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Performance measurement of

investment strategies
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Market environment

Riskless and risky securities

• (Ω,F , P) ; W = (W 1, . . . , Wd) standard Brownian Motion

• Traded securities

1 ≤ i ≤ k

⎧⎪⎨
⎪⎩

dSi
t = Si

t

(
μi

tdt + σi
t · dWt

)
, Si

0 > 0

dBt = rtBtdt , B0 = 1

μt, rt ∈ R, σi
t ∈ R

d bounded and Ft-predictable stochastic processes

• Postulate existence of an Ft-predictable stochastic process λt ∈ R
d

satisfying

μt − rt 11 = σT
t λt

• No assumptions on market completeness
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Market environment

• Self-financing investment strategies π0
t , πt = (π1

t , . . . , π
i
t, . . . , π

k
t )

• Present value of this allocation

Xt =
k∑

i=0

πi
t

dXt =
k∑

i=1

πi
tσ

i
t · (λt dt + dWt)

= σtπt · (λt dt + dWt)
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Investment performance measurement

5



Investment performance process

U (x, t) is an Ft-predictable process, t ≥ 0

• The mapping x → U (x, t) is increasing and concave

• For each self-financing strategy, represented by π, the associated

(discounted) wealth Xπ
t satisfies

EP(U (Xπ
t , t) | Fs) ≤ U (Xπ

s , s), 0 ≤ s ≤ t

• There exists a self-financing strategy, represented by π∗, for which

the associated (discounted) wealth Xπ∗
t satisfies

EP(U (Xπ∗
t , t) | Fs) = U (Xπ∗

s , s), 0 ≤ s ≤ t
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Optimality across times

U (x, t) ∈ Ft

0
| |

U (x, s) ∈ Fs U (x, t) ∈ Ft

|
0
| |

U (x, s) = sup
A

E(U (Xπ
t , t)|Fs, Xs = x)

• What is the meaning of this process?

• Does such a process aways exist?

• Is it unique?

• Axiomatic construction?
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Forward performance process

A datum u0(x) is assigned at the beginning of

the trading horizon, t = 0

U (x, 0) = u0(x)

Forward in time criteria

EP(U (Xπ
t , t)|Fs) ≤ U (Xπ

s , s), 0 ≤ s ≤ t

EP(U (Xπ∗
t , t)|Fs) = U (Xπ∗

s , s), 0 ≤ s ≤ t

Many difficulties due to “inverse in time”

nature of the problem
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The forward performance SPDE
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The forward performance SPDE

Let U (x, t) be an Ft−predictable process such that the mapping x → U (x, t)

is increasing and concave. Let also U = U (x, t) be the solution of the stochastic

partial differential equation

dU =
1

2

∣∣∣σσ+A (Uλ + a)
∣∣∣2

A2U
dt + a · dW

where a = a (x, t) is an Ft−predictable process, while A = ∂
∂x.

Then U (x, t) is a forward performance process.
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The volatility of the investment performance process

This is the novel element in the new approach of forward investment
performance measurement

• The volatility models how the current shape of the performance process is
going to diffuse in the next trading period

• The volatility is up to the investor to choose, in contrast to the classical
approach in which it is uniquely determined via the backward construction
of the value function process

• When the volatility is not state-dependent, we are essentially in the zero
volatility case

• The volatility process results in non-myopic portfolios

• The volatility’s dependence on the risk premium is intriguing

• The process a may depend on t, x, U, its spatial derivatives etc.

Specifying the appropriate class of volatility processes is very
challenging but extremely didactic!
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Optimal portfolios and wealth

At the optimum

• The optimal portfolio vector π∗ is given in the feedback form

π∗t = π∗ (X∗
t , t) = −σ+A (Uλ + a)

A2U
(X∗

t , t)

• The optimal wealth process X∗ solves

dX∗
t = −σσ+A (Uλ + a)

A2U
(X∗

t , t) (λdt + dWt)
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Solutions to the forward performance SPDE

dU =
1

2

∣∣∣σσ+A (Uλ + a)
∣∣∣2

A2U
dt + a · dW

Local differential coefficients

a (x, t) = F (x, t, U (x, t) , Ux (x, t))

Difficulties

• The equation is fully nonlinear

• The diffusion coefficient depends, in general, on Ux and Uxx

• The equation is not (degenerate) elliptic

13



The zero volatility case: a(x, t) ≡ 0
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Space-time monotone performance process

The forward performance SPDE simplifies to

dU =
1

2

∣∣∣σσ+A (Uλ)
∣∣∣2

A2U
dt

The process

U (x, t) = u (x,At) with At =
∫ t

0

∣∣∣σsσ
+
s λs

∣∣∣2 ds

with u : R × [0, +∞) → R, increasing and concave with respect to x, and

solving

utuxx =
1

2
u2

x

is a solution.

MZ (2006)

Berrier, Rogers and Tehranchi (2009)
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Performance measurement

time t1, information Ft1

risk premium

At1 =
∫ t1

0
|λ|2 ds
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Performance measurement

time t2, information Ft2

risk premium

At2 =
∫ t2

0
|λ|2 ds
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Performance measurement

time t3, information Ft3

risk premium

At3 =
∫ t3

0
|λ|2 ds
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Forward performance measurement

time t, information Ft

market

Wealth

Time

u(x,t)

MI(t) + u(x, t)��� �������
U (x, t) = u(x, At) ∈ Ft
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Properties of the performance process

U (x, t) = u (x,At)

• U (x, t) is decreasing in time if λ 	= 0

• the deterministic risk preferences u (x, t) are compiled with

the stochastic market input At =
∫ t

0
|λ|2 ds

• the evolution of preferences is “deterministic”

• if λ = 0, U (x, t) = U (x, 0)

• if λ large, the investor is heavily penalized if he does not invest
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Optimal allocations
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Optimal allocations

• Let X∗
t be the optimal wealth, and At the time-rescaling processes

dX∗
t = σtπ

∗
t · (λtdt + dWt)

dAt = |λt|2dt

• Define

R∗
t � r(X∗

t , At) r(x, t) = − ux(x, t)

uxx(x, t)

Optimal portfolios

π∗t = σ+
t λtR

∗
t

The optimal portfolio is always myopic
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A system of SDEs at the optimum

⎧⎨
⎩

dX∗
t = r(X∗

t , At)λt · (λt dt + dWt)

dR∗
t = rx(X∗

t , At)dX∗
t

π∗t = σ+
t λtR

∗
t

The optimal wealth and portfolios are explicitly constructed

if the function r(x, t) is known.

Should we model r(x, t) instead of u(x, t)?
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Concave utility inputs and

increasing harmonic functions
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Concave utility inputs and increasing harmonic functions

There is a one-to-one correspondence between strictly concave solutions u(x, t) to

ut =
1

2

u2
x

uxx

and strictly increasing solutions to

ht +
1

2
hxx = 0

via the Cole-Hopf transformation

u(h(x, t), t) = e−x+ t
2
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Concave utility inputs and increasing harmonic functions

x −→ h(x, t) −→ u(h(x, t), t)

• The harmonic function h(x, t) is defined on R× [0 +∞) and represents the

investor’s wealth

• The range of h(x, t) reflects the wealth state constraints (e.g., wealth bounded

from below)

• The harmonic function h(x, t) is increasing in x
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Concave utility inputs and increasing harmonic functions

• If h(x, t) harmonic then hx(x, t) is also harmonic

(hx)t +
1

2
(hxx)x = 0

• Because hx(x, t) is positive harmonic it can be represented via Widder’s

theorem as

hx(x, t) =
∫
R

exy−1
2y

2tν(dy)

• The wealth function h(x, t) is then constructed from hx(x, t)

• Boundary and asymptotic behavior of hx(x, t) not obvious
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Concave utility inputs and increasing harmonic functions

The measure ν becomes the defining element

• Its support plays a key role in the form of the range of h(x, t) and, as a result,

in the form of the domain and range of u(x, t) as well as in its asymptotic

behavior (Inada conditions)

• It defines the class of initial conditions

• Can it be inferred from the investor’s desired investment targets?
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Range of h(x, t) = (−∞, +∞)

Assumption on ν:
∫ +∞
−∞ eyxν(dy) < +∞ , x ∈ R

• ν({0}) > 0

• ν({0}) = 0 , ν
(
(−∞, 0)

)
= 0 , ν

(
(0, +∞)

)
> 0 and

∫ +∞
0+

ν(dy)

y
= +∞

• ν({0}) = 0 , ν
(
(0, +∞)

)
= 0 , ν

(
(−∞, 0)

)
> 0 and

∫ 0−

−∞
ν(dy)

y
= −∞
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Concave utility inputs and increasing harmonic functions

• Increasing harmonic function h : R × [0, +∞) → R is represented as

h (x, t) =
∫
R

eyx−1
2y

2t − 1

y
ν (dy)

• The associated utility input u : R × [0, +∞) → R is then given by the

concave function

u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+s

2hx

(
h(−1) (x, s) , s

)
ds +

∫ x

0
e−h(−1)(z,0)dz
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Measure ν has compact support

ν(dy) = δ0, where δ0 is a Dirac measure at 0

Then,

h (x, t) =
∫
R

eyx−1
2y

2t − 1

y
δ0 = x

and

u (x, t) = −1

2

∫ t

0
e−x+s

2ds +
∫ x

0
e−zdz = 1 − e−x+ t

2
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Measure ν has compact support

ν (dy) =
b

2
(δa + δ−a), a, b > 0

δ±a is a Dirac measure at ±a

Then,

h (x, t) =
b

a
e−

1
2a

2t sinh (ax)

If, a = 1, then

u (x, t) =
1

2

(
ln
(
x +

√
x2 + b2e−t

)
− et

b2x
(
x −

√
x2 + b2e−t

)
− t

2

)

If a 	= 1, then

u(x, t) =
(
√

a)
1+ 1√

a

a − 1
e

1−√
a

2 t

β√
a
e−at + (1 +

√
a )x

(√
a x +

√
ax2 + βe−at

)
(√

a x +
√

ax2 + βe−at
)1+ 1√

a
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Measure ν has infinite support

ν(dy) =
1√
2π

e−
1
2y

2
dy

Then

h(x, t) = F

(
x√
t + 1

)
F (x) =

∫ x

0
e

z2

2 dz

and

u(x, t) = F
(
F (−1)(x) −√

t + 1
)
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Range of h(x, t) = (0, +∞)

ν
(
(−∞, 0)

)
= 0 , ν({0}) = 0 , ν

(
(0, +∞)

)
> 0

∫ +∞
0+

ν(dy)

y
ν(dy) < +∞

Then

h(x, t) =
∫ +∞
0+

eyx−1
2y

2t

y
ν(dy)

ht(x, t) < 0 and hxx(x, t) > 0
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Range of h(x, t) = (0, +∞)

ν
(
(0, 1]

)
= 0 and

∫ +∞
1+

ν(dy)

y − 1
< +∞

h(x, t) =
∫ +∞
1+

eyx−1
2y

2t

y
ν(dy)

u(x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+s

2 hx(h(−1)(x, s), s) ds +
∫ x

0
e−h(−1)(z,0) dz

lim
x→0

u(x, t) = 0 , lim
x→0

ux(x, t) = +∞ , lim
x→+∞ ux(x, t) = 0
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Example when ν
(
(0, 1]

)
= 0

ν(dy) = δγ , γ > 1

h(x, t) =
∫ +∞
0+

eyx−1
2y

2t

y
ν(dy) =

1

γ
eγx−1

2γ
2t

u(x, t) =
γ

γ−1
γ

γ − 1
x

γ−1
γ e−

γ−1
2 t
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Range of h(x, t) : (0, +∞)

ν
(
(0, 1]

)
> 0 or ν

(
(0, 1]

)
= 0 and

∫ +∞
1+

ν(dy)

y − 1
= +∞

h(x, t) =
∫ +∞
0+

eyx−1
2y

2t

y
ν(dy)

u(x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+s

2 hx(h(−1)(x, s), s) ds +
∫ x

x0

e−h(−1)
dz , x0 > 0

lim
x→0

u(x, t) = −∞ , lim
x→0

ux(x, t) = +∞ , lim
x→+∞ ux(x, t) = 0
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Examples when ν
(
(0, 1]

)
> 0

• ν(dy) = δγ γ = 1

h(x, t) =
∫ +∞
0+

eyx−1
2y

2t

y
ν(dy) = ex−1

2t

u(x, t) = ln
x

x0
− t

2

• ν(dy) = δγ γ ∈ (0, 1)

u(x, t) = − γ
γ−1
γ

1 − γ
x

γ−1
γ e

1−γ
2 t +

γ
γ−1
γ

1 − γ
x

γ−1
γ

0
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Optimal processes and

increasing harmonic functions
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Optimal processes and risk tolerance

⎧⎨
⎩

dX∗
t = r(X∗

t , At)λt · (λt dt + dWt)

dR∗
t = rx(Xt,At) dX∗

t

Local risk tolerance function and fast diffusion equation

rt +
1

2
r2rxx = 0

r(x, t) = − ux(x, t)

uxx(x, t)
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Local risk tolerance and increasing harmonic functions

If h : R × [0, +∞) → R is an increasing harmonic function then

r : R × [0, +∞) → R
+ given by

r (x, t) = hx

(
h(−1) (x, t) , t

)
=
∫
R

eyh(−1)(x,t)−1
2y

2tν (dy)

is a risk tolerance function solving the FDE
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Optimal portfolio and optimal wealth

• Let h be an increasing solution of the backward heat equation

ht +
1

2
hxx = 0

and h(−1) stands for its spatial inverse

• Let the market input processes A and M by defined by

At =
∫ t

0
|λs|2 ds and Mt =

∫ t

0
λs · dWs

• Then the optimal wealth and optimal portfolio processes are given by

X
∗,x
t = h

(
h(−1) (x, 0) + At + Mt,At

)
and

π∗t = hx

(
h(−1)

(
X

∗,x
t , At

)
, At

)
σ+

t λt
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Complete construction

Utility inputs and harmonic functions

ut =
1

2

u2
x

uxx
⇐⇒ ht +

1

2
hxx = 0

Harmonic functions and positive Borel measures

h(x, t) ⇐⇒ ν(dy)

Optimal wealth process

X
∗,x
t = h

(
h(−1) (x, 0) + At + Mt, At

)
M =

∫ t

0
λs · dWs, 〈Mt〉 = At

Optimal portfolio process

π
∗,x
t = hx

(
h(−1)

(
X

∗,x
t , At

)
, At

)
σ+

t λt

The measure ν emerges as the defining element

ν ⇒ h ⇒ u

How do we choose ν and what does it represent for the investor’s
risk attitude?
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Qualitative analysis of

key quantities
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Dependence of optimal wealth and

investment processes on initial wealth

Differentiating the explicit formulae for X∗
t and π∗t we deduce

• ∂

∂x
X

∗,x
t =

r(X
∗,x
t , At)

r(x, 0)

• ∂

∂x
π
∗,x
t = rx(X

∗,x
t , At)

r(X
∗,x
t , At)

r(x, 0)
σ+

t λt

• ∂2

∂x2X
∗,x
t =

(rx(X
∗,x
t , At) − rx(x, 0))

r(x, 0)

∂

∂x
X

∗,x
t
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Monotonicity of optimal investment strategy on current wealth

π∗t = r(X
∗,x
t , At)σ

+
t λt

• If ν(dy) concentrated in (0, +∞),

rx(x, t) ≥ 0

• If ν(dy) concentrated in (−∞, 0),

rx(x, t) ≤ 0
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Inferring investor’s preferences
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Calibration of risk preferences to the market

Given the desired distributional properties of his/her optimal wealth in a specific

market environment, what can we say about the investor’s risk preferences?

Investor’s investment targets

• Desired future expected wealth

• Desired distribution

References

Sharpe (2006)

Sharpe-Golstein (2005)
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Distributional properties of the optimal wealth process

The case of deterministic market price of risk

Using the explicit representation of X∗,x we can compute the distribution,

density, quantile and moments of the optimal wealth process.

• P

(
X

∗,x
t ≤ y

)
= N

⎛
⎝h(−1) (y,At) − h(−1) (x, 0) − At√

At

⎞
⎠

• fX
∗,x
t

(y) = n

⎛
⎝h(−1) (y, At) − h(−1) (x, 0) − At√

At

⎞
⎠ 1

r (y, At)

• yp = h
(
h(−1) (x, 0) + At +

√
AtN

(−1) (p) , At

)
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Properties of the expected optimal wealth

• EX
∗,x
t = h(h(−1)(x, 0) + At, 0)

• ∂

∂x
E(X

∗,x
t ) =

r(E(X
∗,x
t ), 0)

r(x, 0)
=

r(h(h(−1)(x, 0) + At, 0), 0)

r(x, 0)

• E(r(X
∗,x
t , At)) = r(E(X

∗,x
t ), 0)
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Target: The mapping x → E
(
X

∗,x
t

)
is linear, for all x > 0.

Then, there exists a positive constant γ > 0 such that the investor’s forward

performance process is given by

U (x, t) =
γ

γ − 1
x

γ−1
γ e−

1
2(γ−1)At, if γ 	= 1

and by

Ut (x) = ln x − 1

2
At, if γ = 1

Moreover,

E
(
X

∗,x
t

)
= xeγAt

Calibrating the investor’s preferences consists of choosing a time horizon, T ,

and the level of the mean, mx (m > 1).Then, the corresponding γ must solve

xeγAT = mx and, thus, is given by

γ =
ln m

AT

The investor can calibrate his expected wealth only for a single time horizon.
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Relaxing the linearity assumption

• The linearity of the mapping x → E
(
X

∗,x
t

)
is a very strong assumption.

It only allows for calibration of a single parameter, namely, the slope, and

only at a single time horizon.

• Therefore, if one intends to calibrate the investor’s preferences to more re-

fined information, then one needs to accept a more complicated dependence

of E
(
X

∗,x
t

)
on x.

Target: Fix x0 and consider calibration to E
(
X

∗,x0
t

)
, for t ≥ 0

The investor then chooses an increasing function m (t) (with m (t) > 1) to

represent E
(
X

∗,x0
t

)
,

E
(
X

∗,x0
t

)
= m (t) , for t ≥ 0.

• What does it say about his preferences?

• Moreover, can he choose an arbitrary increasing function m (t)?
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Relaxing the linearity assumption

For simplicity, assume x0 = 1 and that ν is a probability measure. Then,

h(−1) (1, 0) = 0 and we deduce that

E
(
X

∗,1
t

)
= h (At, 0) =

∫ ∞
0

eyAtν (dy)

Clearly, the investor may only specify the function m (t) , t > 0, which can be

represented, for some probability measure ν in the form

m (t) =
∫ ∞
0

eyAtν (dy)
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Conclusions

• Space-time monotone investment performance criteria

• Explicit construction of forward performance process

• Connection with space-time harmonic functions

• Explicit construction of the optimal wealth and optimal portfolio processes

• The “trace” measure as the defining element of the entire construction

• Calibration of the trace to the market

• Inference of dynamic risk preferences
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