Emission Markets III. Pricing Options on CO₂

René Carmona

ORFE, Bendheim Center for Finance Princeton University

IPAM

Cap-and-Trade Schemes for Emission Control

Cap & Trade Schemes for CO₂ Emissions

- Kyoto Protocol
- Mandatory Carbon Markets (EU ETS, RGGI since 01/01/09)
- Lessons learned from the EU Experience

Mathematical (Equilibrium) Models

- Price Formation for Goods and Emission Allowances
- New Designs and Alternative Schemes
- Calibration & Option Pricing

Computer Implementations

- Several case studies (Texas, Japan)
- Practical Tools for Regulators and Policy Makers

EU ETS First Phase: Main Criticism

No (Significant) Emissions Reduction

- DID Emissions go down?
- Yes, but as part of an existing trend

Significant Increase in Prices

- Cost of Pollution passed along to the "end-consumer"
- Small proportion (40%) of polluters involved in EU ETS

Windfall Profits

- Cannot be avoided
- Proposed Remedies
 - Stop Giving Allowance Certificates Away for Free!
 - Auctioning

Falling Carbon Prices: What Happened?

CDM: Can we Explain CER Prices?

Description of the Economy

- Finite set I of risk neutral firms
- ullet Producing a finite set ${\mathcal K}$ of goods
- Firm $i \in \mathcal{I}$ can use **technology** $j \in \mathcal{J}^{i,k}$ to produce good $k \in \mathcal{K}$
- Discrete time $\{0, 1, \dots, T\}$
- No Discounting Work with T-Forward Prices
- Inelastic Demand

$$\{D^k(t);\ t=0,1,\cdots,T-1,\ k\in\mathcal{K}\}.$$

Regulator Input (EU ETS)

At inception of program (i.e. time t = 0)

INITIAL DISTRIBUTION of allowance certificates

$$\theta_0^i$$
 to firm $i \in \mathcal{I}$

 Set PENALTY π for emission unit NOT offset by allowance certificate at end of compliance period

Extensions (not discussed in this talk)

- Risk aversion and agent preferences (existence theory easy)
- Elastic demand (e.g. smart meters for electricity)
- Multi-period models with lending, borrowing and withdrawal (more realistic)

Goal of Equilibrium Analysis

Find two stochastic processes

Price of one allowance

$$A = \{A_t\}_{t>0}$$

Prices of goods

$$S = \{S_t^k\}_{k \in K, t \geq 0}$$

satisfying the usual conditions for the existence of a

competitive equilibrium

(to be spelled out below).

Individual Firm Problem

During each time period [t, t + 1)

- Firm $i \in \mathcal{I}$ produces $\xi_t^{i,j,k}$ of good $k \in \mathcal{K}$ with technology $j \in \mathcal{J}^{i,k}$
- Firm $i \in \mathcal{I}$ holds a position θ_t^i in emission credits

$$L^{A,S,i}(\theta^{i},\xi^{i}) := \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{J}^{i,k}} \sum_{t=0}^{T-1} (S_{t}^{k} - C_{t}^{i,j,k}) \xi_{t}^{i,j,k}$$

$$+ \theta_{0}^{i} A_{0} + \sum_{t=0}^{T-1} \theta_{t+1}^{i} (A_{t+1} - A_{t}) - \theta_{T+1}^{i} A_{T}$$

$$- \pi (\Gamma^{i} + \Pi^{i}(\xi^{i}) - \theta_{T+1}^{i})^{+}$$

where

$$\Gamma^i$$
 random, $\Pi^i(\xi^i) := \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{T}^{i,k}} \sum_{t=0}^{I-1} e^{i,j,k} \xi_t^{i,j,k}$

Problem for (risk neutral) firm $i \in I$

$$\max_{(\theta^{i},\xi^{i})} \mathbb{E}\{L^{A,S,i}(\theta^{i},\xi^{i})\}$$

Business As Usual (i.e. $\pi = 0$)

The corresponding prices of the goods are

$$S_t^{*k} = \max_{i \in \mathcal{I}, j \in \mathcal{J}^{i,k}} C_t^{i,j,k} \mathbf{1}_{\{\xi_t^{*i,j,k} > 0\}},$$

Classical MERIT ORDER

- At each time t and for each good k
- Production technologies ranked by increasing production costs $C_t^{i,j,k}$
- Demand D^k_t met by producing from the cheapest technology first
- Equilibrium spot price is the marginal cost of production of the most expansive production technoligy used to meet demand

Business As Usual

(typical scenario in Deregulated electricity markets)

Equilibrium Definition for Emissions Market

The processes $A^* = \{A_t^*\}_{t=0,1,\cdots,T}$ and $S^* = \{S_t^*\}_{t=0,1,\cdots,T}$ form an equilibrium if for each agent $i \in \mathcal{I}$ there exist strategies $\theta^{*i} = \{\theta_t^{*i}\}_{t=0,1,\cdots,T}$ (trading) and $\xi^{*i} = \{\xi_t^{*i}\}_{t=0,1,\cdots,T}$ (production)

(i) All financial positions are in constant net supply

$$\sum_{i\in I}\theta_t^{*i}=\sum_{i\in I}\theta_0^i, \qquad \forall t=0,\ldots,T+1$$

(ii) Supply meets Demand

$$\sum_{i\in\mathcal{I}}\sum_{j\in\mathcal{J}^{i,k}}\xi_t^{*i,j,k}=D_t^k, \qquad \forall k\in\mathcal{K}, \ t=0,\ldots,T-1$$

• (iii) Each agent $i \in I$ is satisfied by its own strategy

$$\mathbb{E}[L^{A^*,S^*,i}(\theta^{*i},\xi^{*i})] \ge \mathbb{E}[L^{A^*,S^*,i}(\theta^i,\xi^i)] \qquad \text{for all } (\theta^i,\xi^i)$$

Necessary Conditions

Assume

- (A^*, S^*) is an equilibrium
- (θ^{*i}, ξ^{*i}) optimal strategy of agent $i \in I$

then

- The allowance price A^* is a **bounded martingale** in $[0, \pi]$
- Its terminal value is given by

$$A_T^* = \pi \mathbf{1}_{\{\Gamma^i + \Pi(\xi^{*i}) - \theta_{T+1}^{*i} \ge 0\}} = \pi \mathbf{1}_{\{\sum_{i \in \mathcal{I}} (\Gamma^i + \Pi(\xi^{*i}) - \theta_0^{*i}) \ge 0\}}$$

• The spot prices S^{*k} of the goods and the optimal production strategies ξ^{*l} are given by the merit order for the equilibrium with adjusted costs

$$ilde{C}_t^{i,j,k} = C_t^{i,j,k} + e^{i,j,k}A_t^*$$

Existence by Social Cost Minimization

Overall production costs

$$C(\xi) := \sum_{t=0}^{T-1} \sum_{(i,j,k)} \xi_t^{i,j,k} C_t^{i,j,k}.$$

Overall cumulative emissions

$$\Gamma := \sum_{i \in I} \Gamma^i \qquad \Pi(\xi) := \sum_{t=0}^{T-1} \sum_{(i,j,k)} e^{i,j,k} \xi_t^{i,j,k},$$

Total allowances

$$\theta_0 := \sum_{i \in I} \theta_0^i$$

The total social costs from production and penalty payments

$$G(\xi) := C(\xi) + \pi(\Gamma + \Pi(\xi) - \theta_0)^+$$

We introduce the global optimization problem

$$\xi^* = \arg\inf_{\text{ξ meets demands}} \mathbb{E}[G(\xi)],$$

Effect of the Penalty on Emissions

Costs in a Cap-and-Trade

Consumer Burden

$$SC = \sum_t \sum_k (S_t^{k,*} - S_t^{k,BAU*}) D_t^k.$$

Reduction Costs (producers' burden)

$$\sum_{t} \sum_{i,j,k} (\xi_{t}^{i,j,k*} - \xi_{t}^{BAU,i,j,k*}) C_{t}^{i,j,k}$$

Excess Profit

$$\sum_{t} \sum_{k} (S_{t}^{k,*} - S_{t}^{k,BAU*}) D_{t}^{k} - \sum_{t} \sum_{i,j,k} (\xi_{t}^{i,j,k*} - \xi_{t}^{BAU,i,j,k*}) C_{t}^{i,j,k} - \pi (\sum_{t} \sum_{ijk} \xi_{t}^{ijk} e_{t}^{ijk} - \theta_{0})^{-1} dt$$

Windfall Profits

$$\mathsf{WP} = \sum_{t=0}^{T-1} \sum_{k \in K} (S_t^{*k} - \hat{S}_t^k) D_t^k$$

where

$$\hat{S}_t^k := \max_{i \in I, j \in J^{i,k}} C_t^{i,j,k} \mathbf{1}_{\{\xi_t^{*i,j,k} > 0\}}.$$

Costs in a Cap-and-Trade Scheme

Histograms of consumer costs, social costs, windfall profits and penalty payments of a standard cap-and-trade scheme calibrated to reach the emissions target with 95% probability and BAU.

One of many Possible Generalizations

Introduction of Taxes / Subsidies

$$\begin{split} \ddot{L}^{A,S,i}(\theta^{i},\xi^{i}) &= -\sum_{t=0}^{T-1} G_{t}^{i} + \sum_{k \in K} \sum_{j \in J^{i,k}} \sum_{t=0}^{T-1} (S_{t}^{k} - C_{t}^{i,j,k} - H_{t}^{k}) \xi_{t}^{i,j,k} \\ &+ \sum_{t=0}^{T-1} \theta_{t}^{i} (A_{t+1} - A_{t}) - \theta_{T}^{i} A_{T} \\ &- \pi (\Gamma^{i} + \Pi^{i}(\xi^{i}) - \theta_{T}^{i})^{+}. \end{split}$$

In this case

- In equilibrium, **production** and **trading** strategies remain the same $(\theta^{\dagger}, \xi^{\dagger}) = (\theta^*, \xi^*)$
- Abatement costs and Emissions reductions are also the same
- New equilibrium prices (A[†], S[†]) given by

$$A_t^{\dagger} = A_t^* \quad \text{for all } t = 0, \dots, T$$
 (1)

$$S_t^{\dagger k} = S_t^{*k} + H_t^k \text{ for all } k \in K, t = 0, \dots, T - 1$$
 (2)

Cost of the tax passed along to the end consumer

Alternative Market Design

- Currently Regulator Specifies
 - Penalty π
 - Overall Certificate Allocation θ_0 (= $\sum_{i \in I} \theta_0^i$)
- Alternative Scheme (Still) Controlled by Regulator
 - (i) Sets penalty level π
 - (ii) Allocates allowances
 - θ'_0 at inception of program t = 0
 - then proportionally to production

 $y\xi_t^{i,j,k}$ to agent i for producing $\xi_t^{i,j,k}$ of good k with technology j

(iii) Calibrates y, e.g. in expectation.

$$y = \frac{\theta_0 - \theta_0'}{\sum_{t=0}^{T-1} \sum_{k \in K} \mathbb{E}\{D_t^k\}}$$

So total number of credit allowance is the same in expectation, i.e. $\theta_0 = \mathbb{E}\{\theta_0' + y \sum_{t=0}^{T-1} \sum_{k \in K} D_t^k\}$

Yearly Emissions Equilibrium Distributions

Yearly emissions from electricity production for the Standard Scheme, the Relative Scheme, a Tax Scheme and BAU.

Abatement Costs

Yearly abatement costs for the Standard Scheme, the Relative Scheme and a Tax Scheme.

Windfall Profits

Histograms of the yearly distribution of windfall profits for the Standard Scheme, a Relative Scheme, a Standard Scheme with 100% Auction and a Tax Scheme

Reduced Form Models & Option Pricing

(Uhrig-Homburg-Wagner, R.C - Hinz)

- Emissions Cap-and-Trade Markets SOON to exist in the US (and Canada, Australia, Japan,)
- Liquid Option Market ALREADY exists in Europe
 - Underlying {A_t}_t non-negative martingale with binary terminal value
 - Think of A_t as of a binary option
 - Underlying of binary option should be Emissions
- Need for Formulae (closed or computable)
 - Prices and Hedges difficult to compute (only numerically)
 - to study effect of announcements (Cetin et al.)
- Reduced Form Models

Option quotes on Jan. 3, 2008

Option Maturity	Option Type	Volume	Strike	Allowance Price	Implied Vol	Settlement Price
Dec-08	Call	150,000	24.00	23.54	50.50%	4.19
Dec-08	Call	500,000	26.00	23.54	50.50%	3.50
Dec-08	Call	25,000	27.00	23.54	50.50%	3.20
Dec-08	Call	300,000	35.00	23.54	50.50%	1.56
Dec-08	Call	1,000,000	40.00	23.54	50.50%	1.00
Dec-08	Put	200,000	15.00	23.54	50.50%	0.83

Option quotes on Jan. 4, 2008

Option Maturity	Option Type	Volume	Strike	Allowance Price	Implied Vol	Settlement Price
D 00	0-1	000 000	1 00 00	00.55	F1 0F0/	F 00
Dec-08	Cal	200,000	22.00	23.55	51.25%	5.06
Dec-08	Call	150,000	26.00	23.55	51.25%	3.57
Dec-08	Call	450,000	27.00	23.55	51.25%	3.27
Dec-08	Call	100,000	28.00	23.55	51.25%	2.99
Dec-08	Call	125,000	29.00	23.55	51.25%	2.74
Dec-08	Call	525,000	30.00	23.55	51.25%	2.51
Dec-08	Call	250,000	40.00	23.55	51.25%	1.04
Dec-08	Call	700,000	50.00	23.55	51.25%	0.45
Dec-08	Put	1,000,000	14.00	23.55	51.25%	0.64
Dec-08	Put	200,000	15.00	23.55	51.25%	0.86
Dec-08	Put	200,000	15.00	23.55	51.25%	0.86
Dec-08	Put	400,000	16.00	23.55	51.25%	1.13
Dec-08	Put	100,000	17.00	23.55	51.25%	1.43
Dec-08	Put	1,000,000	18.00	23.55	51.25%	1.78
Dec-08	Put	500,000	20.00	23.55	51.25%	2.60
Dec-08	Put	200,000	21.00	23.55	51.25%	3.07
Dec-08	Put	200,000	22.00	23.55	51.25%	3.57

Reduced Form Models and Calibration

Allowance price should be of the form

$$A_t = \pi \mathbb{E}\{\mathbf{1}_N \mid \mathcal{F}_t\}$$

for a non-compliance set $N \in \mathcal{F}_t$. Choose

$$\textit{N} = \{\Gamma_{\textit{T}} \geq 1\}$$

for a random variable $\Gamma_{\mathcal{T}}$ representing the normalized emissions at compliance time. So

$$A_t = \pi \mathbb{E}\{\mathbf{1}_{\{\Gamma_T \ge 1\}} \mid \mathcal{F}_t\}, \qquad t \in [0, T]$$

We choose Γ_T in a parametric family

$$\Gamma_T = \Gamma_0 \exp \left[\int_0^T \sigma_s dW_s - \frac{1}{2} \int_0^T \sigma_s^2 ds \right]$$

for some square integrable deterministic function

$$(0, T) \ni t \hookrightarrow \sigma_t$$

Dynamic Price Model for $a_t = \frac{1}{\pi}A_t$

a_t is given by

$$a_t = \Phi\left(\frac{\Phi^{-1}(a_0)\sqrt{\int_0^T \sigma_s^2 ds} + \int_0^t \sigma_s dW_s}{\sqrt{\int_t^T \sigma_s^2 ds}}\right) \qquad t \in [0, T)$$

where Φ is standard normal c.d.f.

a_t solves the SDE

$$da_t = \Phi'(\Phi^{-1}(a_t))\sqrt{z_t}dW_t$$

where the positive-valued function $(0, T) \ni t \hookrightarrow z_t$ is given by

$$z_t = \frac{\sigma_t^2}{\int_t^T \sigma_u^2 du}, \qquad t \in (0, T)$$

Risk Neutral Densities

Figure: Histograms for each day of a 4 yr compliance period of 10⁵ simulated risk neutral allowance price paths.

Aside: Binary Martingales as Underliers

Allowance prices are given by $A_t = \pi a_t$ where $\{a_t\}_{0 \le t \le T}$ satisfies

- $\{a_t\}_t$ is a martingale
- $0 \le a_t \le 1$
- $\mathbb{P}\{\lim_{t \to T} a_t = 1\} = 1 \mathbb{P}\{\lim_{t \to T} a_t = 0\} = p \text{ for some } p \in (0, 1)$

The model

$$da_t = \Phi'(\Phi^{-1}(a_t))\sqrt{z_t}dW_t$$

suggests looking for martingales $\{Y_t\}_{0 \le t < \infty}$ satisfying

- $0 < Y_t < 1$

and do a time change to get back to the (compliance) interval [0, T)

Feller's Theory of 1-D Diffusions

Gives conditions for the SDE

$$da_t = \Theta(a_t)dW_t$$

for $x \hookrightarrow \Theta(x)$ satisfying

- $\Theta(x) > 0$ for 0 < x < 1
- $\Theta(0) = \Theta(1) = 0$

to

- Converge to the boundaries 0 and 1
- NOT explode (i.e. NOT reach the boundaries in finite time)

Interestingly enough the solution of

$$dY_t = \Phi'(\Phi^{-1}(Y_t))dW_t$$

IS ONE OF THEM!

Explicit Examples

The SDE

$$dX_t = \sqrt{2}dW_t + X_t dt$$

has the solution

$$X_t = e^t \big(x_0 + \int_0^t e^{-s} dW_s \big)$$

and

$$\lim_{t \to \infty} X_t = +\infty$$
 on the set $\{\int_0^\infty e^{-s} dW_s > -x_0\}$ $\lim_{t \to \infty} X_t = -\infty$ on the set $\{\int_0^\infty e^{-s} dW_s < -x_0\}$

Moreover Φ is **harmonic** so if we choose

$$Y_t = \Phi(X_t)$$

we have a martingale with the desired properties.

Another (explicit) example can be constructed from Ph. Carmona, Petit and Yor on Dufresne formula.

Calibration

Has to Be Historical !!!!

- Choose Constant Market Price of Risk
- Two-parameter Family for Time-change

$$\{z_t(\alpha,\beta)=\beta(T-t)^{-\alpha}\}_{t\in[0,T]}, \qquad \beta>0, \alpha\geq 1.$$

Volatility function $\{\sigma_t(\alpha,\beta)\}_{t\in(0,T)}$ given by

$$\begin{split} \sigma_t(\alpha,\beta)^2 &= z_t(\alpha,\beta) e^{-\int_0^t z_u(\alpha,\beta)du} \\ &= \begin{cases} \beta(T-t)^{-\alpha} e^{\beta\frac{T-\alpha+1}{-\alpha+1}} & \text{for } \beta > 0, \alpha > 1\\ \beta(T-t)^{\beta-1} T^{-\beta} & \text{for } \beta > 0, \alpha = 1 \end{cases} \end{split}$$

Maximum Likelihood

Sample Data

Figure: Future prices on EUA with maturity Dec. 2012

Call Option Price in One Period Model

for $\alpha=1,\,\beta>0$, the price of an European call with strike price $K\geq 0$ written on a one-period allowance futures price at time $\tau\in[0,T]$ is given at time $t\in[0,\tau]$ by

$$C_t = e^{-\int_t^{\tau} r_s ds} \mathbb{E}\{(A_{\tau} - K)^+ \mid \mathcal{F}_t\}$$

=
$$\int (\pi \Phi(x) - K)^+ N(\mu_{t,\tau}, \nu_{t,\tau})(dx)$$

where

$$\mu_{t,\tau} = \Phi^{-1}(A_t/\pi)\sqrt{\left(\frac{T-t}{T-\tau}\right)^{\beta}}$$

$$\nu_{t,\tau} = \left(\frac{T-t}{T-\tau}\right)^{\beta} - 1.$$

Price Dependence on T and Sensitivity to β

Figure: Dependence $\tau \mapsto C_0(\tau)$ of Call prices on maturity τ . Graphs \Box , \triangle , and ∇ correspond to $\beta = 0.5$, $\beta = 0.8$, $\beta = 1.1$.

Implied Volatilities $\beta = 1.2$

Implied Volatilities for Different Maturities

Implied Volatilities $\beta = 0.6$, $\pi = 100$

Implied Volatilities for Different Maturities

More Calibration away from End of Period

One-Period Formula Prices vs Dec09 Quotes, beta=0.5

Risk Neutral Densities

Lectures based on)

- R.C., M. Fehr and J. Hinz: Mathematical Equilibrium and Market Design for Emissions Markets Trading Schemes. SIAM J. Control and Optimization (2009)
- R.C., M. Fehr, J. Hinz and A. Porchet: Mathematical Equilibrium and Market Design for Emissions Markets Trading Schemes. SIAM Review (2010)
- R.C., M. Fehr and J. Hinz: Properly Designed Emissions Trading Schemes do Work! (working paper)
- R.C., and J. Hinz: Risk-Neutral Modeling of Emission Allowance Prices and Option Valuation (working paper)
- R.C. & M. Fehr: Auctions and Relative Allocation Mechanisms for Cap-and-Trade Schemes (working paper)
- R.C. & M. Fehr: The Clean Development Mechanism: a Mathematical Model. (submitted Proc. 2008 Ascona Conf.)

