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Chapter 6

Infinite Dimensional Ornstein Uhlenbeck
Processes
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• Mean value
Eξt = e−taEξ0

• Autocovariance function

cov{ξs, ξt} = [var{ξ0} +
b

2a
(e2(s∧t)a − 1)]e−(s+t)a

• {ξt} is a Gaussian process whenever ξ0 is Gaussian

• {ξt} is a (strong) Markov process.

• {ξt} has a unique invariant measure N(0, b/2a)

• if ξ0 ∼ N(0, b/2a), {ξt} is stationary ergodic Markov (mean
zero) Gaussian process. Autocovariance function:

Eξsξt =
b

2a
e−a|t−s|.
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• {Xt} has a unique invariant measure, say µ = N(0, Σ) n-
dimensional Gaussian measure

µ(dx) =
1

Z(Σ)
e−<Σ−1x,x>/2dx,

Z(Σ) being a normalizing constant

Σ =

∫ ∞

0

e−sABe−sA ds.

Notice that the fact that Σ solves:

ΣA + AΣ = B

is the crucial property of the matrix Σ
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• If X0 ∼ µ, {Xt}t≥0 is stationary mean zero (Markov) Gaus-
sian process with autocovariance tensor:

Γ(s, t) = Eµ{XsXt} =

{
Σe−(t−s)A whenever 0 ≤ s ≤ t

e−(s−t)AΣ whenever 0 ≤ t ≤ s.
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• If A & B do commute
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∫ ∞

0

e−2sA ds = B(2A)−1

• If x, y ∈ Rn we have:

< x, Γ(s, t)y >= Eµ{< x,Xs >< y, Xt >}
=<

√
Σx,

√
Σe−|t−s|Ay >

=< x, e−|t−s|Ay >Σ

with the notation:

< · , · >D=<
√

D · ,
√

D · >=< D · , · >
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• The Markov process {Xt}t≥0 is symmetric (Fukushima)

• Generated by the Dirichlet form of the measure µ, i.e. to the
quadratic form:

Q(f, g) =

∫
Rn

< ∇f (x),∇g(x) >B µΣ(dx)

defined on the subspace Q of L2(Rn, µΣ(dx)) comprising the
absolutely continuous functions whose first derivatives (in
the sense of distributions) are still in the space L2(Rn, µΣ(dx)).
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• The role played by
√

BdWt is now played by a H-valued
(cylindrical) Wiener process with covariance given by the
operator B. The appropriate mathematical object is a linear
function, say WB, from the tensor product L2([0,∞), dt)⊗̂2HB

into a Gaussian subspace of L2(Ω,F , P) where (Ω,F , P) is
the complete probability space we work with. If x ∈ HB

and t ≥ 0, then WB(1[0,t)(·)x) should play the same role as
< x,Wt > in the finite dimensional case.
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HJM Stochastic PDE

For the sake of the present discussion:
• Take αt ≡ 0

• Choose σt ≡ σ deterministic & independent of t

dft

dt
= −Aft + σ

dW

dt

• SPDE when A is a partial differential operator

• Integral form

ft = f0 −
∫ t

0

Afsds + σW (t)
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• Weak Form: for f ∗ ∈ H∗

< f ∗, ft >=< f ∗, f0 > −
∫ t

0

< A∗f ∗, fs > ds+ < σ∗f ∗, W (t) >

which makes sense when f ∗ belongs to the domain D(A∗) of
the adjoint operator A∗ and the domain D(σ∗) of the adjoint
operator σ∗. Very seldom tractable

• Evolution Form (variation of constant formula):

ft = etAf0 +

∫ t

0

e(t−s)SσdW (s)

This requires that the exponentials of operators exist, i.e.
that A generates a semigroup of operators.
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D(A) = {f ∈ F ; lim
t→0

etAf − f

t
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• Noise W = {Wt; t ≥ 0} is a Wiener process in a real separa-
ble Banach space E with HW the reproducing kernel Hilbert
space associated with the Guassian measure µ (abstract
Wiener space)

E∗ ↪→ H∗
W

l ( Riesz identification)

HW ↪→ E



16/17

�

�

�

�

�

�

	

• Noise W = {Wt; t ≥ 0} is a Wiener process in a real separa-
ble Banach space E with HW the reproducing kernel Hilbert
space associated with the Guassian measure µ (abstract
Wiener space)

E∗ ↪→ H∗
W

l ( Riesz identification)

HW ↪→ E

• The variance/covariance operator B : E → F is a bounded
linear operator (thus it has a restriction to HW and this re-
striction is Hilbert-Schmidt when F is a Hilbert space.)

Note one could take B from HW only if we start with a cylin-
drical Brownian motion.

Formally the Ornstein Uhlenbeck process satisfies the stochas-
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tic differential equation

dXt = AXtdt + BdWt

or in integral form

Xt = X0 +

∫ t

0

AXsds +

∫ t

0

BdWs.
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