Financial markets with uncertain volatility

H. Mete Soner, ETH Zürich
joint with
Nizar Touzi, Ecole Polytechnique, Paris
Jianfeng Zhang, USC

IPAM,
January, 6 2010
Outline

1 Introduction
 - Overview
 - Mathematical Formulation
 - Main Result

2 G-expectation
 - "Markov" random variables
 - Closure

3 Proof
 - Construction on \mathcal{L}_{ip}
 - Spaces
 - Estimates
Outline

1 Introduction
 - Overview
 - Mathematical Formulation
 - Main Result

2 G-expectation
 - "Markov" random variables
 - Closure

3 Proof
 - Construction on L_{ip}
 - Spaces
 - Estimates

Soner joint with Touzi and Zhang

Financial markets with uncertain volatility
In very general terms, we are interested in stochastic analysis simultaneously for a large class of probability measures that are singular to each other. There are several possible applications. Today I chose to describe the results in an uncertain volatility for specificity.
In very general terms, we are interested in stochastic analysis simultaneously for a large class of probability measures that are singular to each other. There are several possible applications. Today I chose to describe the results in an uncertain volatility for specificity. Prior related work are:

Cheredito, Soner, Touzi, Victoir (CPAM, 2002) on second order backward stochastic differential equations (2BSDE). This connects the BSDEs to fully nonlinear parabolic equations.

Peng (2007) on G-expectations which is the generalization of BSDEs using the viscosity theory.
Uncertain volatility

This is a simple model designed to understand and emphasize one important source of model risk. Namely, the risk associated with the estimation of the volatility.

We follow the standard geometric Brownian motion model. But we assume that the volatility is known only to remain in a given interval.
Uncertain volatility

This is a simple model designed to understand and emphasize one important source of model risk. Namely, the risk associated with the estimation of the volatility.

We follow the standard geometric Brownian motion model. But we assume that the volatility is known only to remain in a given interval.

The problem of pricing was considered by Denis & Martini (Annals of Applied Probability, 2006) and by Peng (2007).
Uncertain volatility

This is a simple model designed to understand and emphasize one important source of model risk. Namely, the risk associated with the estimation of the volatility.

We follow the standard geometric Brownian motion model. But we assume that the volatility is known only to remain in a given interval.

The problem of pricing was considered by Denis & Martini (Annals of Applied Probability, 2006) and by Peng (2007).

Here we consider the problem of hedging in this market. As well known this question is essentially equivalent to the martingale representation theorem.
Motivations and Connections

This problem is a specific problem in a general program.

1. Probabilistic representation of **fully** nonlinear, scalar, parabolic equations.
2. To generalize the theory of **backward stochastic differential equations** (BSDE). Indeed, G-expectation of Peng is a direct generalization of g-expectation for BSDEs.
3. **Duality** theory for stochastic optimal control.
4. Include model uncertainty into **convex risk measures**.
Let \(\Omega := C([0, 1] : \mathbb{R}^d) \) and \(B_t(\omega) = \omega_t \) be the canonical map. In the classical theory, we consider only one measure which is the Wiener measure. However, in our model we consider all measures \(\mathbb{P} \) so that under this measure the canonical map is a martingale and the quadratic variation \(\langle B \rangle_t \) satisfies

\[
\underline{a} \leq \frac{d}{dt} \langle B \rangle_t \leq \overline{a},
\]

where \(0 \leq a \leq \overline{a} \) are given volatility bounds. \(\mathcal{P} \) is the set of all such measures.
Let $\Omega := C([0, 1] : \mathbb{R}^d)$ and $B_t(\omega) = \omega_t$ be the canonical map. In the classical theory, we consider only one measure which is the Wiener measure. However, in our model we consider all measures \mathbb{P} so that under this measure the canonical map is a martingale and the quadratic variation $\langle B \rangle_t$ satisfies

$$a \leq \frac{d}{dt} \langle B \rangle_t \leq \bar{a},$$

where $0 \leq a \leq \bar{a}$ are given volatility bounds. \mathcal{P} is the set of all such measures.

Note that, in general, measures in \mathcal{P} are singular to each other.
Let $\Omega := C([0, 1] : \mathbb{R}^d)$ and $B_t(\omega) = \omega_t$ be the canonical map. In the classical theory, we consider only one measure which is the Wiener measure. However, in our model we consider all measures \mathbb{P} so that under this measure the canonical map is a martingale and the quadratic variation $\langle B \rangle_t$ satisfies

$$a \leq \frac{d}{dt} \langle B \rangle_t \leq a,$$

where $0 \leq a \leq \overline{a}$ are given volatility bounds. \mathcal{P} is the set of all such measures.

Note that, in general, measures in \mathcal{P} are singular to each other.

We use the filtration generated by B without completing.
Problem of super-replication

Assume a bounded random variable $\xi \in \mathcal{F}_1$ is given. The minimal super-replication cost is given by

$$v(\xi) := \inf \left\{ x \mid \exists H \text{ s.t.}, \ x + \int_0^1 H_s dB_s \geq \xi, \ \mathbb{P} - \text{a.s., } \forall \mathbb{P} \in \mathcal{P} \right\}.$$
Problem of super-replication

Assume a bounded random variable $\xi \in \mathcal{F}_1$ is given. The minimal super-replication cost is given by

$$
\nu(\xi) := \inf \left\{ x \mid \exists H \text{ s.t., } x + \int_0^1 H_s dB_s \geq \xi, \, \mathbb{P} - \text{a.s., } \forall \mathbb{P} \in \mathcal{P} \right\}.
$$

The hedge H is our main goal.
Assume a bounded random variable $\xi \in \mathcal{F}_1$ is given. The minimal super-replication cost is given by

$$v(\xi) := \inf \left\{ x | \exists H \text{ s.t., } x + \int_0^1 H_s dB_s \geq \xi, \mathbb{P} - \text{a.s., } \forall \mathbb{P} \in \mathcal{P} \right\}.$$

The hedge H is our main goal.

Here the difficulty emanates from the fact that \mathcal{P} contains uncountably many measures that are singular to each other. Moreover, we want to describe the hedge for all measures and not only for the "optimal" one.
Description of the value

For any $\mathbb{P} \in \mathcal{P}$ and $x > \nu(\xi)$, we have $x + \int_0^1 H_s dB_s \geq \xi$ for some Z. Take expected value $x \geq \mathbb{E}^\mathbb{P}[\xi]$, forall $\mathbb{P} \in \mathcal{P}$, and $x > \nu(\xi)$. Hence,

$$\nu(\xi) \geq \sup_{\mathbb{P}} \mathbb{E}^\mathbb{P}[\xi].$$
For any $\mathbb{P} \in \mathcal{P}$ and $x > v(\xi)$, we have $x + \int_0^1 H_s dB_s \geq \xi$ for some Z. Take expected value $x \geq \mathbb{E}^\mathbb{P}[\xi]$, forall $\mathbb{P} \in \mathcal{P}$, and $x > v(\xi)$.

Hence,

$$v(\xi) \geq \sup_{\mathcal{P}} \mathbb{E}^\mathbb{P}[\xi].$$

By analogy with the results of El Karoui & Quenez (1993) for super-replication in an incomplete market, it is proved by Denis & Martini and Denis, Hu & Peng (2009) that they are equal:

$$v(\xi) = \mathbb{E}^G[\xi] := \sup_{\mathcal{P}} \mathbb{E}^\mathbb{P}[\xi],$$

where \mathbb{E}^G is the G-expectation of Peng.
Martingale Representation

Theorem

There are \((Y_t, Z_t, K_t)\) satisfying for all \(\mathbb{P} \in \mathcal{P}\)

\[
Y_t := \mathbb{E}_t^G[\xi] = \xi - \int_t^1 H_s dB_s + K_1 - K_t, \quad \mathbb{P} - a.s.
\]

\[
= \mathbb{E}^G[\xi] + \int_0^t H_s dB_s - K_t, \quad \mathbb{P} - a.s.,
\]

where \(\mathbb{E}_t^G\) is the \(G\)-conditional expectation of Peng. Moreover, \(K_t\) is non-decreasing with \(K_0 = 0\) and it is minimal in the sense that it is a \(G\)-martingale:

\[
K_t = \mathbb{E}_t^G[K_s], \quad 0 \leq t \leq s \leq 1.
\]
Outline

1. Introduction
 - Overview
 - Mathematical Formulation
 - Main Result

2. G-expectation
 - "Markov" random variables
 - Closure

3. Proof
 - Construction on \mathcal{L}_{ip}
 - Spaces
 - Estimates

Soner joint with Touzi and Zhang

Financial markets with uncertain volatility
Peng used the following partial differential equation

\[-\partial_t u - G(D^2 u) = 0 \text{ on } [0, 1),\]

where for given symmetric matrices $0 \leq a \leq \bar{a}$, the nonlinearity G is defined by,

\[G(\gamma) := \frac{1}{2} \sup\{ [\gamma : a] : a \leq a \leq \bar{a} \}.\]

This is the dynamic programming equation for the optimal control problem in which the diffusion coefficient a_t can be chosen in the interval $a \leq a_t \leq \bar{a}$.

Soner joint with Touzi and Zhang

Financial markets with uncertain volatility
Peng used the following partial differential equation

\[-\partial_t u - G(D^2 u) = 0 \quad \text{on } [0, 1),\]

where for given symmetric matrices $0 \leq a \leq \overline{a}$, the nonlinearity G is defined by,

\[G(\gamma) := \frac{1}{2} \sup\{ [\gamma : a] \mid a \leq a \leq \overline{a}\}.\]

This is the dynamic programming equation for the optimal control problem in which the diffusion coefficient a_t can be chosen in the interval $a \leq a_t \leq \overline{a}$. This equation was obtained by Avellaneda & Panas (1995) and named it Black-Scholes-Barenblatt equation.
Let \(\xi = \varphi(B_1) \).

Assume that \(\varphi \) is bounded and Lipschitz continuous on \(\mathbb{R}^d \). Let \(u \) be the unique bounded viscosity solution of the following parabolic equation,

\[-u_t - G(D^2 u) = 0 \text{ on } [0,1), \text{ and } u(1, x) = \varphi(x). \]

Then, Peng defines the conditional \(G \)-expectation of the random variable \(\varphi(B_1) \) at \(t \) by

\[\mathbb{E}^G_t [\varphi(B_1)] := u(t, B_t). \]

In particular, the \(G \)-expectation of \(\varphi(B_1) \) is given by

\[\mathbb{E}^G[\varphi(B_1)] := \mathbb{E}^G_0 [\varphi(B_1)] = u(0, 0). \]
\[\xi = \varphi(B_{t_1}, \ldots, B_1) \]

We essentially proceed the same way. Indeed, in the interval
\((t_{i-1}, t_i)\), let

\[\mathbb{E}_t^G [\xi] = \mathbb{E}_t^G [\varphi(B_{t_1}, \ldots, B_{t_n})] := v_i(t, B_{t_1}, \ldots, B_{t_{i-1}}, B_t), \]

where \(\{v_i\}_{i=1,\ldots,n-1}\) is the unique, bounded, Lipschitz viscosity solution of the following equation,

\[-\partial_t v_i - G(D^2 v_i) = 0, \quad t_{i-1} \leq t < t_i \quad \text{and} \]

\[v_i(t_i, x_1, \ldots, x_{i-1}, x) = v_{i+1}(t_i, x_1, \ldots, x_{i-1}, x, x), \]

and \(v_n\) solves the above equation with final data

\[v_n(1, x_1, \ldots, x_{n-1}, x) = \varphi(x_1, \ldots, x_{n-1}, x). \]
The space \mathcal{L}_G^p

Let \mathcal{L}_{ip} be the space of all random variables $\xi = \varphi(B_{t_1}, \ldots, B_1)$ with a bounded and Lipschitz φ. Then on \mathcal{L}_{ip} we have just defined \mathbb{E}_t^G. Therefore, on \mathcal{L}_{ip} we can also define a semi-norm

$$\|\xi\|_{\mathcal{L}_G^p} := \mathbb{E}_G^G[|\xi|^p].$$
The space L^p_G

Let L_{ip} be the space of all random variables $\xi = \varphi(B_{t_1}, \ldots, B_1)$ with a bounded and Lipschitz φ. Then on L_{ip} we have just defined E_t^G. Therefore, on L_{ip} we can also define a semi-norm

$$\|\xi\|_{L^p_G}^p := E_t^G[|\xi|^p].$$

We then define the integrability class L^p_G as the closure of L_{ip} under this norm.

It is clear that G-expectations can be defined on L^p_G by a closure argument.
Dual formula

As mentioned earlier, Denis, Martini & Peng proved that

$$\|\xi\|_{L^p_G}^p := \mathbb{E}^G[|\xi|^p] = \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^\mathbb{P}[|\xi|^p].$$

Moreover, for any $\xi \in L^1_G$ and $t \in [0, 1],

$$\mathbb{E}^G_t[\xi] = \operatorname{esssup}_{\mathbb{P}' \in \mathcal{P}(t, \mathbb{P})} \mathbb{E}^{\mathbb{P}'}[\xi | \mathcal{F}_t], \quad \mathbb{P} - \text{a.s., } \forall \mathbb{P} \in \mathcal{P},$$

where

$$\mathcal{P}(t, \mathbb{P}) := \{ \mathbb{P}' \in \mathcal{P} : \mathbb{P}' = \mathbb{P} \text{ on } \mathcal{F}_t \}.$$
Outline

1 Introduction
 - Overview
 - Mathematical Formulation
 - Main Result

2 G-expectation
 - "Markov" random variables
 - Closure

3 Proof
 - Construction on \mathcal{L}_p
 - Spaces
 - Estimates

Soner joint with Touzi and Zhang Financial markets with uncertain volatility
\[\xi = \varphi(B_1) \]

Assume that there is a smooth solution \(u \) of

\[-u_t - G(D^2 u) = 0 \text{ on } [0, 1), \text{ and } u(1, x) = \varphi(x).\]

Then, we define on all of \(\Omega \)

\[
Y_t := \mathbb{E}_t^G[\xi] = u(t, B_t) \\
H_t := \nabla u(t, B_t) \\
K_t := \int_0^t \left(G(D^2 u(s, B_s)) - \frac{1}{2} [\hat{a}_s : D^2 u(s, B_s)] \right) ds,
\]

where \(\hat{a}_t := d\langle B \rangle_t/\text{d}t \) is the universal quadratic variation process.
\(\xi = \varphi(B_1) \) continued

By a direct application of the Ito’s formula and the PDE, we conclude that for every \(\mathbb{P} \in \mathcal{P} \),

\[
dY_t = H_t dB_t - dK_t, \quad \mathbb{P} - a.s.
\]

Hence the martingale representation is proved once we show the properties of the process \(K \). Then the definition of \(G \) yields \(G \)

\[
dK_t = G(D^2 u(s, B_s)) - \frac{1}{2} \left[\hat{a}_s : D^2 u(s, B_s) \right]
\]

\[
= \frac{1}{2} \left[\sup_{a \leq \hat{a}_s \leq \bar{a}} (a : D^2 u(s, B_s)) - (\hat{a}_s : D^2 u(s, B_s)) \right].
\]

Since for \(\mathbb{P} \in \mathcal{P} \), \(a \leq \hat{a}_s \leq \bar{a} \), \(dK_t \geq 0 \).
In general

For \(\xi = \varphi(B_{t_1}, \ldots, B_1) \), we use the same construction. To simplify, I assumed that the PDE has a smooth solution. This may not be the case and a routine approximation procedure is needed.
For $p \geq 1$, and a non-negative $\xi \in \mathcal{L}_{ip}$,

$$
\|\xi\|_{\mathbb{L}^p} := \sup_{P \in \mathcal{P}} \mathbb{E}^P \left[\text{esssup}_{t \in [0,1]} \left(M^P_t(\xi) \right)^p \right],
$$

$$
M^P_t(\xi) := \text{esssup}_{P' \in \mathcal{P}(t,P)} \mathbb{E}^{P'} [\xi | \mathcal{F}_t].
$$

Let \mathbb{L}^p be the closure of \mathcal{L}_{ip} under this norm.
For $p \geq 1$, and a non-negative $\xi \in \mathcal{L}_{ip}$,

$$
\|\xi\|_{L^p}^p := \sup_{P \in \mathcal{P}} \mathbb{E}^P \left[\text{esssup}_{t \in [0,1]} \left(M_t^P(\xi) \right)^p \right],
$$

$$
M_t^P(\xi) := \text{esssup}_{P' \in \mathcal{P}(t,P)} \mathbb{E}^{P'} [\xi | \mathcal{F}_t].
$$

Let \mathbb{L}^p be the closure of \mathcal{L}_{ip} under this norm.

We prove the martingale representation for $\xi \in \mathbb{L}^2$.

Soner joint with Touzi and Zhang

Financial markets with uncertain volatility
For $p \geq 1$, and a non-negative $\xi \in \mathcal{L}_{ip}$,

\[
\|\xi\|_{\mathbb{L}^p}^p := \sup_{P \in \mathcal{P}} \mathbb{E}^P \left[\text{esssup}_{t \in [0,1]} \left(M^{P}_t(\xi) \right)^p \right],
\]

\[
M^{P}_t(\xi) := \text{esssup}_{P' \in \mathcal{P}(t,P)} \mathbb{E}^{P'} [\xi | \mathcal{F}_t].
\]

Let \mathbb{L}^p be the closure of \mathcal{L}_{ip} under this norm.

We prove the martingale representation for $\xi \in \mathbb{L}^2$.

For every $p > 2$, $\mathcal{L}^p_G \subset \mathbb{L}^2$. Moreover, when \mathcal{P} is a singleton this norm is equivalent to the usual L^2 norm due to the BDG inequality.
Norms, continued

For an adapted integrand H and a stochastic process Y, we set

$$
\|H\|_{H^p}^p := \sup_{P \in \mathcal{P}} \mathbb{E}^P \left[\left(\int_0^1 (d\langle B \rangle_t H_t \cdot H_t) \right)^{\frac{p}{2}} \right],
$$

$$
\|Y\|_{S^p}^p := \sup_{P \in \mathcal{P}} \mathbb{E}^P \left[\sup_{0 \leq t \leq 1} |Y_t|^p \right].
$$

If $Y_t = \mathbb{E}_t^G [\xi]$ for some $\xi \in \mathcal{L}_G^1$, then $\|Y\|_{S^p}^p = \|\xi\|_{L^p}^p$. This identity also motivates the definition of the norm \mathbb{L}^p.
Spaces

- \mathcal{H}^p is the set of all integrands with a finite $\| \cdot \|_{\mathcal{H}^p}$-norm,
- $\tilde{\mathcal{H}}^2_G$ is the closure of \mathcal{H}^2_G under the norm $\| \cdot \|_{\mathcal{H}^2}$,
- \mathcal{S}^p is the set of all continuous processes with finite $\| \cdot \|_{\mathcal{S}^p}$-norm,
- \mathcal{P}^p is the set of all continuous and non-decreasing processes with finite $\| \cdot \|_{\mathcal{S}^p}$-norm and $X_0 = 0$.

Soner joint with Touzi and Zhang
Financial markets with uncertain volatility
Exact statement

Now I can be precise about the spaces in the theorem. Recall

\[dY_t = H_t dB_t - dK_t, \quad Y_1 = \xi. \]

- \(\xi \in L^2 \) (This is an assumption).
- \(H \in \tilde{H}_G^2 \) and the stochastic integral is define quasi-surely.
- \(Y \in S^p \).
- \(K \in I^p \) and \(-K\) is a G-martingale.
A priori estimate

\[dY_t = H_t dB_t - dK_t, \quad Y_1 = \xi. \]

Following the techniques in El Karoui, Kapoudjian, Pardoux, Peng, Quenez (1997), we get the following estimate

\[\| H \|_{H^2} + \| K \|_{S^2} \leq C \| Y \|_{S^2} \leq C \| \xi \|_{L^2}. \]
Difference estimate

\[dY^i_t = H^i_t dB_t - dK^i_t, \quad Y^i_1 = \xi^i, \quad i = 1, 2. \]

Set \(\delta Y := Y^1 - Y^2, \delta H := H^1 - H^2, \delta K := K^1 - K^2. \) The following estimate is used repeatedly in the proofs.

\[\| \delta H \|^2_{H^2} + \| \delta K \|^2_{S^2} \leq C \left[\| \delta Y \|^2_{S^2} + \| \delta Y \|_{S^2} \left(\| K^1 \|_{S^2} + \| K^2 \|_{S^2} \right) \right]. \]

Moreover

\[\| \delta Y \|_{S^2} \leq \| \delta \xi \|_{L^2}. \]
Proof of Theorem

For $\xi \in \mathbb{L}^2$, there is a sequence $\xi_n \in \mathcal{L}_{ip}$ converging to ξ in the \mathbb{L}^2-norm.

For $\xi_n \in \mathcal{L}_{ip}$ we have the representation

$$dY^n_t = H^n_t dB_t - dK^n_t, \quad Y^n_1 = \xi_n.$$

The previous estimates imply that all the above processes converge in the appropriate spaces. We then check that all properties also remain under this convergence.