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Chapter 6

Infinite Dimensional Ornstein Uhlenbeck
Processes
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e Mean value
E& = e EE

e Autocovariance function
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e Mean value
E& = e B

e Autocovariance function

cov{&, &} = [var{&} + %(62(8/\75)@ — ) o~ (s+t)a
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e Mean value
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e Autocovariance function
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e {¢} is a Gaussian process whenever &, is Gaussian
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e Mean value
E& = e "E&

e Autocovariance function
b —|S a
cov{{,, &} = [var{&} + %(GQ(SM)Q —1)]e (s+1)

e {£} Is a Gaussian process whenever & is Gaussian
e {&} IS a (strong) Markov process.
e {£} has a unique invariant measure N(0,b/2a)

o if & ~ N(0,b/2a), {&} is stationary ergodic Markov (mean
zero) Gaussian process. Autocovariance function:

b —alt—s
Egs&tzﬁe t |
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e { X;} has a unique invariant measure, say u = N(0,X) n-
dimensional Gaussian measure

1 -1
dr) = —<X m,az>/2d
IU’( x) Z(E)e I’,

Z(32) being a normalizing constant

P —/ e A Be 54 (s.
0

Notice that the fact that > solves:
YA+ AY =B

Is the crucial property of the matrix X
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o If Xy ~ u, {X;}+>0 IS stationary mean zero (Markov) Gaus-
sian process with autocovariance tensor:

Ye =94 whenever 0 < s <t

P(s,t) = B { XX} = { e~(=DAY) whenever 0 <t < s.
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o If A& B do commute
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o If A& B do commute

Y= B/ e >4 ds = B(2A)™!
0

o If x,y € R” we have:

<z, l(s,t)y >=E{<z,X; ><y, X; >}
—< VY, Ve Ay >

=< x, e"t_s|Ay >
with the notation:

<+, >p=<VD-,VD:- >=<D., >
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e The Markov process {X;};>q is symmetric (Fukushima)
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e The Markov process {X;};>q is symmetric (Fukushima)

e Generated by the Dirichlet form of the measure , i.e. to the
quadratic form:

Qfg) = [ < Vi), Vo) >a psldo

defined on the subspace Q of L*(R", ux(dz)) comprising the
absolutely continuous functions whose first derivatives (in

the sense of distributions) are still in the space L?(R", ux(dz)).
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e The role played by BdW, is now played by a H-valued
(cylindrical) Wiener process with covariance given by the
operator B. The appropriate mathematical object is a linear
function, say W, from the tensor product L?([0, oo), dt)®,Hp
into a Gaussian subspace of L*(Q, F,P) where (Q, F,P) is
the complete probability space we work with. If x € Hpg
and t > 0, then Wp(1y,(-)z) should play the same role as
< z, W; > in the finite dimensional case.
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HJM Stochastic PDE

For the sake of the present discussion:
e Take a; =0

e Choose o; = ¢ deterministic & independent of ¢

df, AW
Yt _ _» @
dt fito

e SPDE when A is a partial differential operator

=% [a] [=] [~] ] [=]



HJM Stochastic PDE

For the sake of the present discussion:
e Take a; =0

e Choose o; = ¢ deterministic & independent of ¢

df, AW
Yt _ _» @
dt fito

e SPDE when A is a partial differential operator

e Integral form

fo= fo - /O Af.ds + oW (1)
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e Weak Form: for f* € H*

t
< f* fi>=< ", fo > —/ <A f* fe > ds+ <o ffW(t) >
0

which makes sense when f* belongs to the domain D(A*) of
the adjoint operator A* and the domain D(¢*) of the adjoint
operator ¢*. Very seldom tractable

e Evolution Form (variation of constant formula):

t
fr=efy+ / e =55 d W (s)
0

This requires that the exponentials of operators exist, i.e.
that A generates a semigroup of operators.
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OU Set Up

e X = {X;;t > 0} stochastic process in a Banach/Hilbert
space F

e Probability space (€2, F,P)

e Filtration (F;):>¢ (satisfying the usual assumptions)
e Drift operator A, possibly unbounded operator on F.

— A is the infinitesimal generator of a Cy-semigroup {e¢t4;¢ > 0} of bounded
operators on F.

— The domain of A,

eAf—f

D(A)={f € F; %in% exists.},

is (generally) is a proper subset of F
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e Noise W = {W;; t > 0} is a Wiener process in a real separa-
ble Banach space E with Hy, the reproducing kernel Hilbert
space associated with the Guassian measure ;. (abstract
Wiener space)

E* — Hj,
| (Riesz identification)
HW — F
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e Noise W = {W;; t > 0} is a Wiener process in a real separa-
ble Banach space E with Hy, the reproducing kernel Hilbert
space associated with the Guassian measure ;. (abstract
Wiener space)

E* — Hj,
| (Riesz identification)
HW — F

e The variance/covariance operator B : £ — F'is a bounded
linear operator (thus it has a restriction to Hy, and this re-
striction is Hilbert-Schmidt when F' is a Hilbert space.)

Note one could take B from Hyy only if we start with a cylin-
drical Brownian motion.

Formally the Ornstein Uhlenbeck process satisfies the stochas-
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tic differential equation
dX; = AX,dt + BdW,

or in integral form

t t
X = X0+/ AXsds—l—/ BdW.
0 0
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