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Chapter 3

First Stochastic Models of the Term
Structure
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Factor Models for the Term Structure

e At each time t, the price P(t,T) of a zero coupon bond with
maturity 7" and nominal value $1 is a random variable

e Probability space (€2, F,P)
e Maturity date 7" satisfies t <T < +o0.

e Filtration {F;};>, defines history (the elements of F; are the
events prior to time t)

e All processes adapted to this filtration

e The prices {P(¢t,T); 0 <t < T} of the bond with maturity T’
form a semi-martingale
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e In fact foreach 7', { P(¢,T); 0 <t < T} assumed to be an Ito
process:

d
dP(t,T) = P(t,T)[u"(t, T)dt + > oI (t, T)de}’
J=1

e For each T' > 0, the (scalar) processes

(LDt T): 0<t<T} and {oP)(t,T): 0<t<T}

— are adapted
— satisfy appropriate integrability conditions

. gt(l), . .g,@ are d independent F;-Wiener processes

d Wiener processes driving a continuum of SDE’s
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e Term structure strongly depends on the state of the economy

e State of the economy at time ¢ given by a (finite dimensional)
random vector S;

e {5;;t > 0} is the solution of a SDE driven by the Wiener
processes ¢V, ... ¢

e The coefficients of the SDE for P satisfy:
p O, 1)y = py(S,t, 7y and P , T) = o PI(S, ¢, T)
where:
(S,t, T)—pu)(S,t,T) and  (S,t,T)—c'PI (S t,T)

are deterministic functions
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Short Rate Models

One-factor, the single factor being the short interest rate
(overnight rate, 13-week T-Bill rate, .. ..)

e Use standard notation r; for the single factor .S,

e WALOG assume that we have a single Wiener process W

e We assume F; = ]—"t(W)

e \WWe assume 1, is the solution of a SDE:

d?"t = ,UJ(T) (t, ’I"t) dt + O'(r) (t, 7"15) th
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(t,r)—u(t,r) and (t,r)—c"(t,7)

real valued (deterministic) functions such that existence and
uniqueness of a strong solution hold

e {r;} is Markovian

e Not supported by data!!!(
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Pricing

e Price zero coupon riskless bonds to start with

e Treat them as derivatives & use abstract form of Black-Scholes
theory

e 1, plays the role of the underlying risky asset

e Money market account { B;; t > 0} defined by:

dBt = ’I“tBt dt
B, = 1

Solution: t
B, = eJorsds

(still called the risk free asset)
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e The only tradable asset is the money market account B,

e Impossible to form portfolios which can replicate interesting
contingent claims

, PLENTY of martingale measures!!

e Brownian filtration + Martingale Representation Theorem

choice of @ <= choice of an Ito integrand {K;; t > 0}

(Market Price of Risk)
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e Play Girsanov’'s game, i.e. set

t
Wt=Wt+/ K, ds
0

= u(t,ry) — ol(t,ry) Ky, and

th:ﬂtdt+5'tth
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e The dynamics of r, under P to price the
bonds P(t,T) even if we impose the no-arbitrage condition

e For pricing purposes, models of the short interest rate r; will
have to specify either

— Dynamics under P
— Market Price of Risk

or equivalently:

— Dynamics under Q
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Specific Models

All the classical/popular models can be recast in one single
form of the risk neutral dynamics:

d’l"t = (Oét + 6157“15) dt + O't’f'g th
where v > 0 and
t‘—>Oét and t‘—>ﬁt and t‘—>0't

are deterministic functions of ¢
e If v # 0, hope for r; to remain positive
o If 3, > 0,  "mean-reverts” to a;/f;

e Coefficients not Lipschitz when 0 < v < 1
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The Vasicek Model

e =q, i =0,00=0
ey =0
dry = (o — Ory) dt + o dW;
° to the level /3
e o//3 governs the fluctuations

e Gaussian so explicit formulae
e Gaussian so possible negative values

— happens rarely if the parameters cooperate
— how about interest rates?
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The Cox-Ingersoll-Ross (CIR) Model

e oy =q, B =3, 0, = o as in Vasicek Model
oy =1/2

dry = (o — Bry) dt + o/ry dW;
° to the level /3
e /3 governs the fluctuations

e Non-Gaussian process, for all times
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Other Frequently Used Models

e the Dothan model
o =0, 5 = — 3 and o, = o constant while v = 1.

d’l“t = B?"t dt + oT¢ th

¢ the Black-Derman-Toy model
a; =0and~ = 1.

dT‘t = —67"‘25 dt + O¢T'y th

e the Ho-Lee model
G = 0 and o; = ¢ constant while v = 0.

d?"t = (¢ dt + O'th
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PDE’s and Numerical Computations

Assume that in a risk neutral world (i.e. under a given equivalent
martingale measure)

dry = p(t,ry) dt + o(t,r,) dW;

Arbitrage pricing paradigm the price at time t of any contin-
gent claim ¢ with maturity 7' is given by

V; = EQfge | 7
For a zero coupon bond with maturity 7
P(t,T) = E®{e™h ™| 7}

r. IS Markovian
V, = EQ flrp)e b ), 0 < s <)
= E&{f(rp)e b ¥}
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so V; is a deterministic function of ¢t and r,. Set:
Fy(t,T) = E¥{ f(rp)eh ™%|r, = r}
then vV, = F,.(¢t,T). formula

The no-arbitrage price at time ¢ of any contingent claim &
of the form & = f(ry) with maturity 7 > ¢ is of the form
F(t,r:) where F'is a solution of the parabolic equation:

OF 1 2 0°F

ot or 2 or
with the terminal condition F(T',r) = f(r).

O oy, 2 (¢ )20, 1)

(t,r)—rF(t,r) =0
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Explicit Solutions: Vasicek Model

1 ,0°P oP oP
—0' W (Oé — ﬁr)—r — TP 81‘,‘ =

with approprlate boundary condition, so for a zero coupon bond

Pr<t, T) _ eA(T—t)—B(T—t)T

Affine Model
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Explicit Solutions: CIR Model

1, 0P oP OP
—0 T T (a — ﬁr)—r —rP+ g =0

with approprlate boundary condition, so for a zero coupon bond

Pr<t, T) _ eA(T—t)—B(T—t)T

2(e™ — 1)
a1+ 2

B(x) =

2ryelatie? 208/0?
v+®@”—D+?J

v =vVa?+ 202
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Rigid Term Structures

¢ the Vasicek-Hull-White model corresponds to the case v = 0
and consequently in this case the dynamics of the short term
rate are given by the SDE:

dry = (a — Ory) dt + o dW;

e CIR-Hull-White model corresponds to the case v = 1/2 in
which case the dynamics of the short term rate are given by
the SDE:

dry = (o — Bry) dt + o4/ri dW4.
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Back to the Multi Factor Models

View terms in the original equation as functions of the maturity

t d  pt
afs, -)ds+2/ o)
j=1 70

or in differential form:
df (¢, ) dt + Z ot -)deY

for an interpretation as equations for the dynamics
of the forward curve.

, for different t's, the f(¢, -) have different do-
mains of definition!!!
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The Musiela’s Notation

Reparametrize the forward curve by ¢ and the time to maturity
r=T—1

fi(x) = f(t,t+ ), t>0, >0,
Forward curve at time ¢:
fi: 513‘—>ft<513)

Already discussed the choice of a space F' of functions of z.

)
d N
dfy = [ fi + auldt + > o de)
j=1
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provided
a; : r—ai(x) = at,t+2x) and o) as<—>a(j)(:1:) = oU(t, t + )

The HIM prescription appears a time evolution in infinite dimen-
sion via a stochastic differential equation in a function space.

d
dfy = [Af + ot + Y o dgt”

J=1

Alisan
¢ not defined everywhere in I
e possibly unbounded

(differential) operator on F’
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