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Part II.
Martingale measures and their constructions

1. The “First” and the “Second” fundamental theorems show clearly how “mar-
tingale measures” are important for solving the problem “Arbitrage or No Arbitrage”.
It is reasonable to start our discussion of the construction of the martingale mea-
sures that are (locally) absolutely continuous or equivalent to the original basic mea-
sure P involved in the definition of the filtered probability space (2, F, (¥ n)n>0, P)
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with a discrete (with respect to time) version a result established by I. Girsanov for
processes of diffusion type, which became the prototype for a number of results for
martingales, local martingales, semimartingales and so on.

Set hyp, = —pin + opnen where py, and o, are ¥, _1-measurable %y = {&, 2} and
e = (e1,¢€2,...) isasequence of ¥,-measurable 7id random variables, ¢,, ~ A (0, 1),
on > 0.

From these assumptions it follows that

Law(hn | Fn-1,P) = N (kn,07)

which allows one to call h = (hy,) a conditionally Gaussian sequence (with respect
to P) with (conditional) expectation
E(hn | Fn-1) = pin

and variance
D(hn | Fn-1) = 02.
n n n
Setting Hy, = > hg, Ap = Y. pg, My, = Y oxer we get
k=1 k=1 k=1
(1) AH, = —punA + o, AW,
where Az,, = z,, — ©p—1, A = 1, AW,, = &,, which one can regard as a discrete
counterpart to the stochastic differential

(2) dHt = — Ut dt-l—(ft th

of some It6 process H = (H;)t>0 generated by a Wiener process W = (Wy);»0 with
the local drift p1 = (11¢)¢ >0 and the local volatility o = (0¢)¢30-

Our construction of the measure P is based on the sequence of (positive) random
variables

k=1

LEMMA 1. 1) The sequence Z = (Zp)n>1 is P-martingale with EZ, =1, n > 1.
2) Let ¥ = \| Zy, and assume that

7
(4) Eexp{ < > } < 00 (the “Novikov condition”).

Then Z = (Zn)n>1 is a uniformly integrable martingale with limit (P-a.s.)
Zoo = lim Z,, such that

rumen{3 (%) -1 52(2)')

and Zyp = E(Zoo | Fn), EZo = 1.
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LEMMA 2. 1) Let h = (hn)ngn be a conditionally Gaussian sequence such that
Law(hpn, | Fn_1;P) = N (in,02),  n < N.

Let Fn = F and Pn be the measure defined by formula Py (dw) = Zn (w) P(dw).
Then the sequence h = (hp)ngN s conditionally Gaussian with respect to Py

and N
Law(hp | Fn1,Pn) = H(0,02), n<N.

n
If H, = Y hy then one may find a (new) sequence of the iid random variables
k=1
€= (En)nz1,En ~ A(0,1), such that (Pn-a.s.)

n
Hy =Y okér, n<N,
k=1

S0, with respect to the measure P v the sequence H = (Hn)ngn is alocal martingale
(= amartingale transform).
2) If 02, n < N, are independent on w, then h = (hn)ngn is asequence of inde-

pendent Gaussian random variables with respect to P N:
Law(hp | Fn_1;PN) = H(0,02), n<N.

3 UF =\ FnandEZ =1 (i.e. Z = (Zn)n>1 is a uniformly integrable mar-
tingale) then the sequence h = (hp)n>1 is the conditionally Gaussian with respect
t0 Poo where Pog (dw) = Zoo (w) P(dw) and the sequence H = (Hp)nxz1isa Poo-local
martingale.

2. Very similar formulations one may done for the case of continuous time. Name-
ly, suppose that the process H = (H{)¢>0 is an It6 process with

(6) dH; = — 4t dt + oy th, op > 0, Hy = 0,

where W = (W})¢>0 is a P-Wiener process (a Brownian motion).
We define

o e () )

and put Py (dw) = Z7 P(dw).
If

1 (T >
(8) Eexp{§/0 ('Z—Z) du} < 0
then the process (H¢)igr is a Pr-local martingale such that (Pz-a.s.)

t —~—
) Ht:/ cudWu, t<T,
0
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where (Wy)ug7 is a ﬁT—Wiener process.
If

1 [/ iy 2 . ”»
(10) Eexp 3 — ) dup < oo (“Novikov condition”)
0

Oy

then Z = (Zt)¢>0 will be uniformly integrable martingale (i.e. equivalent to the

property EZo, = 1 where Z, = tlim Zt).
— o0
Let’s give a proof of the “Novikov condition” for case of the continuous time. (The
case of the discrete time can be considered by the similar way and, in fact, can be
obtained from the result of the continuous time.) At that, using Dambis, Dubins—
Schwartz theorem ([KY]) this problem can be reformulated by the following way:
Let

— )\Bt—ﬁt
(1) 2 = AP

where A € R, B = (By) is a Brownian motion.
We claim that the “Nowvikov condition”

(12) Ee? ™ <
implies that
(13) EZ.(\) =1.

For proof that (12)=(13) let’s assume firstly that instead (12) we have a little bit
more stronger condition

(14) Ee N7 < oo

for some ¢ > 0. Under such condition one may prove (R. Liptser and A. Shiryaev)
that EZ-(\) = 1. The proof is simple. Really, it is sufficient to show that for some
0>0

(15) sup E(ZtAT()\))1+6 < 0.
>0

Taking for simplicity A = 1 we have
§
(Ze()) " = 0Py
with

(146)*
Pl = (140 Bi=Em—t

p(146)2 1468
(Tt

Y =
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1
andp=1+4¢,q= j By Holder inequality
€

E(e(1)e) " = (E@M)P) VP (E@P)9) ' = (E(w(P)?)"/*

because E(zbgl))p

Take ¢ such that

52

o1 +0) < (1+e)(1+2e)"
Then ()7 < 2797 and so

sup E(Zgl,gt)h”; < Ee(31+e)(7At) < Ec(319)7 < 0.
20

From this it follows that the martingale (Z¢a+(1))¢>0 is uniformly integrable and as
a corollary

EZ,(1) = L.
The same is true for any /\ eR EZ-(\) =1

Now suppose that Ee™= p o < oo. Let’sput As = (1 — &)\ with 0 < € < 1 then we
find that

I4e 42 (1+e)(1—e)2r2 A2
Ee 2z 7 = Ee 2 T<Ee7?TT < 0.

From this and previous consideration we get

EZ,(Ae) =1.
Then applying the Holder inequality with 1/p =1 — ¢, 1/q = € we find that
(16) 1=EZ;(A\e) =EZ,((1 —e)\)

(l—E)E/\ZT

T)e_

2
IfEe’ ™ < oo then from (16) we get with limit passage ¢ | 0 that

_ E A1) B =X (1-2)r _ g (1-0)(AB. X 7)

A2

< (EZ, ()5 (Ee=9% 7)7 < (EZ,(V) '~ (Ee>

1< EZ-(N).
But EZ,(\) < 1 because (Ziar(A))¢>0 is a nonnegative supermartingale with
Z()( ) =1. SO,
2
(17) Ee¥™ < 00 = EZ,(\) = 1.

It is interesting to note that from (16) it is easy to see that instead the condition
2

A
Ee2 7 < oo it is sufficient to assume only that

(1—e)A2

1 limelogE T=0.
(18) Eli%soge 2 0

Indeed, from this condition it follows that for sufficiently small ¢ > 0

1412
Ee 2 27 = Ee = Ee

Thus, again 1 = EZ-(A;) and the inequalities in (16) hold and by (18) we get that
EZ,()\) =1.

(1+a)(21—a)2 A2y (1—s>gl—s2)>\27
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3. We intend now to prove the statements of the Lemma 2.
By Bayes’s formula (P x-a.s.)

. . 7
EﬁN(ezAhn | 9:”_1) — E<ez>\hn Znil ‘ gn—l)

9 HEn —i _Llopny2
E(e(z)\an-f'o.Z)En iApn —5 (58 |9:n_1)

: 1/, 2 1/, 2 . 1 2
_ E(e(z)\an—{-‘z—Z)sn—E(z)\an—{-g—Z) .65(1A0”+1;_z) _”‘“"_5(1;_2) |gn—1)
XQG%
—e 2

where we use the equality
Eelirontb2)en—5(idon+b2) _
and the fact that the o2 are F,,_i-measurable. So, we obtain the equality

. A2
Es, (e | Fpr) =€ 2

2
n

which means that the sequence h = (hy,) remains conditionally Gaussian with respect
to the new measure P, but has now a trivial “drift” component:

(19) Law(hn | Fn_1;PN) = #(0,02), n<N.
One can say that the transitions from P to the measure PN eliminates (“kills”)

the drift 44 = (pn)ngv of the sequence h = (hy)ngn, but preserves the conditional
variance.

We have already mentioned that from (19) it follows that if &€ = (€p)ngn is a
sequence of & ,-measurable random variables &,, with

(20) Law(Zpn | Fn-1;Pn) = A(0,1)

(one can always construct such a sequence, although it may be necessary to enlarge
our initial probability space), then

(21) Law(hy, n < N | Py) = Law(opén, n < N | Py).
Henceit is clear that the sequence (hy,)n< v “behaves” as alocal martingale-difference
(0nEn)ng N With respect to P, while in terms of the original measure P a property

similar to (21) can be expressed as follows:

(22) Law(hp — pn, n < N | P) = Law(open, n < N | P).
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4. Now we considere a more-to-earth situation of the (positive!) prices
(23) Sn = SOeHn;

where H,, = h1 + -+ + hy, n > 1, and, in particular,

(24) hp, = —pin + onen
as in the previous presentation.
It we put
(25) ?ITL = Hn + Z (GAHI" — AHk — 1) <: Z (eAHk' — 1))
k<n k<n
then we find that
(26) Sn = So6(H)n

where the stochastic exponential

(27) E(H)p = T (1 + AHy)e AHr (: doa+ Aflk)>.

k<n k<n

If AH, > —1and the sequence H = (flk)k>1 is a local martingale then (&(H))
H)x)

=

isalso alocal martingale but because é"’(f[)n > Oforalln > 1theprocess (&(
is a martingale, indeed.

=

Consider now the case (24).

First, it is reasonable to consider the question of the conditions ensuring that the
sequence S = (Sp)n>1 is a martingale with respect to the original measure P.

We have already seen that it is sufficient to this end that the sequence H= (fl n)n>1
with AH, = e2Hn — 1 be a local martingale, i.e. E(JAH,| | Fn_1) < oo and
E(Aﬁn | rn—1) = 0, or, equivalently,

(28) E(e2Hn | Z,_1) =1 (P-as.).
Since we assume that AH,, = —u,, + 0,,&, we can rewrite condition (28) as follows:
(29) E(e Hntonen | Z, 1) =1

which is equivalent to the relation
E(e”®" | Fp_1) = el

1_2
The left-hand side here is equal to e27~. Thus, we arrive to the condition

2
(30) =24, n>l,
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ensuring that the logarithmically conditionally Gaussian sequence

(31) Sn =S80 exp{Z(—uk + aksk)}, n>1,

k=1

is amartingale with respect to P. Of course, this is what one could expect because the

sequence
n o2
(o (e 3)))
k=1 n>1

=z

is a martingale.

We now proceed to the case when (30) fails. N

Assume that n < N. We shall construct the required measure P 5 on % x by means
of the (conditional) Esscher transformation, in the following form:

(32) Pr(dw) = Zn(w) P(dw)
with
N
(33) Znw) = [] zr(w)
k=1
and
edkhk
(34) zp(w) =

E(earhr | Fp_1)

where we shall choose the 7, _j-measurable variables ay, = ay(w) (here o = {@,Q})
such that the sequence (Sy,)n<n is a Py-martingale.
In our case when S,, = SgeI», this P y-martingale property means that

EﬁN(eAHn | ‘g'\n—l) =1
or

(35) E(ehnlont) | Z, 1) = E(e®"n | Fply).

Bearing in mind that h,, = u, + o,&, we see that the equality (35) holds if

2
—Hn + 771 = _angi:
i.e.
pn 1

(If (30) holds for all n < N then a, = 0and Zy = 1,i.e. Py = P.)
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Choosing ay, in accordance with (36) we obtain

|

2
0
E(e® M | Fps) = eXP{_—2Unz +
n

b

Thus

and

(38) ZN:exp{—iK_Z_:jLU?n)S"JF%(_ﬁ_ZJF%)T}-

Hence the sequence S = (Sy)ngn With
Sn:SOEHny Hn:h1++hn;

and hy, = pin, + onep isa ISN—martingale with EﬁN Sp =80

5. Extensive exposition of the problem of the construction of Martingale measures
for the case of the discrete time can be found in [ESF; Chapter V, Section 3] and for the
case of the continuous time in [ESF; Chapter VII, Section 3] and in the Appendix II.

6. In the two included below appendices (Appendix I: the paper by A. N. Shiryaev
and A. S. Cherny and Appendix II: the paper by J. Kallsen and A. N. Shiryaev) read-
ers can find detailed presentations on the problems of the “Arbitrage”, “Fundamental
Theorems” and “Esscher’s Change of Measure”.
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