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University Kaiserslautern-Landau and Fraunhofer Institute for Industrial Mathematics ITWM

January, 22nd 2024
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Content of the talk

1 Stages in Public Transport Planning
Stop location
Line Planning
Timetabling
Vehicle scheduling
Delay management
Tariff Planning

2 Some more remarks on equity
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Optimize public transport

General goal:

Under a restricted budget make public transport as good as possible.

What is good ?
Usually: Small perceived traveling time for a given demand.
Demand often excludes people who cannot be served (living too far from the next station)

Why?

▶ Provide sufficient accessibility to everybody (school kids, people without car, . . . )

▶ Environmental goals (pollution)
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The planning process in public transportation

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Disposition

Timetable
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A note on integration
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Literature

. . . is numerous and still increasing

. . . see many books and many more research papers!

A try of a short overview

▶ will be given in this talk

▶ see also: Hickman and Schöbel: 50 years of Operations Research in Public Transport, 2025
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Commercial Break
Commercial Break

Commercial Break

Commercial Break
Commercial Break

Commercial Break

Commercial Break

Commercial Break

Commercial Break

Commercial Break
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Academic Open Source Library for optimization in public transportation

for planning stops, lines, timetables, vehicle schedules, tariffs and for delay management.

LinTim

https://www.lintim.net/
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LinTim: Open Source Library for public transport

Edge

Load

OD

Pool

Stop

Input Data

Timetabling Data

Vehicle Scheduling

Rolling Stock

Delay Generator

Delays

Line Concept

Build EAN

Events

Activities

Periodic
Timetable

Rollout

Aperiodic
Timetable

Delay Management

Disposition Timetable

Line Planning

Timetabling

Data sets:

▶ Toy example

▶ Lower Saxony (railway)

▶ Grid Network

▶ Metro in Athens

▶ Long-distance trains of Germany

▶ Göttingen Bus System

▶ more to come!
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LinTim: Open Source Library for public transport

Team: Anita Schöbel, Philine Schiewe, Sven Jäger, Alexander Schiewe, Vera Grafe, Reena Urban, Sebastian Albert,

Felix Spühler, Moritz Stinzendörfer, Julius Pätzold, Christopher Scholl, and many former (PhD)students of Kaiserslautern

and Göttingen
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LinTim: Open Source Library for public transport

Don’t forget:

LinTim

https://www.lintim.net/

Anita Schöbel Models in Public Transportation 11



End of Commercial Break
End of Break

End of Break

End of Break
End of Break

End of Break

End of Break

End of Break

End of Break

End of Break
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Stop Location

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Disposition

Timetable

Stops/Stations
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Stop location
Problem: Where should stops be located such that every (potential) passenger lives in a
400-m-radius (2 km radius) and the number of stops is minimal?

demand point
given tracks
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Stop location

Problem: Where should stops be located such that every (potential) passenger lives in a
400-m-radius (2 km radius) and the number of stops is minimal?

Variables?

▶ discrete version: A finite number of potential locations {l1, . . . , lL}

xi =

{
1 if location i is chosen
0 otherwise

▶ continuous version: everywhere along the tracks
→ find a finite candidate set and use discrete version

Objective function: minimize number (costs) of the stops min
∑L

i=1 costixi

Constraints: Cover all passengers∑L
i=1 apixi ≥ 1 for all passengers p

where api = 1 if and only if station li is close enough at passengers p.
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Stop location problem as integer program

Problem (SL): Where should stops be located such that every (potential) passenger lives in a
400-m-radius (2 km radius) and the number of stops is minimal?

min
L∑

i=1

costixi

s.t.
L∑

i=1

apixi ≥ 1 for all passengers p

xi ∈ {0, 1} for all i = 1, . . . , L

where api = 1 if and only if station li is close enough at passengers p.
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Analysis

Theorem

(SL) is NP-hard in general, but polynomially solvable if all stations have to be located on a
straight line.

Observation: (SL) is a covering problem and can also be treated as location problem.
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Other objectives functions

▶ Given a budget, cover as many potential passengers (in a 400-m-radius, 2 km radius) as
possible. many papers, Murray (2001)

▶ Given a budget, minimize the average access time Poetranto et al (2009)

▶ Minimize average the door-to-door traveling time including
▶ the access time
▶ the time passengers in the trains lose by stopping

Schöbel, Hamacher, Liebers and Wagner (2009) within a project with German railways
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Equity?

▶ Cover all potential passengers → justice in accessibility

▶ One could focus on people that have to rely on public transport (no car, no driving
license) → even more “equity”?

▶ Considering the door-to-door traveling time is another option.
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How to plan the lines?

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Disposition

Timetable
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Example
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Example

lf =1

lf =4

lf =1

f =2l
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Line planning in the literature

▶ many different models:
▶ how to measure costs
▶ how to measure traveling time
▶ and which behaviour of passengers is used for the latter

▶ even different names: line planning, transit network design, with/without frequency
setting

▶ many different algorithms (depending on the community)

first paper Patz (1925)

many papers by Ralf Borndörfer and co-authors

surveys: Guihare and Hao (2008), Kepaptsoglou and Karlaftis (2009), Schöbel (2012), Farahani et al (2013), Schöbel

and Schmidt (2025)
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Variables

Notation

The Public Transportation Network PTN is a graph PTN= (V ,E ) with stops/stations V
and direct connections between them as edges E .

Let a planning period T be given.

A line P is a path in the public transportation network.

The frequency fl of a line l says how often service is offered along line l within a (given) time
period T .

A line concept (L, f ) is a set of lines L together with their frequencies fl for all l ∈ L.
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Variables

Find a set of lines, i.e.,

▶ determine the number of lines,

▶ the routes of the lines,

▶ and their frequencies
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Variables

We distinguish two cases:

Line Pool We assume a predefined set of potential lines. L0 = {l1, . . . , lN}
Then we define:

xl =

{
1 if l is chosen
0 otherwise

or even better:
fl = frequency of line l

Lines from Scratch

▶ Can be seen as “full” line pool and modeled as above
▶ lines constructed in the IP by column generation Borndörfer et al (2007)

From now on: Let L0 be a given line pool.
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Constraints

Notation

Let f min
e , f max

e denote the minimal and maximal allowed frequency on edge e ∈ E , i.e., the
minimal and maximal number of vehicles which should pass edge e within our time period T .

Example:

▶ f min
e is due to the minimal number of vehicles needed to transport all passengers.

▶ f max
e often due to security headways (minimal distances) or noise avoidance

We require :

For alle ∈ E : f min
e ≤

∑
l :e∈l

fl ≤ f max
e
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Constraints

Many other constraints are possible:

▶ Not more than K lines:
∑

l∈L0 xl ≤ K

▶ Not more than Kv arrivals at station v :
∑

l :v∈l fl ≤ Kv

▶ Kilometers driven in the line concept smaller than B:
∑

l∈L0 fl lengthl ≤ B

▶ . . .
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Some models for line planning

(LP1) Cost model

(LP2) Extended cost model Claessens, van Dijk, Zwaneveld (1998),

(LP3) Direct travelers model Patz (1925), Bussieck et al (1996)

(LP4) Travel time model Schöbel and Scholl (2006)
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Cost-oriented model (LP1)

(LP1) (Cost-oriented line concept)

Given a PTN, a set L0 of potential lines, lower and upper frequencies f min
e ≤ f max

e for all
e ∈ E , and parameters costl for all l ∈ L0, find a feasible line concept (L, f ) with minimal
overall costs

cost(L, f ) =
∑
l∈L

fl costl .

where
costl = Timel costtime + lengthl costkm
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Integer programming formulation for (LP1)

min
∑
l∈L0

fl costl

s.t.
∑

l∈L0,e∈l

fl ≥ f min
e ∀ e ∈ E

∑
l∈L0,e∈l

fl ≤ f max
e ∀ e ∈ E

fl ∈ N.

Note: solution fl for all l ∈ L0, then line concept (L, f ) is given as L = {l ∈ L0 : fl > 0}.
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Analysis of (LP1)

Theorem

(LP1) is NP-hard, even without considering upper frequencies and with costl = 1 for all l ∈ L0

and f min
e = 1 for all e ∈ E .

Observations: (LP1) without upper frequencies is a multi covering problem.

In our case:

ael =

{
1 if e ∈ l
0 else
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Some models for line planning

(LP1) Cost model

(LP2) Extended cost model Claessens, van Dijk, Zwaneveld (1998),

(LP3) Direct travelers model Patz (1925), Bussieck et al (1996)

(LP4) Travel time model Schöbel and Scholl (2006)
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Travel time model (LP4)

Most models use fixed passengers’ weights on the edges!

But: Passengers choose their paths dependent on the line concept, we want to compute!

More precisely: Passengers choose a specific path, if

▶ it is short,

▶ it has few transfers,

▶ it has a high frequency.

but these properties depend on the line concept to be determined !
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Integrating the Passengers’ Routes

Transportation System Passengers’ Paths

Question: With which should we start?

Do both steps simultaneously!
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Objective function

Passengers like

▶ short riding time

▶ few transfers

Take both effects into account! → “perceived traveling times”

PerTravelTime=k1· Riding Time + k2· number of transfers

k2 is an estimate for the transfer time (which is not known exactly without a timetable).

Can we deteremine the lines and the passenger routes simultaneously?
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The change & go graph Schöbel and Scholl (2006)

s1 s2
s3

s4

s5
s6

s7

s8

l2

l3

l1
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The change & go graph Schöbel and Scholl (2006)
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The change & go graph Schöbel and Scholl (2006)

l2

l3

l1
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s7,0

s1, 0

s6,0 s8,0
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s3,l3

s5,0

s3,0s2,0

Result: Change & Go Graph N = (E ,A)
→ paths with minimal perceived traveling time can be computed as shortest paths!
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Integer programming model for (LP4)

Variables:

xast =

{
1 if activity a ∈ A is used on a shortest path from s to t in N
0 otherwise

yl =

{
1 if line l is established
0 otherwise

Parameters: Θ as node-arc-incidence matrix of N ,

bist =


1 if i = (s, 0)

−1 if i = (t, 0)
0 otherwise
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Integer programming model for (LP4)

min
∑

s,t∈V
∑

a∈A Cstwax
a
st

s.t. xast ≤ yl for all s, t ∈ V , l ∈ L, a ∈ l
Θxst = bst for all s, t ∈ V with Cst > 0∑

l∈L ylcostl ≤ B
xast , yl ∈ {0, 1}

▶ this model assumes unlimited capacity of the vehicles

▶ with limited capacity A of the trains:

relax xast and fl = yl to integers and replace

xast ≤ yl by
∑
s,t∈V

xast ≤ flA for all l ∈ L, a ∈ l

and Θxst = bst is a network flow problem.
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Analysis of (LP4)

Theorem

(LP4) is NP-hard, even if

▶ only the number of transfers is counted in the objective

▶ the network is a linear graph

▶ and all costs are equal to one, see Schöbel and Scholl (2006)

or if

▶ all passengers depart from the same origin, see Schmidt and Schöbel (2014)

Problem has one block for each OD-pair s, t and a y -variable block
→ Dantzig-Wolfe decomposition as solution technique
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Equity?

▶ Restrict the maximum number of transfers?

▶ The absolute perceived traveling time is longer for long relations. But we could minimize
the ratio between individual car and public transport over all passengers.

▶ Improve the line concept in particular for OD-pairs with low income.
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How to plan the timetable?

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Disposition

Timetable
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Timetabling

Assign a time to every arrival and departure of every bus/train.

▶ An event is the arrival or the departure of a bus/train at a station

▶ The timetable may be periodic or aperiodic.

▶ Constraints: Driving times and dwell times have to be respected.
Also headway times in rail-traffic.

▶ Goal: minimize the riding and transfer times of the passengers.
Maybe also: plan for robustness
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Modeling timetables
Use event-activity network (E ,A):

station B K−Town K−Town

K−Town

station A

K−Town K−Town station E

station F

K−Townstation C

drive

wait

drive

drive

wait

wait

drive

drive

drive

arrival

arrival

station G

arrival

departure

departure

departure

departure

departure

arrival

arrival

arrival

departure

drive and wait activities
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Aperiodic timetables

Given event-activity network N = (E ,A)

▶ with lower and upper bounds [La,Ua] for every activity a ∈ A
A timetable πi , i ∈ E assigns a time to every event i ∈ E .

Variables: πi=time for event i for all i ∈ E
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Aperiodic timetables

When is a timetable feasible?

j

i

π

π

i

j

[8,12]
=45

=55

πj − πi ∈ [La,Ua]

Note: Instances with circles may be infeasible!

Anita Schöbel Models in Public Transportation 45



Aperiodic timetabling

Minimize the traveling time of the passengers.

min
∑

a=(i ,j)∈A

ca(πj − πi )

Note: Passengers’ weights ca are fixed beforehand.

Model (ATT)

min
∑

a=(i ,j)∈A

ca(πj − πi )

s.t. La ≤ πj − πi ≤ Ua for all a = (i , j) ∈ A
πi ∈ Z for all i ∈ E .
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Periodic timetables

Given event-activity network N = (E ,A)

▶ with lower and upper bounds [La,Ua] for every activity a ∈ A
▶ and a period T

A (periodic) timetable πi ∈ {0, 1, . . . ,T − 1}, i ∈ E assigns a time to every event i ∈ E .

Variables: πi ∈ {0, 1, . . . ,T − 1} is the time for event i for all i ∈ E
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Periodic timetables

When is a aperiodic timetable feasible?

πj − πi ∈ [La,Ua] πj − πi + zT ∈ [La,Ua] for some z ∈ Z

πj − πi + zT ∈ [La,Ua] for some z ∈ Z ⇐⇒ (πj − πi − La) mod T ∈ [0,Ua − La]

Note: More instances are feasible as in the aperiodic case, but infeasible instances still exist.
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Periodic Event Scheduling Problem PESP

Minimize the traveling time of the passengers.

min
∑

a=(i ,j)∈A

ca(πj − πi − La) mod T

Note: Passengers’ weights ca are fixed beforehand.

PESP (Serafini & Ukovich, 1989)

min
∑

a=(i ,j)∈A

ca[πj − πi − La]T

s.t. [πj − πi − La]T ∈ [0,Ua − La] for all a = (i , j) ∈ A
πi ∈ {0, 1, . . . ,T − 1} for all i ∈ E .

za are called modulo parameters
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PESP (Serafini & Ukovich, 1989)

min
∑

a=(i ,j)∈A

ca(πj − πi + zaT )

s.t. La ≤ πj − πi + zaT ≤ Ua for all a = (i , j) ∈ A
πi ∈ {0, 1, . . . ,T − 1} for all i ∈ E .
za ∈ Z for all a ∈ A.
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Properties

Theorem Serafini and Ukovich (1989)

Aperiodic timetabling (ATT) is polynomially solvable.
The problem of deciding if a feasible solution for PESP exists is NP-complete.

Theorem

▶ The tension along all cycles in a feasible aperiodic timetable is zero → existence of an
aperiodic timetable can be checked in a modified network by shorts path techniques.

▶ The tension along all cycles modulo T is zero in every feasible periodic timetable.
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Basic algorithm for PESP

1 For all feasible modulo-parameter solve the aperiodic problem.

2 Choose the best solution.

We need not consider all possible modulo-parameter:

Theorem of Odijk 1996

PESP is feasible if and only if there exists z ∈ Z|A| such that for every cycle C in N :

⌈aC⌉ ≤
∑
a∈C+

za −
∑
a∈C−

za ≤ ⌊bC⌋

with aC = 1
T

 ∑
a∈C+

La −
∑
a∈C−

Ua

 and bC = 1
T

 ∑
a∈C+

Ua −
∑
a∈C−

La
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Other algorithms for PESP

▶ Integer programming, in particular cycle-based formulation e.g. Borndörfer et al (2016)

▶ SAT solving Großmann et al. (2012), Gattermann et al (2016)

▶ Modulo-Simplex Nachtigall and Opitz (2008), Goerigk and Schöbel (2013)

▶ Matching-approach Pätzold and Schöbel (2016)
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Equity?

▶ Having good waiting times at all transfers?

▶ Minimizing the largest transfer time?

▶ Minimizing the maximum difference between the real traveling time and the lower bound
traveling time over all journeys?
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How to plan the vehicle schedule?

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Disposition

Timetable
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Vehicle scheduling

We now have given:

▶ A line plan,

▶ a timetable.

Question: How many vehicles are needed to operate this line plan with its corresponding
timetable? How many kilometers need to be driven by these vehicles?
=⇒ Goal is to minimize the costs.

Clear: A line from its start station to its end station has to be operated by the same vehicle.

Note: An easy solution is a line-based vehicle schedule. Every vehicle stays on the same line
the whole day. But this need not be the best solution!
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Trips

Notation

A trip
t = (lt , v

start
t , v endt , π̃start

t , π̃end
t )

is specified by

▶ a line lt ,

▶ the first and last station v startt and v endt of line lt ,

▶ the corresponding start time π̃start
t and end time π̃end

t of the trip.

The set of all trips for a line plan/timetable is denoted as T .

Remark: A line with frequency fl leads to 2fl trips, namely fl forward and fl backward trips
per period.
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Trips: Example
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frequency=1

frequency=2A

D

B

C
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frequency=1

frequency=2

25 min

travel time:

travel time:

45 min

A

D

B

C
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Trips: Example

frequency=1

frequency=2

departure: 10

arrival: 45

arrival times:

00,30departure times:

travel time:

45 min

departure: 20

arrival: 35
arrival times:
departure times:

45,15

A

D

B

C

20,50

05,35

travel time:
25 min
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Trips: Example

Trips starting between 8:00 and 9:00
(l1,A,B, 8:00, 8:45)
(l1,A,B, 8:30, 9:15)
(l2,B,A, 8:05, 8:50)
(l2,B,A, 8:35, 9:20)
(l1,C ,D, 8:10, 8:35)
(l2,D,C , 8:20, 8:45)

frequency=1

frequency=2

departure: 10

arrival: 45

arrival times:

00,30departure times:

travel time:

45 min

departure: 20

arrival: 35
arrival times:
departure times:

45,15

A

D

B

C

20,50

05,35

travel time:
25 min
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Compatibility of trips

Question: When can a vehicle operate two trips consecutively?

For u, v ∈ V let time(u, v) denote the time if a vehicle drives directly between u and v .

Notation

Two trips t1 and t2 are called compatible if

π̃start
t2 − π̃end

t1 ≥ time(v endt1 , v startt2 )
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The vehicle scheduling problem as circulation problem

t
2

t t t t
1 3 4 5
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The vehicle scheduling problem as circulation problem

t2
t t t t
1 3 4 5

depot(arr)

depot(dep)

cost per 

vehicle

00 0 0 0

c(1,2) c(4,5)c(1,3)

c(4,3)

c(3,4)

c(1,d)

c(2,d) c(3,d)

c(5,d)

c(4,d)
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The vehicle scheduling problem as circulation problem

t2
t t t t
1 3 4 5

depot(arr)

depot(dep)

cost per 

vehicle

00 0 0 0

c(1,2) c(4,5)c(1,3)

c(4,3)

c(3,4)

c(1,d)

c(2,d) c(3,d)

c(5,d)

c(4,d)

11 1 1 1

upper

bound

at least
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The vehicle scheduling problem as circulation problem

Theorem

A flow in the network represents a feasible vehicle schedule with the correct costs.
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Vehicle scheduling problem as integer program

min
∑
e∈E

costexe

such that
Ax = b

le ≤ xe ≤ ue for all e ∈ E

Theorem

Vehicle scheduling with one depot is solvable in polynomial time.
Vehicle scheduling with several depots is NP-hard.
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Equity?

▶ Probably not in vehicle scheduling, since passengers do not even see the vehicle schedules.

▶ Crew scheduling is important for drivers → tackled in rostering problems.
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Delay management

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Timetable

Disposition
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Delay management

Problem: In case of delayed trains (or buses), at least two decisions have to be made:

▶ wait for transferring passengers or depart on time?

▶ which train can go first if two trains would like to use the same track?
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Delay management

Variables?
xi = disposition timetable for event i

za =

{
1 if transfer activity a is maintained
0 otherwise

ηij =

{
1 if train i goes before train j
0 otherwise

Objective function: minimize sum of delays over all passengers

Constraints: Delays need to be propagated correctly:
For all a = (i , j): If i is delayed, then also j should is delayed (if buffer time is not sufficient).
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Modeling delays
Use event-activity network (E ,A):

station B K−Town K−Town

K−Town

station A

K−Town K−Town station E

station F

K−Townstation C

drive

wait

drive

drive

wait

wait

drive

drive

drive

arrival

arrival

station G

arrival

departure

departure

departure

departure

departure

arrival

arrival

arrival

departure

drive and wait activities

transfer activities

headway activities
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Delay management as integer program

min
∑
i∈E

wixi +
∑

a=(i ,j)∈Atransfer

wazaT

s.t. xi ≥ πi + di for all i

xj − xi ≥ La for all a = (i , j) ∈ Await ∪ Adrive

Mza + xj − xi ≥ La for all a = (i , j) ∈ Atransfer

xi ∈ N0 , za ∈ {0, 1}

Literature: Schöbel (2006), Rückert et al (2016), Dollevoet et al (2018), Grafe (2020)
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Analysis

Theorem

(DM) is NP-hard, even in special cases and even the approximation given here.

Can the spreading of delays be avoided by robust timetables? → ongoing topic of research!
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Equity?

▶ I would not advise to minimize the maximum delay because this lets other passengers
suffer.

▶ Delays are a kind of “emergency” situation. Respecting each single passenger might bring
the whole system out of control.

▶ Instead: Passengers can claim money back or get overnight stays or taxis paid.

▶ Maybe try to avoid the spreading of delays in the same way on any line/region.
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Tariff planning

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Line Concept

Disposition

Timetable

Tariff System

Anita Schöbel Models in Public Transportation 71



Tariff planning

Problem: Find the prices for the passengers!

Which tariff structure?

▶ A tariff structure is a flat tariff if all journeys cost the same.

▶ A tariff system is a distance tariff if the price for journey J is determined by its length.
Often distance tariffs are affine linear: Price(J) = αLength(J) + β.

▶ A tariff system is a zone tariff, if the price for a journey is determined by the number of
zones it passes. Often the price for k is defined by a list.

We would expect a tariff structure to satisfy

▶ the no-stopover property

▶ the no-elongation property
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Tariff structure design problem

Given a tariff strategy (e.g., zone tariff, distance tariff, flat tariff) and reference prices for every
journey, find a tariff structure which is as close as possible to the reference prices.

Applications:

▶ The reference prices are fair and should be realized with a tariff structure.

▶ Transition of tariff systems (The old prices are then the reference prices.)

Modeling the tariff structure design problem: Hamacher and Schöbel (2004), Urban and Schöbel (2021)
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Application
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Analysis

Given reference prices, find a new tariff structure which minimizes the maximum absolute
deviation or the average absolute deviation to the reference prices.

Theorem

▶ Designing a flat tariff or an affine linear distance tariff is polynomially solvable.

▶ Finding zone prices when the zones are given is polynomially solvable.

▶ The zone tariff design problem is NP-hard.
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Equity?

Tariffs are considered as the application for equity.

Directly in the tariff structure design problem:

▶ Reference prices should be fair!

▶ When finding a tariff structure, it should minimize the deviations to the reference prices.

Thoughts outside of these problems:

▶ Choosing the tariff structure is important: In a flat tariff passengers who have short
journeys pay for the ones with long journeys. One has to observe which type of trips
passengers with low income usually take.

▶ The tariff system should depend on the passengers (which is usually the case: school kids
have other tariffs when adults, there exist social passes, passes for refugees, . . . )

▶ New development in Germany: a flat tariff for all buses and regional trains all over
Germany now available.
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Content of the talk

1 Stages in Public Transport Planning
Stop location
Line Planning
Timetabling
Vehicle scheduling
Delay management
Tariff Planning

2 Some more remarks on equity
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Equity

We already have seen some ideas on equity for every planning stage.

▶ Many equity objectives may be included as objective function or as constraints in the
presented models.

▶ Easy thing, no new modeling necessary: Concentrate on the part of demand that cannot
use cars.

▶ Other aspects are (from a mathematical part) more challenging and can raise new
research topics.

But is equity on a local level what we want?

Anita Schöbel Models in Public Transportation 78



A global perspective

I am currently leading the following project about urban mobility.

Given is a city and a demand matrix: from
where to where wish people to travel?

Task: Determine the best transport modes
to be installed in the city.

where we consider:

▶ traveling times for the passengers

▶ the budget

▶ and CO2 emissions and energy

Questions:

▶ Do we need a metro?

▶ Where in the city should we offer
regular bus transportation? With
which lines?

▶ Where is shared mobility (ride
pooling) more appropriate? with how
many vehicles?

▶ To whom do we recommend to use
the private car?
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Illustration
Given: City und demand. Goal: transport modes
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Illustration
Given: City und demand. Goal: transport modes

private Autos

Ridepooling

Bus

Stadtbahn
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Particularities

Multimodal planning

▶ Metro

▶ Bus

▶ Shared mobility (ride
pooling)

▶ Car

Multicriteria evaluation

▶ Travel times

▶ budget needed

▶ CO2 emissions, energy

Equilibrium-constraints

▶ to model the behavior
of the passengers

▶ compute their traveling
times including traffic
jams

Not easy :-(

We use a decomposition approach into a surrogate model and detailed models.
for planning a metro
for planning buses
for planning shared mobility
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Our first results

The surrogate model does a routing and recommends modes of transport due to the number
of people who want to use a specific edge.
The detailed models plan accordingly.

Then we compute the equilibrium. Result:

Everybody (who can) takes the car!

Why? Because the budget is not enough to be competitive.

Question: Wouldn’t it be better for all of us to have some really good lines that people love
to take such that they leave space on the streets instead of treating all links equally (bad)?

But is this equity?
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Optimize public transport

Maybe we need a shift of goals:

So far:

Under a restricted budget make public
transport as good as possible for the given
demand.

maybe better?

Under a restricted budget ensure some
sufficient public transport for everybody but
make only a small part as good as possible.

and keep equity goals in both approaches in mind!
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Thank you!

Stops/Stations

Vehicle Schedules/
Rolling Stock Planning

Crew Scheduling

Tariff System

Line Concept

Disposition

Timetable

Anita Schöbel Models in Public Transportation 84


	Stages in Public Transport Planning
	Stop location
	Line Planning
	Timetabling
	Vehicle scheduling
	Delay management
	Tariff Planning

	Some more remarks on equity

