where eP1(d!) = Z1(!)P(d!) and the sequenceH = (Hn)n>1 is a eP1-local

martingale.

2. Very similar formulations onemay done for the case of continuous time. NameÄ

ly, suppose that the processH = (Ht)t>0 is an Itô process with

(6) dHt = ��t dt+ �t dWt; �t > 0; H0 = 0;

whereW = (Wt)t>0 is a P-Wiener process (a Brownian motion).

We de�ne

(7) Zt = exp

�Z t

0

�
�u
�u

�
dWu �

1

2

Z t

0

�
�u
�u

�2
du

�
;

and put ePT (d!) = ZT P(d!).

If

(8) E exp

�
1

2

Z T

0

�
�u
�u

�2
du

�
<1

then the process (Ht)t6T is a ePT -local martingale such that (ePT -a.s.)
(9) Ht =

Z t

0

�u dfWu; t 6 T;
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where (fWu)u6T is a ePT -Wiener process.

If

(10) E exp

�
1

2

Z 1

0

�
�u
�u

�2
du

�
<1 (\Novikov condition")

then Z = (Zt)t>0 will be uniformly integrable martingale
�
i.e. equivalent to the

property EZ1 = 1 where Z1 = lim
t!1

Zt

�
.

Let's give a proof of the \Novikov condition" for case of the continuous time. (The

case of the discrete time can be considered by the similar way and, in fact, can be

obtained from the result of the continuous time.) At that, using Dambis, Dubins{

Schwartz theorem ([KY]) this problem can be reformulated by the following way:
Let

(11) Zt(�) = e�Bt�
�2

2
t

where � 2 R, B = (Bt) is a Brownian motion.
We claim that the \Novikov condition"

(12) Ee
�2

2
� <1

implies that

(13) EZ� (�) = 1:

For proof that (12))(13) let's assume �rstly that instead (12) we have a little bit

more stronger condition

(14) Ee
1+"
2
�2� <1

for some " > 0. Under such condition one may prove (R. Liptser and A. Shiryaev)

that EZ� (�) = 1. The proof is simple. Really, it is su�cient to show that for some
� > 0

(15) sup
t>0

E
�
Zt^� (�)

�1+�
<1:

Taking for simplicity � = 1 we have

�
Zt(1)

�1+�
=  

(1)
t  

(2)
t

with

 
(1)
t = e(1+�)Bt�

p(1+�)2

2
t;

 
(2)
t = e(

p(1+�)2

2
� 1+�

2
)t
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and p = 1 + ", q =
1 + "

"
. By H�older inequality

E
�
"(1)t

�1+�
=
�
E( 

(1)
t )p

�1=p�
E( 

(2)
t )q

�1=q
=
�
E( 

(2)
t )q

�1=q
because E( 

(1)
t )p = 1.

Take � such that

�(1 + �) 6
"2

(1 + ")(1 + 2")
:

Then ( 
(2)
� )q 6 e(

1
2
+")� and so

sup
t>0

E(Z
(1)
�^t)

1+�
6 Ee(

1
2
+")(�^t)

6 Ee(
1
2
+")� <1:

From this it follows that the martingale (Zt^� (1))t>0 is uniformly integrable and as

a corollary

EZ� (1) = 1:

The same is true for any � 2 R: EZ� (�) = 1.

Now suppose that Ee
�2

2
� < 1. Let's put �" = (1 � ")� with 0 < " < 1 then we

�nd that

Ee
1+"
2
�2"� = Ee

(1+")(1�")2�2

2
�
6 Ee

�2

2
� <1:

From this and previous consideration we get

EZ� (�") = 1:

Then applying the H�older inequality with 1=p = 1� ", 1=q = " we �nd that

1 = EZ� (�") = EZ�
�
(1� ")�

�
= Ee�(1�")B��

�2

2
(1�")2� = Ee(1�")(�B��

�2

2
�) � e

(1�")"�2�
2

6
�
EZ� (�)

�1�"�
Ee(1�")

�2

2
�
�"
6
�
EZ� (�)

�1�"�
Ee

�2

2
�
�"
:

(16)

If Ee
�2

2
� <1 then from (16) we get with limit passage " # 0 that

1 6 EZ� (�):

But EZ� (�) 6 1 because (Zt^� (�))t>0 is a nonnegative supermartingale with

Z0(�) = 1. So,

(17) Ee
�2

2
� <1 =) EZ� (�) = 1:

It is interesting to note that from (16) it is easy to see that instead the condition

Ee
�2

2
� <1 it is su�cient to assume only that

(18) lim
"#0

" logEe
(1�")�2

2
� = 0:

Indeed, from this condition it follows that for su�ciently small " > 0

Ee
1+"
2
�2"� = Ee

(1+")(1�")2

2
�2� = Ee

(1�")(1�"2)
2

�2� <1:

Thus, again 1 = EZ� (�") and the inequalities in (16) hold and by (18) we get that
EZ� (�) = 1.
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3. We intend now to prove the statements of the Lemma 2.

By Bayes's formula (ePN -a.s.)

E
ePN

(ei�hn j Fn�1) = E

�
ei�hn

Zn
Zn�1

��� Fn�1

�

= E
�
e
(i��n+

�n
�n

)"n�i��n�
1
2
(�n
�n

)2
j Fn�1

�
= E

�
e
(i��n+

�n
�n

)"n�
1
2
(i��n+

�n
�n

)2
� e

1
2
(i��n+

�n
�n

)2�i��n�
1
2
(�n
�n

)2
j Fn�1

�
= e�

�2�2n
2

where we use the equality

Ee
(i��n+

�n
�n

)"n�
1
2
(i��n+

�n
�n

)2
= 1

and the fact that the �2n areFn�1-measurable. So, we obtain the equality

E
ePN

(ei�hn j Fn�1) = e�
�2�2n
2

whichmeans that the sequenceh = (hn) remains conditionallyGaussianwith respect

to the new measure ePN , but has now a trivial \drift" component:

(19) Law(hn j Fn�1; ePN ) = N (0; �2n); n 6 N:

One can say that the transitions from P to the measure ePN eliminates (\kills")

the drift � = (�n)n6N of the sequence h = (hn)n6N , but preserves the conditional

variance.

We have already mentioned that from (19) it follows that if e" = (e"n)n6N is a

sequence ofFn-measurable random variables e"n with

(20) Law(e"n j Fn�1; ePN ) = N (0; 1)

(one can always construct such a sequence, although it may be necessary to enlarge

our initial probability space), then

(21) Law(hn; n 6 N j ePN ) = Law(�ne"n; n 6 N j ePN ):

Hence it is clear that the sequence (hn)n6N \behaves" as a localmartingale-di�erence

(�ne"n)n6N with respect to ePN , while in terms of the original measure P a property

similar to (21) can be expressed as follows:

(22) Law(hn � �n; n 6 N j P) = Law(�n"n; n 6 N j P):
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4. Now we considere a more-to-earth situation of the (positive!) prices

(23) Sn = S0e
Hn ;

whereHn = h1 + � � �+ hn, n > 1, and, in particular,

(24) hn = ��n + �n"n

as in the previous presentation.

It we put

(25) eHn = Hn +
X
k6n

(e�Hk ��Hk � 1)

�
=
X
k6n

(e�Hk � 1)

�

then we �nd that

(26) Sn = S0E( bH)n

where the stochastic exponential

(27) E( bH)n = e
eHn

Y
k6n

(1 +� bHk)e
�� bHk

�
=
X
k6n

(1 +� bHk)

�
:

If � bHk > �1 and the sequence bH = ( bHk)k>1 is a local martingale then (E( bH)k)k>1
is also a localmartingale but becauseE( bH)n > 0 for alln > 1 the process (E( bH)k)k>1
is a martingale, indeed.

Consider now the case (24).

First, it is reasonable to consider the question of the conditions ensuring that the

sequence S = (Sn)n>1 is a martingale with respect to the original measure P.

Wehave already seen that it is su�cient to this end that the sequence bH = ( bHn)n>1
with � bHn = e�Hn � 1 be a local martingale, i.e. E(j� bHnj j Fn�1) < 1 and
E(� bHn j Fn�1) = 0, or, equivalently,

(28) E(e�Hn j Fn�1) = 1 (P-a.s.):

Since we assume that �Hn = ��n + �n"n we can rewrite condition (28) as follows:

(29) E(e��n+�n"n j Fn�1) = 1

which is equivalent to the relation

E(e�n"n j Fn�1) = e�n :

The left-hand side here is equal to e
1
2
�2n . Thus, we arrive to the condition

(30) �n =
�2n
2
; n > 1;
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ensuring that the logarithmically conditionally Gaussian sequence

(31) Sn = S0 exp

� nX
k=1

(��k + �k"k)

�
; n > 1;

is a martingalewith respect to P. Of course, this is what one could expect because the

sequence �
exp

� nX
k=1

�
�k"k �

�2k
2

���
n>1

is a martingale.

We now proceed to the case when (30) fails.

Assume thatn 6 N . We shall construct the requiredmeasure ePN onFN bymeans

of the (conditional) Esscher transformation, in the following form:

(32) ePN (d!) = ZN (!)P(d!)

with

(33) ZN (!) =

NY
k=1

zk(!)

and

(34) zk(!) =
eakhk

E(eakhk j Fk�1)

wherewe shall choose theFk�1-measurable variablesak = ak(!) (hereF0 = f?;
g)

such that the sequence (Sn)n6N is a ePN -martingale.

In our case when Sn = S0e
Hn , this ePN -martingale property means that

E
ePN

(e�Hn j Fn�1) = 1

or

(35) E(ehn(an+1) j Fn�1) = E(eanhn j Fn�1):

Bearing in mind that hn = �n + �n"n we see that the equality (35) holds if

��n +
�2n
2

= �an�
2
n;

i.e.

(36) an =
�n
�2n

�
1

2
:

(If (30) holds for all n 6 N then an = 0 and ZN = 1, i.e. ePN = P.)
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Choosing an in accordance with (36) we obtain

E(eanhn j Fn�1) = exp

�
�
�2n
2�2n

+
�2n
8

�
:

Thus

(37) zn =
eanhn

E(eanhn j Fn�1)
= exp

�
�

�
�
�n
�n

+
�n
2

�
"n �

1

2

�
�
�n
�n

+
�n
2

�2�

and

(38) ZN = exp

�
�

NX
n=1

��
�
�n
�n

+
�n
2

�
"n +

1

2

�
�
�n
�n

+
�n
2

�2��
:

Hence the sequence S = (Sn)n6N with

Sn = S0e
Hn ; Hn = h1 + � � �+ hn;

and hn = �n + �n"n is a ePN -martingale with E
ePN
Sn = S0.

5. Extensive exposition of the problem of the construction ofMartingalemeasures

for the case of the discrete time canbe found in [ESF;ChapterV, Section 3] and for the
case of the continuous time in [ESF; Chapter VII, Section 3] and in the Appendix II.

6. In the two included below appendices (Appendix I: the paper by A. N. Shiryaev

and A. S. Cherny and Appendix II: the paper by J. Kallsen and A. N. Shiryaev) readÄ

ers can �nd detailed presentations on the problems of the \Arbitrage", \Fundamental
Theorems" and \Esscher's Change of Measure".
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