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Chapter 2

Practical Estimation of the Term Structure
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Functional Spaces for Yield/Forward Curves

Yield Curve ⇐⇒ Forward Curve

Requirements for a Space F of Forward Curves x ↪→ f (x)

• All f ’s defined on the same interval [0, x∗) with x∗ = ∞ pos-
sibly

• Evaluation functionals make sense:
– f(0) short rate
– f(x∗) long rate

• Reasonable implementation of the (left) shift semigroup {St}t≥0

[Stf ](x) = f (x + t)
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Examples
1. F = L2([0, 1]) proposed by Cont et al. for the fluctuations of

the yield curve around a (straight) baseline joining the short
and the long interest rates (random strings)

2. In his analysis of the invariant measures (last lecture) for a
finitely many factor HJM model in Musiela’s notation, Vargi-
olu uses for F one of the Sobolev’s spaces:

H1
γ = {f ∈ L2(R+, e−γxdx); f ′ ∈ L2(R+, e−γxdx)}

equipped with the norm:

‖f‖2
γ =

∫ ∞

0

|f (x)|2e−γxdx +

∫ ∞

0

|f ′(x)|2e−γxdx

where γ ≥ 0

• F = H1
0 too small: does not contain any non zero constant
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function, or any function converging toward a non-zero
limit at ∞.

• H1
γ too large: its elements and their derivatives can be

very large at infinity

3. Space F = Hw introduced and used by Filipovic

Hw = {f ∈ L1
loc(R+, dx); f is absolutely continuous and∫ ∞

0

f ′(x)2w(x)dx < +∞}

weight function w is

• nondecreasing continuously differentiable function from
R+ onto [1,∞)

• w−1/3 is integrable.

Hw is a Hilbert space for the norm:

‖f‖2 = |f (0)|2 +

∫ ∞

0

|f ′(x)|2w(x)dx
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4. Modified version of Hw with x∗ < ∞

we rarely encounter bonds with time to maturity greater
than 30 years.
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The Effective Dimension of the Space of Yield
Curves

Suspicion that the actual (observed) yield/forward curves are
restricted to a manifold of small dimension (Nelson-Siegel and
the Nelson-Siegel-Svansson families for example)

Principal Component Analysis (PCA)

Assumptions: the bonds used are
• default free

• no embedded options

• no call or convertibility features

• we ignore the effects of taxes and transaction costs
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PCA of the Yield Curve

• Data on the US yield curve as provided by BIS

• 1352 succesive trading days starting January 3rd 1995

• yields on the US T-Bills for times to maturity

x = 0, 1, 2, 3, 4, 5, 5.5, 6.5, 7.5, 8.5, 9.5 months.
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Variation Explained

Proportions of the variance explained by the components of the PCA of the daily
changes in the US yield.
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Loadings

From left to right and top to bottom, sequential plots of the first four US yield
loadings
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Swap Contracts

• Traded publicly since 1981

• The most popular fixed income derivatives

• Liquid instruments used to hedge interest rate risk of fixed
income portfolios

Contract Elements

Two parties exchange (swap) some specified cash flows
at agreed upon times
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Interest Rate Swaps
• counterparty A, agrees to make interest payments deter-

mined by an instrument PA (say, a 30 year US Treasury bond
rate)

• counterparty B, agrees to make interest payments deter-
mined by another instrument PB (say, the London Interbank
Offer Rate – LIBOR)

• equal principals (on which interest payments are computed)

• same payment schedules (quartely, semi-annualy, . . . )

Example

plain vanilla contract involves a fixed interest rate and the 3 or
6 months LIBOR rate.
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A Price Formula for a Plain Vanilla Swap

• X the common principal

• R the fixed interest rate on which the swap is written

• T1, T2, · · · , Tm the dates after the current date t, of the pay-
ments are scheduled

• r(t, T ) variable interest rate

Present value of the cashflow

Pswap = X

m∑
j=1

(Tj − Tj−1)(r(t, Tj−1)−R)d(t, Tj)

with the convention T0 = t.

Remark



14/100

�

�

�

�

�

�

	

If we add a payment of the principal X at time Tm, then the
cashflow of the swap becomes identical to the cashflows gener-
ated by a portfolio long a (fixed rate) coupon bearing bond and
short a floating rate bond with the same face value

Simple algebraic manipulations

Pswap(t, T ) = X

1− [P (t, Tm) + R
m∑

j=1

(Tj − Tj−1)P (t, Tj)]


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The Swap Rate Curve

On any given day t, the swap rate Rswap(t, T ) with maturity
T = Tm is the unique value of the fixed rate r, which makes the
swap price equal to 0

i.e.the value of the fixed interest rate for which the counter-
parties will agree to enter the swap contract without paying or
receiving a premium

Solve
Pswap(t, T ) = 0

for r. This gives:

Rswap(t, Tm) =
1− P (t, Tm)∑

+j = 1m(Tj − Tj−1)P (t, Tj)
.
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PCA of the Swap Rates

• Data from Data Stream

• From May 1998 to March 2000

• swap rates with the payment schedule given by the 15 times

x = 1, 2, · · · , 10, 12, 15, 20, 25, 30 years
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Variation Explained

Proportions of the variance explained by the components of the PCA of the daily
changes in the swap rates.
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Loadings

From left to right and top to bottom, sequential plots of the first four swap rate
loadings
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Parametric Yield/Forward Curve Estimation

1. Choose a family {f (x, θ)}θ parametrized by a finite dimen-
sional parameter θ

2. Given observations {f (xj)}j=1,··· ,m on a given day, the esti-
mate of the forward curve is

x ↪→ f (x, θ̂)

where
θ̂ = arg min

θ
L2({f (xj)}j=1,··· ,m, f( · , θ)

for a certain cost function L2
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The Nelson-Siegel Family

• 4-dimensional parameter θ = (θ1 > 0, θ2, θ3, θ4 > 0)

fNS(x, θ) = θ1 + (θ2 + θ3x)e−x/θ4

• Hump when θ3 > 0, Dip when θ3 < 0

• Discount Rate Curve

dNS(x, θ) = exp
[
−θ1x + [θ4(θ2 + θ3θ4) + θ3θ4x]e−x/θ4

]
• Yield Curve

rNS(x, θ) = −θ1 + [
θ4(θ2 + θ3θ4)

x
+ θ3θ4]e

−x/θ4

Used in Finland and Italy
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The Swensson Family

• Add an extra exponential to produce a second hump/dip

• 6-dimensional parameter θ, and defined by:

fS(x, θ) = θ1 + (θ2 + θ3x)e−θ4x + θ5xe−θ6x

• Yield Curve

rS(x, θ) = θ1 −
θ1θ4

x
(1− e−θ4x) +

θ2

θ4

[
1

θ4x
(1− e−θ4x)− e−θ4x

]
+

θ5

θ6

[
1

θ6x
(1− e−θ6x)− e−θ6x

]
Used in many countries including Canada, Germany, France
and the UK.
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Implementation Issues

• Indirect Observations
• If

– Bj bond prices available on a given day
– Bj(θ) prices one would obtain using formulae above

• Find θ̂ minimizing

L(θ) =
∑

j

wj|Bj −Bj(θ)|2

weights wj ’s are function of the duration and the yield to ma-
turity of the j-th bond

• Short maturity bills/bonds filtered out because of liquidity
problems (large bid-ask spreads)

• Accrued interests and clean prices used
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• Difficult optimization: first Nelson-Siegel, then one adds two
extra
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Non-Parametric Estimation

• Inductive (bootstrap) Empirical Procedure: unsatisfactory al-
gorithm leading to piecewise constant curves

• Smoothing Splines (Central Banks of Japan & US) The re-
sulting forward curve is the graph of the function x ↪→ ϕ(x)

minimizing

L(ϕ) =
∑

j

wj|Bj −Bj(ϕ)|2 + λ

∫
|ϕ′′(x)|2 dx
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Example

Smoothing Spline for 04/17/00 Yields
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Plot of the US Treasury Notes and Bonds redemption yields on April 17, 2000

together with the smoothing spline.


