Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis

René Carmona

Bendheim Center for Finance

 ORFE \& PACM, Princeton University email: rcarmna@princeton.edu URL: http://www.princeton.edu/ rcarmona/IPAM / Financial Math

Motivation (where it all started)

- September 99, Cont's talk in Ascona
- Winter 99, Cont visits Princeton
- Graduate Seminar
- Filipovic's PhD

Tutorial Prerequisites / Objectives

- Prerequisites

1. Mathematical: Some Probability, including Wiener Process and Stochastic Calculus
2. Professional Experience: NONE

- Objectives

1. Read Professional \& Mathematical Publications
2. Dive into Mathematical Research Problems

Tutorial Contents

- The Term Structure of Interest Rates

1. The Term Structure of Interest Rates: A Crash Course
2. Statistical Estimation of the Term Structure
3. First Term Structure Models

- Infinite Dimensional Stochastic Analysis

1. Infinite Dimensional Integration Theory
2. Infinite Dimensional Stochastic Integration
3. Infinite Dimensional Ornstein Unlenbeck Processes

- More Stochastic Models for the Term Structure

1. Infinite Dimensional HJM Models
2. Problems

Chapter 1

The Term Structure of Interest Rates:
A Crash Course

The Time Value of Money

One dollar is worth more now than later

Simplest possible fixed income instrument.

- Cash flow: ONE SINGLE PAYMENT (principal or nominal X)
- At a given date in the future (maturity date) say n years from now
- Present value:

$$
P(X, n)=\frac{1}{(1+r)^{n}} X
$$

Discount Bond

$$
P(X, n)=\frac{1}{(1+r)^{n}} X
$$

Present value of a nominal amount X due in n years time.

- discount bond or zero coupon bond
only cash exchange at the end of the life of the instrument
- r is called the (yearly) discount rate or spot interest rate

Treasury Bills

Securities issues by the US government with a time to maturity of one year or less.

NO coupon payments

Example

- Investor buys a $\$ 100,00013$-week T-bill at a 6% yield
- Investor pays $\$ 98,500$ at the inception of the contract
- Investor receives the nominal value $\$ 100,000$ at maturity 13 weeks later

Computations

$13=52 / 4$ weeks $=$ one quarter, and 6% is an annual rate, so discount is $100,000 \times .06 / 4=1,500$

Terminology

Rates, yields, spreads, . . . are usually quoted in basis points. There are 100 basis points in one percentage point.

Auctions

Maturities of Treasury Bill issues:

- 13 weeks: three-month bills- Auctioned off every Monday
- 26 weeks: six-month bills- Auctioned off every Monday
- 52 weeks: one-year bills- Auctioned off every Month

Accurate only at inception!

The Wall Street Journal

Treasury Sets Offering Of About \$22 Billion In Short-Term Bills

Dow Jones Neusuites
WASHLYGTON-The Treasury Department plans to raise 54.98 billion in new cash with the sale on Tuesday of about $\$ 2$ billion in shont-terms bills to redeem $\$ 12.02$ billion in maturing bills.

The offering will be divided between $\$ 12$ billion 13 -week and $\$ 10$ billion 26 -week bills maturing on March 29, 2001, and June 28, 20fl, respectively. The Cusip number for the three-month bills is 912795 FZ . The Cusip number for the six-month bills is 91279;GN5.

Noncompetitive tenders for the bills, available in minimum $\$ 1,000$ denominations, must be received by noon EST Tuesday at the Treasury or at Federal Reserve banks or branches. Competitive tenders for the bills must be received by 1 p.m, EST.

TREASURY BALLS

DAYS TD

UAT		成	ASKED		Y․
ject 38	5	4.80	$4{ }^{2}$	-0.20	4.79
Jan 040	13	4%	4.39	- 060	4.6
Jari 110	0	4.75	4.56	-0.5	172
Jan 18 '01	4	480	4.72	-0.5	4.
1-an 25	34	468	4.24	-C.54	4
Feth 919	4	498	4.55	-0.53	5.0
Feb 08	48	5.8	5.02	-e.5!	5\%
Feb 15 \%	5	5.07	5.6	-0.49	5.14
Fetis 20	62	5.8	5.16	-0.47	E.2
Mar 01.01	69	5. x	5.1	-045	C
	76	5.21	5.19	-0.4	3
Mar 15 '01	83	521	5.19	-042	53
Max 2201	9	5.25	524	-0.0.0	5.3
Max 290	97	52	520	-0.3	53
Mar $x^{0} 0$	97	5\%	325		5.4
Asr 36 '01	104	j26	524	-8.35	5.3
Atr 12 '01	111	5.27	5.25	-0.35	E.
448 193	118	5.29	5.27	-0.33	5.4
Agr 26 ll	12	5.30	5.28	- 0.3	5.4
May 030	132	531	5.29	-03	. 4
May ${ }^{2} 0$	139	5.2	5.3	-0.28	2.4
May 170	146	5.34	5.3	-026	5.5
May 24 '01	153	5.35	5.33	-0.24	5.50
May 319	160	5.3	534	-3.22	5.55
und 07 9?	167	5.39	5.3 ?	-3x	5.
Sum 48.	124	5.39	5.37	- 0.19	5
dan 2101	181	5.41	53	- 0.17	5.62
Uun 2801	188	5.38	5.31		5
1090 30 Cl	251	5.6	$5.2{ }^{2}$	-0.15	5.4
304 2901	342	5.06	5.07	-0.3	

(EC

Local (Tucson) Paper

 26 weok discount rate was 5.5 perreent:
 Wil huction was Nov 28 . The discount rati was 5.3 I percient
WThe rex muetion at ithe wo year rote is scheduted for tan. 24 The
Last aribo was Weenesday. The coupon rate was 512% percent with :
W. The nex auchun of the fiever note is nop yet scheduted The last

last asinh was Weonesday. The coupon rate was 5125 percent wh. .aauction of the 30 -yer bond was Aug, 10 . The coupon rate was 6.25 .

The Dopatrunt of He Thasury Bureat of the Pubtic Debt home page

[^0] \%

Excerpts from a local Tucson paper on December 31st, 2000

The Discount Factor

The present value of any future cashflow can be computed by multiplying its nominal value by the appropriate value of the discount factor

$$
d_{t, m}=\delta(t, T)=\frac{1}{\left(1+r_{t, m}\right)^{m}}
$$

- current time t
- time to maturity m
- maturity date $T=t+m$
- $r_{t, m}$ yearly interest rate in force at time t for this time to maturity.

It assumed (implicitly) that the time to maturity $T-t$ is a whole number m of years.

$$
\log \left(1+r_{t, m}\right)=-\frac{1}{m} \log d_{t, m}
$$

using $\log (1+x) \sim x$ when x is small

$$
r_{t, m} \sim-\frac{1}{m} \log d_{t, m}
$$

equality if we use continuous compounding.
Natural generalization to continuous time models with continuous compounding of the interest.

$$
d(t, T)=e^{-(T-t) r(t, T)} .
$$

Coupon Bearing Bonds

Regular stream of future cash flows

- Payment Amounts $C_{1}, C_{2}, \cdots, C_{m}$,
- at times $T_{1}, T_{2}, \cdots, T_{m}$,
- Terminal payment X at the maturity date T_{m}.
X is called nominal value or face value or principal value
Bond price at time t :

$$
B(t)=\sum_{t \leq T_{j}} C_{j} d\left(t, T_{j}\right)+X d\left(t, T_{m}\right)
$$

More on Coupon Bonds

- Coupon payments C_{j} 's are made at regular time intervals.
- Quoted as (annual) percentage c of the face value X of the bond, i.e. $C_{j}=c X$
- Frequency of six months for Treasuries
- Possibly another periodicity

Notation n_{y} for the number of coupon payments per year
$r_{1}, r_{2}, \cdots, r_{m}$ the interest rates for the m periods ending with the coupon payments $T_{1}, T_{2}, \cdots, T_{m}$

$$
\begin{aligned}
B(t) & =\frac{C_{1}}{1+r_{1} / n_{y}}+\frac{C_{2}}{\left(1+r_{2} / n_{y}\right)^{2}}+\cdots+\frac{C_{m}}{\left(1+r_{m} / n_{y}\right)^{m}}+\frac{X}{\left(1+r_{m} / n_{y}\right)^{m}} \\
& =\frac{c X}{n_{y}\left(1+r_{1} / n_{y}\right)}+\frac{c X}{n_{y}\left(1+r_{2} / n_{y}\right)^{2}}+\cdots+\frac{c X}{n_{y}\left(1+r_{m} / n_{y}\right)^{m}}+\frac{X}{\left(1+r_{m} / n_{y}\right)^{m}}
\end{aligned}
$$

Treasury Notes

- Treasury securities with time to maturity ranging from 1 to 10 years at the time of sale
- Unlike bills, they have coupons every six months
- Auctioned on a regular cycle. The Fed acts as agent for the Treasury, awarding competitive bids in decreasing order of price, highest prices first
- Smallest denomination $\$ 5,000$ for notes with two to three years to maturity at the time of issue
- Smallest denomination $\$ 1,000$ for notes with four or more years to maturity at the time of issue

Treasury Bonds

- Treasury securities with more than 10 years to maturity at the time of sale
- Sold at auctions
- Bare coupons

Few differences between Treasury notes and bonds

More Wall Street Journal Excerpts

GOVT. 30ND \& NOTES					
	Maturty				ASKED
ATE	MarR	8 B	ASKED	CHG.	YLD.
5	Sec 000	99:29	99:3:	$+1$	5.78
5%	Der $00 n$	99:29	993.		6.5
46	dan 017	99:28	993.39	$+2$	4.99
$5^{1 / 4}$	jan 01n	99:30	100:00	+ 2	5.14
5%	Feb OT,	99:31	1000:	- 3	5.97
7 m	Feb 01n	+00 0	100:12	- 3	5.08
15:	Feb $\mathrm{Cl}^{\text {a }}$	10c31	101:01	- 3	4.51
5	Fen 010	-92028	99:30	$+\frac{2}{2}$	5.25

MATURTY

 KEDWall Street Journal Treasury notes and bond quotes on December 22, 2000

Remarks

- " n " is used when the instrument is a T-Note
- None of the decimal parts happen to be greater than 31 (compare with T-Bills)
- Prices of Treasury notes and bonds are quoted in percentage points and 32nds of a percentage point

$$
99.28 \text { is actually } 99+28 / 32=99.875
$$

which represents

$$
\$ 998,750
$$

per million of dollars of nominal amount

A coupon bearing bond is a composite instrument comprising a zero coupon bond with maturity T_{m} and a set of zero coupon bonds whose maturity dates T_{j} and face values $c X / n_{y}$

The principal and the interest components (of eligible issues) can be traded separately under the Treasury STRIPS program

Separate Trading of Registered Interest and Principal Securities

Still More Wall Street Journal Excerpts

U.S. TREASURY STRIPS

Man	TYPE	B	ASKED		$\begin{aligned} & \text { ASKED } \\ & \text { YLD } \end{aligned}$
Feb	0	99.13	x 14	+	4.18
eb	01 no	9907	39:07	+ 3	5.7
May	$0 \cdot 1$	9729	$97: 29$	+	5
Nay	$0:$ nf	97.2	97.28	+ 3	.
Aug	$0 \cdot \mathrm{ci}$	96.22	6:28	+ 4	
A!g	01 np	9\%:75	$6: 17$	$+2$	5
Nov	$0!8$	95:12	95:12	+ 5	5
Nov	$0 . \mathrm{mp}$	95:11	$93: 12$	+ 8	5.4
feb	02 c	94:20	$94: 21$	+	48
Mry	02 ci	93:08	93.09		\%
May	020	92:29	92:30		
\% : 9	02 ci	92.05	9204	+	5.0
ung	02 nx	91:25	12%	+	5.21
Now	02 ci	91.97	91:08	+	4.9
Fet	02 ci	89:25	89%	+	5.0
Fet	03 3p	$89: 10$	89.21	+	5.1
May	00 c	$88: 28$	$88: 30$	$+$	4.8
dul	0 ci	88.04	3995	+	4.9
碞		37	87:2	+ 8	

Accrued Interests

- Formulae implicitly assumed that t was the time of a coupon payment
- Bond price jumps by $c X / n_{y}$ at the times T_{j} of the coupon payments
- Smooth out the discontinuities by including accrued interest earned by the bond holder since the time of the last coupon payment
- If last coupon payment (before the present time t) was on T_{n}, then the accrued interest:

$$
A I\left(T_{n}, t\right)=\frac{t-T_{n}}{T_{n+1}-T_{n}} \frac{c X}{n_{y}},
$$

Clean Prices

transaction price $=$ clean price + the accrued interest.

$$
C P\left(t, T_{m}\right)=P_{X, C}\left(t, T_{m}\right)-A I\left(t, T_{n}\right)
$$

if $T_{n} \leq t<T_{n+1}$

The Spot (Zero Coupon) Yield Curve

$$
d_{t, m}=\frac{1}{\left(1+r_{t, m}\right)^{m}} \quad \text { or } \quad r_{t, m}=\left(\frac{1}{d_{t, m}^{1 / m}}-1\right)
$$

- $r_{t, m}$ is called the zero coupon yield as the yield to maturity on a zero coupon bond
- The sequence of spot rates $\left\{r_{t, j} ; j=1, \cdots, m\right\}$ where m is a distant maturity is called the term structure of (spot) interest rate or the zero coupon yield curve at time t
- It is usually plotted against the time to maturity $x_{j}=T_{j}-t$ in years.

Wall Street Journal Yield Curves

Treasury Yield Curve

Source: Reuters

Source: Wall Street Journal, December 22, 2000.

Wall Street Journal Treasury yield curves on December 22, 2000. Notice the non uniform time scale on the horizontal axis.

The Par Yield Curve

- A coupon paying bond is said to be priced at par if its current market price equals its face (or par) value.
- If a bond price is less than its face value, we say the bond trades at a discount its yield is higher than the coupon rate
- If its price is higher than its face value, it is said to trade at a premium the yield is lower than the coupon rate.

higher yields correspond to lower prices

- The par yield is defined as the yield of a bond priced at par. It is the value of y for which we have the following equality:

$$
P=\sum_{j=1}^{m} \frac{y P}{n_{y}\left(1+y / n_{y}\right)^{j}}+\frac{P}{\left(1+y / n_{y}\right)^{m}} .
$$

The Par Yield Curve

The Par yield curve is the curve

$$
\left\{y\left(T_{j}\right) ; T_{0}<T_{1}<\cdots<T_{m}\right\}
$$

which describes the coupons $y\left(T_{j}\right)$ required on a (hypothetical) coupon paying bond with maturity T_{j} for that bond to trade at par.

The Forward Rate Curve

Notation: $f_{t, m}$ rate applicable at time t for the period from the end of the ($m-1$)-th period to the end of the m-th period.

$$
\begin{aligned}
1 / d_{t, 1} & =1+r_{t, 1}=1+f_{t, 1} \\
1 / d_{t, 2} & =\left(1+r_{t, 2}\right)^{2}=\left(1+f_{t, 1}\right)\left(1+f_{t, 2}\right) \\
\cdots & =\cdots \cdots \cdot \\
1 / d_{t, j-1} & =\left(1+r_{t, j-1}\right)^{j-1}=\left(1+f_{t, 1}\right)\left(1+f_{t, 2}\right) \cdots\left(1+f_{t, j-1}\right) \\
1 / d_{t, j} & =\left(1+r_{t, j}\right)^{j}=\left(1+f_{t, 1}\right)\left(1+f_{t, 2}\right) \cdots\left(1+f_{t, j-1}\right)\left(1+f_{t, j}\right)
\end{aligned}
$$

The Forward Rate Curve (cont)

Computing the ratio of the last two equations gives:

$$
\frac{d_{t, j-1}}{d_{t, j}}=1+f_{t, j}
$$

or equivalently:

$$
f_{t, j}=\frac{d_{t, j-1}-d_{t, j}}{d_{t, j}}=-\frac{\Delta d_{t, j}}{d_{t, j}}
$$

Rates $f_{t, 1}, f_{t, 2}, \cdots, f_{t, j}$ implied by the discount factors $d_{t, 1}, d_{t, 2}$,
$\cdots, d_{t, j}$ are called the implied forward interest rates

Continuous Time Analogs

Discount factor (for continuous compounding)

$$
x \hookrightarrow d(t, x)
$$

where $x=T-t$ time to maturity
Forward rate

$$
f(t, x)=-\frac{d^{\prime}(t, x)}{d(t, x)}
$$

Equivalently

$$
d(t, x)=e^{-\int_{0}^{x} f(t, s) d s}
$$

Spot rate/yield

$$
r(t, x)=-\frac{1}{x} \int_{0}^{x} f(t, s) d s
$$

Equivalently

$$
f(t, x)=r(t, x)+x r^{\prime}(t, x)
$$

Extensions

- Tax Issues Complex (ignored here)
- Municipal Bonds: debt securities issued by states, cities, townships, counties, US Territories and their agencies
- Complex Tax Status
- Credit Risk with High profile defaults: NY City, Orange County
- Ratings (S\&P and Moody's)
- Insurance Contracts which pay interest and principal in case of default of the issuer.
- Quoted as spread over Treasury (in basis points)
- Index Linked Bonds to guarantee real returns and protect the cash flows from inflation.
- Four types of indexing

1. indexed principal bonds for which both coupons and principal are adjusted for inflation
2. indexed coupon bonds for which only the coupons are adjusted for inflation
3. zero coupon bonds which pay no coupon but for which the principal is adjusted for inflation
4. indexed annuity bonds which pay inflation adjusted coupons and no principal on redemption

- Most common index used is the Consumer Price Index (CPI)
- More popular in Europe than in the US.

Source: Wall Street Journal, December 22, 2000

- Corporate Bonds
- Corporation raising funds
- Issues are rated by S\&P and/or Moody's (ratings updated periodically)
- Ratings quantify the credit risk associated with the bonds.
* Poor ratings = non-investment grade bonds or junk bonds. Spread over Treasury is usually relatively high (high yield)
* Good ratings = investment grade bonds

Comparison of several yield curves. Source: Wall Street Journal December 22, 2000.

- Complex indentures: pricing can be a challenge
* Callable bonds (some Treasury issues do have this feature)
* Convertible bonds.
- Asset Backed Securities
- Mortgage loans are bundled and packaged (i.e. securitized) as bond issues .
backed by the interest income of the mortgages.
- Prepayments and default risks are the main factors in pricing of these securities.
- Securitization of many other risky future incomes
* catastrophic risk (natural disasters such as earthquakes and hurricanes)
* intellectual property (Bowie bond issued by the rock star borrowing on the future cash flow expected from its rights and record sales)

[^0]: