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Capital Asset Pricing Model

The original discrete time CAPM model defined the log price

return on individual asset Ra as a linear function of the risk free

interest rate Rf , the log return of the market RM , and a Gaussian

error term:

Ra − Rf = βa(RM − Rf ) + ǫa

The beta coefficient βa was originally estimated using historical

returns on the asset and market index, by a simple linear regression

of asset returns on market returns.

Fundamental flaw: it is inherently backward looking, and used

in forward looking portfolio construction.
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Previous Attempt to Forward Looking Betas

Christoffersen, Jacobs, and Vainberg (2008, McGill University,

Canada) have attempted to extract the beta parameter from option

prices on the underlying market and asset processes:

βa =

(
SKEWa

SKEWM

) 1
3
(

V ARa

V ARM

) 1
2

,

where V ARa (resp. V ARM ), and SKEWa (resp. SKEWM ) are

the variance, and the risk-neutral skewness of returns of the

asset (resp. of the market).

Then, they use results from Carr and Madan (2001) which relate

these moments to options prices (Quad and Cubic), the

Call-transform: IE⋆{h(ST )} = erT
∫∞
0

h′′(K)CBS(T, K)dK

The advantage of this approach is that option prices are inherently

forward looking on the underlying price processes.
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Continuous Time CAPM

The market price Mt and an asset price Xt evolve as follows:

dMt

Mt
= µdt + σmdW

(1)
t ,

dXt

Xt
= β

dMt

Mt
+ σdW

(2)
t ,

for constant positive volatilities σm and σ. In this model we assume

independence between the Brownian motions driving the market

and asset price processes: d〈W (1), W (2)〉t = 0, so that

Cov
(

dXt

Xt

, dMt

Mt

)

V ar dMt

Mt

=
Cov

(
β dMt

Mt

+ σdW
(2)
t , dMt

Mt

)

V ar dMt

Mt

=
Cov

(
β dMt

Mt

, dMt

Mt

)

V ar dMt

Mt

= β .
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Beta Estimation with Constant Volatility CAPM

Observe that the evolution of Xt is given by

dXt

Xt
= βµdt + βσmdW

(1)
t + σdW

(2)
t ,

that is a geometric Brownian motion with volatility

√
β2σ2

m + σ2

Even if this quantity is known, along with the volatility σm of the

market process, one cannot disentangle β and σ.

Then, one has to rely on historical returns data.

This drawback, along with the fact that constant volatility does

not generate skews, motivates us to introduce stochastic

volatility in the model.
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Stochastic Volatility in Continuous Time CAPM

We introduce a stochastic volatility component to the market price

process, that is we replace σm by a stochastic process σt = f(Yt):

dMt

Mt
= µdt + f(Yt)dW

(1)
t ,

dXt

Xt
= β

dMt

Mt
+ σdW

(2)
t ,

dYt =
1

ǫ
(m − Yt)dt +

ν
√

2√
ǫ

dZt .

In this model, the volatility process is driven by a mean-reverting OU

process Yt with a large mean-reversion rate 1/ε and the invariant

(long-run) distribution N (m, ν2). This model also implies stochastic

volatility in the asset price through its dependence on the market return.

It allows leverage: d〈W (1), Z〉t = ρ dt . However, we continue to assume

independence between W
(2)
t and the other two Brownian motions W

(1)
t

and Zt in order to preserve the interpretation of β.
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Pricing Risk-Neutral Measure

The market (or index) and the asset being both tradable, their

discounted prices need to be martingales under a pricing

risk-neutral measure. Setting

Zt = ρ dW
(1)
t +

√
1 − ρ2 dW

(3)
t ,

with (W
(1)
t , W

(2)
t , W

(3)
t ) being three independent BMs, we write:

dMt

Mt
= rdt + f(Yt)

(
dW

(1)
t +

µ − r

f(Yt)
dt

)
,

dXt

Xt
= rdt + βf(Yt)

(
dW

(1)
t +

µ − r

f(Yt)
dt

)
+ σ

(
dW

(2)
t +

(β − 1)r

σ
dt

)
,

dYt =
1

ǫ
(m − Yt)dt − ν

√
2√
ε

[
ρ

µ − r

f(Yt)
+
√

1 − ρ2 γ(Yt)

]
dt

+
ν
√

2√
ǫ

[
ρ

(
dW

(1)
t +

µ − r

f(Yt)
dt

)
+
√

1 − ρ2
(
dW

(3)
t + γ(Yt)dt

)]
.
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Market price of risk and risk-neutral measure

γ(Yt) is a market price of volatility risk, and we defined the

combined market price of risk:

Λ(Yt) = ρ
µ − r

f(Yt)
+
√

1 − ρ2 γ(Yt).

Setting

dW
(1)∗
t = dW

(1)
t +

µ − r

f(Yt)
dt ,

dW
(2)∗
t = dW

(2)
t +

(β − 1)r

σ
dt ,

dW
(3)∗
t = dW

(3)
t + γ(Yt)dt ,

by Girsanov theorem, there is an equivalent probability IP ⋆(γ)

such that (W
(1)∗
t , W

(2)∗
t , W

(3)∗
t ) are independent BMs under

IP ⋆(γ)
, called the pricing equivalent martingale measure and

determined by the market price of volatility risk γ.
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Dynamics under the risk-neutral measure

Under IP ⋆(γ)
, the model becomes:

dMt

Mt
= rdt + f(Yt)dW

(1)∗
t ,

dXt

Xt
= rdt + βf(Yt)dW

(1)∗
t + σdW

(2)∗
t ,

dYt =
1

ǫ
(m − Yt)dt − ν

√
2√
ε

Λ(Yt)dt +
ν
√

2√
ǫ

dZ∗
t ,

Z∗
t = ρW

(1)∗
t +

√
1 − ρ2 W

(3)∗
t .

We take the point of view that by pricing options on the index M

and on the particular asset X , the market is “completing itself”

and indirectly choosing the market price of volatility risk γ.
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Market Option Prices

Let P M,ǫ denote the price of a European option written on the

market index M , with maturity T and payoff h, evaluated at

time t < T with current value Mt = ξ. Then, we have

P M,ǫ = IE∗(γ)
{

e−r(T−t)h(MT ) | Ft

}
= P M,ǫ(t, Mt, Yt) ,

By the Feynman-Kac formula, the function P M,ǫ(t, ξ, y) satisfies

the partial differential equation:

LǫP M,ǫ = 0,

P M,ǫ(T, ξ, y) = h(ξ),

where

Lǫ =
1

ǫ
L0 +

1√
ǫ
L1 + L2
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Operator Notation

L0 = ν2 ∂2

∂y2
+ (m − y)

∂

∂y
≡ LOU

L1 = ρν
√

2f(y)ξ
∂2

∂ξ∂y
− ν

√
2Λ(y)

∂

∂y

L2 =
∂

∂t
+

1

2
f(y)2ξ2 ∂2

∂ξ2
+ r(ξ

∂

∂ξ
− ·) ≡ LBS(f(y))

Here LBS(σ) denotes the Black-Scholes operator with volatility

parameter σ.

The next step is to expand P M,ǫ in powers of
√

ǫ

P M,ǫ = P M
0 +

√
ǫP M

1 + ǫP M
2 + ǫ3/2P M

3 + · · ·
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Expansion of the solution

Expanding

(
1

ǫ
L0 +

1√
ǫ
L1 + L2)(P

M
0 +

√
ǫP M

1 + ǫP M
2 + ǫ3/2P M

3 + · · ·) = 0,

one cancel the terms in 1/ε and 1/
√

ε by choosing P M
0 and P M

1

independent of y (observe that L1 takes derivatives with respect

y). The terms of order ε0 lead to

L0P
M
2 + L2P

M
0 = 0,

which is a Poisson equation associated with L0. The centering

condition for this equation is

〈L2P
M
0 〉 = 〈L2〉P M

0 = 0,

where 〈·〉 denotes the averaging with respect to the invariant

distribution of Yt with infinitesimal generator L0.

12



Leading order term

Noting that

〈L2〉 =
∂

∂t
+

1

2
σ̄2ξ2 ∂2

∂ξ2
+ r(ξ

∂

∂ξ
− ·) = LBS(σ̄),

with σ̄2 = 〈f2〉, and imposing the terminal condition

P M
0 (T, ξ) = h(ξ), we deduce that P M

0 is the Black-Scholes price

of the option computed with the constant effective volatility σ̄.

We also have

P M
2 = −L−1

0 (L2 − 〈L2〉)P M
0 .

so that the terms of order
√

ε lead to

L0P
M
3 + L1P

M
2 + L2P

M
1 = 0,

which is again a Poisson equation in P M
3 which requires the

solvability condition 〈L1P
M
2 + L2P

M
1 〉 = 0.
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Equation for the first correction

〈L2〉P M
1 + 〈L1P

M
2 〉 = 〈L2〉P M

1 − 〈L1L−1
0 (L2 − 〈L2〉)〉P M

0 = 0.

Therefore P M
1 is the solution to the Black-Scholes equation with

constant volatility σ̄, with a zero terminal condition, and a source

term given by 〈L1L−1
0 (L2 − 〈L2〉)〉P M

0 . In order to compute this

source term we introduce a solution φ(y) of the Poisson equation

L0φ(y) = f(y)2 − 〈f2〉, so that

〈L1L−1
0 (L2 − 〈L2〉)〉P M

0 =
〈
L1L−1

0

(
1

2
(f(y)2 − 〈f2〉)ξ2 ∂2

∂ξ2

)〉
P M

0

=
〈
L1

(
1

2
φ(y)ξ2 ∂2

∂ξ2

)〉
P M

0 =
1

2
〈L1φ〉ξ2 ∂2P M

0

∂ξ2

=
ρν√

2
〈φ′f〉ξ ∂

∂ξ

(
ξ2 ∂2P M

0

∂ξ2

)
− ν√

2
〈φ′Λ〉ξ2 ∂2P M

0

∂ξ2
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First correction and market parameters

The first correction term
√

ε P M
1 solves the following problem:

〈L2〉(
√

ε P M
1 ) + V M,ε

2 ξ2 ∂2P M
0

∂ξ2
+ V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2P M

0

∂ξ2

)
= 0,

(
√

ε P M
1 )(T, ξ) = 0.

with

V M,ǫ
2 =

√
ǫν√
2
〈φ′Λ〉 and V M,ǫ

3 = −
√

ǫρν√
2

〈φ′f〉.

In fact, the solution is given explicitly by

√
ε P M

1 = (T − t)

(
V M,ε

2 ξ2 ∂2P M
0

∂ξ2
+ V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2P M

0

∂ξ2

))
.

One can then deduce the price approximation

P M,ε = P M
0 + (T − t)

(
V M,ε

2 ξ2 ∂2P M
0

∂ξ2
+ V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2P M

0

∂ξ2

))
+ O(ε).
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Parameter Reduction

One of the inherent advantages of this approximation is parameter

reduction. While the full stochastic volatility model requires the

four parameters (ǫ, ν, ρ, m) and the two functions f and γ, our

approximated option price requires only the three group

parameters:

• The effective historical volatility σ̄

• The volatility level correction V M,ǫ
2 due to the market price

of volatility risk

• The skew parameter V M,ǫ
3 proportional to ρ

We can further reduce to only two parameters by noting that V M,ǫ
2

is associated with a second order derivative with respect to the

current market price ξ. As such, it can be considered as a volatility

level correction and absorbed into the volatility of the leading order

Black-Scholes price.
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Adjusted effective volatility

We introduce the adjusted effective volatility σM∗ =
√

σ̄2 + 2V M,ε
2 ,

and we denote by P M∗ the corresponding Black-Scholes option

price.

Next, we define the first order correction
√

εP M∗
1 solution to

LBS(σM∗)(
√

ε P M∗
1 ) + V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2P M∗

0

∂ξ2

)
= 0,

(
√

ε P M∗
1 )(T, ξ) = 0.

It is indeed given explicitly by

√
ε P M∗

1 = (T − t)V M,ε
3 ξ

∂

∂ξ

(
ξ2 ∂2P M∗

0

∂ξ2

)
,

and one can show that the order of accuracy is preserved:

P M,ε = P M∗
0 + (T − t)V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2P M∗

0

∂ξ2

)
+ O(ε)
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Proof of order of accuracy

Observe that LBS(σM∗) = LBS(σ̄) + 1
2 (2V M,ε

2 )ξ2 ∂2

∂ξ2 ,

and therefore

LBS(σ̄)(P M
0 − P M∗

0 ) = V M,ε
2 ξ2 ∂2P M∗

0

∂ξ2
,

(P M
0 − P M∗

0 )(T, ξ) = 0 .

Since the source term is O(
√

ε) because of the V M,ε
2 factor, the

difference P M
0 − P M∗

0 is also O(
√

ε). Next we write

|P M,ε − (P M∗
0 +

√
ε P M∗

1 )| ≤ |P M,ε − (P M
0 +

√
ε P M

1 )|
+|(P M

0 +
√

ε P M
1 ) − (P M∗

0 +
√

ε P M∗
1 )| ,

which, combined with the previous accuracy result, shows that the

only quantity left to be controlled is the residual

R ≡ (P M
0 +

√
ε P M

1 ) − (P M∗
0 +

√
ε P M∗

1 ) .
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Proof of order of accuracy (continued)

From the equations satisfied by P M
0 ,

√
ε P M

1 , P M∗
0 ,

√
ε P M∗

1 , it

follows that

LBS(σ̄)(P M
0 +

√
ε P M

1 ) + V M,ε
2 ξ2 ∂2P M

0

∂ξ2
+ V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2P M

0

∂ξ2

)
= 0

LBS(σM∗)(P M∗
0 +

√
ε P M∗

1 ) + V M,ε
3 ξ

∂

∂ξ

(
ξ2 ∂2P M∗

0

∂ξ2

)
= 0.

Denoting by

Hε = V M,ε
2 ξ2 ∂2

∂ξ2
+ V M,ε

3 ξ
∂

∂ξ

(
ξ2 ∂2

∂ξ2

)
,

Hε∗ = V M,ε
3 ξ

∂

∂ξ

(
ξ2 ∂2

∂ξ2

)
,

one deduces that the residual R satisfies the equation:
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LBS(σ̄)(R) = −HεP M
0 −

(
LBS(σM∗) − V M,ε

2 ξ2 ∂2

∂ξ2

)
(P M∗

0 +
√

ε P M∗
1 )

= −HεP M
0 + Hε∗P M∗

0 + V M,ε
2 ξ2 ∂2

∂ξ2
(P M∗

0 +
√

ε P M∗
1 )

= Hε∗(P M∗
0 − P M

0 ) + V M,ε
2 ξ2 ∂2

∂ξ2
(P M∗

0 − P M
0 +

√
ε P M∗

1 )

= O(ε) ,

where we have used in the last equality that Hε∗ = O(
√

ε),

V M,ε
2 = O(

√
ε), P M∗

0 − P M
0 = O(

√
ε), and

√
ε P M∗

1 = O(
√

ε).

Since R vanishes at the terminal time T , we deduce R = O(ε)

which concludes the proof.

The new approximation has now only two parameters to be calibrated

σM∗ and V M,ǫ
3 , while preserving the accuracy of approximation.

This parameter reduction is essential in the forward-looking

calibration procedure presented next.
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Asset Option Approximation

Let P a,ǫ denote the price of a European option written on the

asset X , with maturity T and payoff h, evaluated at time t < T

with current value Xt = x. Then, we have

P a,ǫ = IE∗(γ)
{

e−r(T−t)h(XT ) | Ft

}
= P a,ǫ(t, Xt, Yt) .

By the Feynman-Kac formula, the function P a,ǫ(t, x, y) satisfies the

partial differential equation:

La,ǫP a,ǫ = 0,

P a,ǫ(T, x, y) = h(x),

where
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La,ǫ =
1

ǫ
L0 +

1√
ǫ
La

1 + La
2 ,

with

L0 = ν2 ∂2

∂y2
+ (m − y)

∂

∂y
,

La
1 = ρν

√
2βf(y)x

∂2

∂x∂y
− ν

√
2Λ(y)

∂

∂y
,

La
2 =

∂

∂t
+

1

2

(
β2f(y)2 + σ2

)
x2 ∂2

∂x2
+ r(x

∂

∂x
− ·) ≡ LBS(

√
β2f(y)2 + σ2).

Observe that the only differences with options on the market index

is the factor β in La
1 , and the modified square volatility

β2f(y)2 + σ2 in La
2 . it is easy to see that the only modifications in

the approximation are:
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1. σ̄2 is replaced by σ̄2
a = β2σ̄2 + σ2

2. V M,ε
2 is replaced by V a,ε

2 = β2V M,ε
2 =⇒ V a,ǫ

2 = β2√ǫν√
2

〈φ′Λ〉

3. V M,ε
3 is replaced by V a,ε

3 = β3V M,ε
3 =⇒ V a,ǫ

3 = −β3√ǫρν√
2

〈φ′f〉

4. σM∗ is replaced by σa∗ =
√

β2σ̄2 + σ2 + 2V a,ε
2

5. The option price approximation becomes

P a,ε = P a∗
0 + (T − t)V a,ε

3 x
∂

∂x

(
x2 ∂2P a∗

0

∂x2

)
+ O(ε),

where P a∗
0 is the Black-Scholes price with volatility σa∗

6. Only the parameters V a,ε
3 and σa∗ need to be calibrated

23



Beta Estimation

From the expressions for V M,ε
3 and V a,ε

3 , one deduces that

V a,ε
3 = β3V M,ε

3 .

It is then natural to propose the following estimator for β:

β =

(
V a,ǫ

3

V M,ǫ
3

) 1
3

.

Therefore in order to estimate the market beta parameter in a

forward looking fashion using the implied skew parameters from

option prices we must calibrate our two parameters V a,ǫ
3 and V M,ǫ

3 .

Next we show how to do that by using the implied volatility

surfaces from options data.
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Calibration Method

We know that a first order approximation of an option price (on

the market or the individual asset) with time to maturity

τ = T − t, and in the presence of fast mean-reverting

stochastic volatility, takes the following form:

P ǫ ∼ P ∗
BS + τV ǫ

3 x
∂

∂x

(
x2 ∂2P ∗

BS

∂x2

)
,

where P ∗
BS is the Black-Scholes price with volatility σ∗.

The European call option price P ∗
BS with current price x, time to

maturity τ , and strike price K is given by the Black-Scholes formula

P ∗
BS = xN(d∗

1) − Ke−rτN(d∗
2),

where N is the cumulative standard normal distribution and

d∗
1,2 =

log(x/K) + (r ± 1
2σ∗2)τ

σ∗√τ
.
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Recall the relationship between Vega and Gamma for plain vanilla

European options:

∂P ∗
BS

∂σ
= τσ∗x2 ∂2P ∗

BS

∂x2
,

and rewrite our price approximation as

P ǫ ∼ P ∗
BS +

V ǫ
3

σ∗ x
∂

∂x

(
∂P ∗

BS

∂σ

)
.

Using the definition of the implied volatility PBS(I) = P ε, and

expanding the implied volatility as

I = σ∗ +
√

ǫI1 + ǫI2 + · · · ,

we obtain:

PBS(σ∗) +
√

ǫI1
∂PBS(σ∗)

∂σ
+ · · · = P ∗

BS +
V ǫ

3

σ∗ x
∂

∂x

(
∂P ∗

BS

∂σ

)
+ · · · .
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By definition PBS(σ∗) = P ∗
BS , so that

√
ǫI1 =

V ǫ
3

σ∗

(
∂P ∗

BS

∂σ

)−1

x
∂

∂x

(
∂P ∗

BS

∂σ

)
.

Using the explicit computation of the Vega

∂P ∗
BS

∂σ
=

x
√

τ e−d∗
1/2

√
2π

,

and consequently

x
∂

∂x

(
∂P ∗

BS

∂σ

)
=

(
1 − d∗

1

σ∗√τ

)
∂P ∗

BS

∂σ
,

we deduce by using the definition of d∗
1:

√
ǫI1 =

V ǫ
3

σ∗

(
1 − d∗

1

σ∗√τ

)
=

V ǫ
3

2σ∗

(
1 − 2r

σ∗2

)
+

V ǫ
3

σ∗3
log(K/x)

τ
.
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Log-Moneyness to Maturity Ratio (LMMR)

Define

LMMR =
log(K/x)

τ
,

we obtain the affine LMMR formula

I ∼ σ∗ +
√

ǫI1 = b∗ + aǫLMMR ,

with the intercept b∗ and the slope aε to be fitted to the skew of

options data, and related to our model parameters σ∗ and V ε
3 by:

b∗ = σ∗ +
V ǫ

3

2σ∗

(
1 − 2r

σ∗2

)
,

aǫ =
V ǫ

3

σ∗3 .
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Calibration Formulas for V ε

3

We know that b∗ and σ∗ differ from a quantity of order
√

ε.

Therefore by replacing σ∗ by b∗ in the relation V ǫ
3 = aǫσ∗3, the

order of accuracy for V ε
3 is still ε since aε is also of order

√
ε.

Consequently we deduce

V ǫ
3 = aǫσ∗3 ∼ aǫb∗3 ≡ V̂ε

3
.

It is indeed also possible to extract σ∗ as follows.

b∗ = σ∗ +
aεσ∗2

2

(
1 − 2r

σ∗2

)
= σ∗ − aε

(
r − σ∗2

2

)
.

Using again the argument that b∗ and σ∗ differ from a quantity of

order
√

ε and aε is also of order
√

ε, by replacing σ∗ by b∗ in the

last term in the relation above, the order of accuracy is still ε, and

we conclude that

σ∗ ∼ b∗ + aǫ(r− b∗2

2
) ≡ σ̂∗.
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Beta Calibration

Defining the market fitted parameters as aM,ǫ and bM∗ and the

asset parameters as aa,ǫ and ba∗, we obtain our main formula:

β̂ =


 V̂a,ǫ

3

̂VM,ǫ
3




1/3

=

(
aa,ǫ

aM,ǫ

)1/3(
ba∗

bM∗

)
,

where ba∗ + aa,ǫ LMMR (resp. bM∗ + aM,ǫ LMMR) is the linear fit

to the skew of implied volatilities for call options on the individual

asset (resp. on the market index).

Observe the similarity with the formula

βa =

(
SKEWa

SKEWM

) 1
3
(

V ARa

V ARM

) 1
2

,

used by Christoffersen, Jacobs, and Vainberg (2008).
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LMMR fit examples

In the following figure:

Implied volatilities of June 17, 2009 maturity options for the S&P

500 and Amgen, plotted against the option’s Log-Moneyness to

Maturity Ratio (LMMR).

These are for February 18, 2009 option prices. The blue line is the

affine fit of implied volatilities on LMMR by which the V3

parameter is fit. The parameters fit for each series are

S&P 500 Fit: aM,ǫ = −0.121 and bM∗ = 0.428 ⇒ V M,ǫ
3 = −0.0095

Amgen Fit: aa,ǫ = −0.128 and ba∗ = 0.434 ⇒ V a,ǫ
3 = −0.010

The beta estimate for Amgen on that day is then 1.03
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LMMR fits: S&P500 and Amgen, beta estimate is 1.03
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LMMR fits: S&P500 and Goldman Sachs, beta estimate is 2.28
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Forward and Backward Looking Betas

In the following figure:

The solid blue line is the forward looking beta (y-axis)

calibrated on June 17, 2009 expiration call options over the course

of 10 market days (x-axis) from February 9, 2009 to February 23,

2009.

The dashed red line is the corresponding historical beta

calibrated on a series of historical prices of the same length as the

time to maturity of the options.
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THANKS FOR YOUR ATTENTION ...

unless you want to see a nonlinear case?
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Option Pricing Under a Stressed-Beta Model

Jean-Pierre Fouque

in collaboration with

Adam Tashman

University of California, Santa Barbara

Department of Statistics and Applied Probability

Center for Research in Financial Mathematics and Statistics
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Capital Asset Pricing Model (CAPM)

Discrete-time approach

Excess return of asset Ra − Rf is linear function of excess return of

market RM and Gaussian error term:

Ra − Rf = β(RM − Rf ) + ǫ

Beta coefficient estimated by regressing asset returns on market

returns.
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Difficulties with CAPM

Some difficulties with this approach, including:

1) Relationship between asset returns, market returns not always

linear

2) Estimation of β from history, but future may be quite different

Ultimate goal of this research is to deal with both of these issues
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Extending CAPM: Dynamic Beta

Two main approaches:

1) Retain linearity, but beta changes over time; Ferson (1989),

Ferson and Harvey (1991), Ferson and Harvey (1993), Ferson and

Korajczyk (1995), Jagannathan and Wang (1996)

2) Nonlinear model, by way of state-switching mechanism; Fridman

(1994), Akdeniz, L., Salih, A.A., and Caner (2003)

ASC introduces threshold CAPM model. Our approach is related.
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Estimating Implied Beta

Different approach to estimating β: look to options market

• Forward-Looking Betas, 2006

P Christoffersen, K Jacobs, and G Vainberg

Discrete-Time Model

• Calibration of Stock Betas from Skews of Implied Volatilities,

2009

J-P Fouque, E Kollman

Continuous-Time Model, stochastic volatility environment
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Example of Time-Dependent Beta

Stock Industry Beta (2005-2006) Beta (2007-2008)

AA Aluminum 1.75 2.23

GE Conglomerate 0.30 1.00

JNJ Pharmaceuticals -0.30 0.62

JPM Banking 0.54 0.72

WMT Retail 0.21 0.29

Larger β means greater sensitivity of stock returns relative to

market returns
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Regime-Switching Model

We propose a model similar to CAPM, with a key difference:

When market falls below level c, slope increases by δ, where δ > 0

Thus, beta is two-valued

This simple approach keeps the mathematics tractable
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Dynamics Under Physical Measure IP

Mt value of market at time t

St value of asset at time t

dMt

Mt
= µdt + σmdWt Market Model; const vol, for now

dSt

St
= β(Mt)

dMt

Mt
+ σdZt Asset Model

β(Mt) = β + δ I{Mt<c}

Brownian motions Wt, Zt indep: d 〈W, Z〉t = 0
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Dynamics Under Physical Measure IP

Substituting market equation into asset equation:

dSt

St
= β(Mt)µdt + β(Mt)σmdWt + σdZt

Asset dynamics depend on market level, market volatility σm

This is a geometric Brownian motion with volatility√
β2(Mt)σ2

m + σ2

Note this is a stochastic volatility model

45



Dynamics Under Physical Measure IP

Process preserves the definition of β:

Cov
(

dSt

St

, dMt

Mt

)

V ar
(

dMt

Mt

) =
Cov

(
β(Mt)

dMt

Mt

+ σdZt,
dMt

Mt

)

V ar
(

dMt

Mt

)

=
Cov

(
β(Mt)

dMt

Mt

, dMt

Mt

)

V ar
(

dMt

Mt

) Since BM’s indep

= β(Mt)
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Dynamics Under Risk-Neutral Measure IP ⋆

Market is complete (M and S both tradeable)

Thus, ∃ unique Equivalent Martingale Measure IP ⋆ defined as

dIP ⋆

dIP
= exp

{
−
∫ T

t

θ(1)dWs −
∫ T

t

θ(2)dZs −
1

2

∫ T

t

{
(θ(1))2 + (θ(2))2

}
ds

}

with

θ(1) =
µ − r

σm

θ(2) =
r(β(Mt) − 1)

σ
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Dynamics Under Risk-Neutral Measure IP ⋆

dMt

Mt
= rdt + σmdW ∗

t

dSt

St
= rdt + β(Mt)σmdW ∗

t + σdZ∗
t

where

dW ∗
t = dWt +

µ − r

σm
dt

dZ∗
t = dZt +

r(β(Mt) − 1)

σ
dt

By Girsanov’s Thm, W ∗
t , Z∗

t are indep Brownian motions under

IP ⋆.
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Option Pricing

P price of option with expiry T, payoff h(ST )

Option price at time t < T is function of t, M , and S

(M ,S) Markovian

Option price discounted expected payoff under risk-neutral measure

P∗

P (t, M, S) = IE⋆
{

e−r(T−t)h(ST )|Mt = M, St = S
}
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State Variables

Define new state variables: Xt = log St, ξt = log Mt

Initial conditions X0 = x, ξ0 = ξ

Dynamics are:

dξt =

(
r − σ2

m

2

)
dt + σmdW ∗

t

dXt =

(
r − 1

2
(β2(eξt)σ2

m + σ2)

)
dt + β(eξt)σmdW ∗

t + σdZ∗
t
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State Variables

WLOG, let t = 0

In integral form,

ξt = ξ +

(
r − σ2

m

2

)
t + σmW ∗

t

Next, consider X at expiry (integrate from 0 to T ):

XT = x +

(
r − σ2

2

)
T − σ2

m

2

∫ T

0

β2(eξt)dt

+ σm

∫ T

0

β(eξt)dW ∗
t + σZ∗

T
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Working with XT

Mt < c ⇒ eξt < c ⇒ ξt < log c

β(Mt) = β + δ I{Mt<c} ⇒ β(eξt) = β + δ I{ξt<log c}

Using this definition for β(eξt), XT becomes

XT = x +

(
r − β2σ2

m + σ2

2

)
T + σmβW ∗

T + σZ∗
T

− (δ2 + 2δβ)
σ2

m

2

∫ T

0

I{ξt<log c}dt + σmδ

∫ T

0

I{ξt<log c}dW ∗
t
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Occupation Time of Brownian Motion

Expression for XT involves integral
∫ T

0
I{ξt<log c}dt

This is occupation time of Brownian motion with drift

To simplify calculation, apply Girsanov to remove drift from ξ
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Occupation Time of Brownian Motion

Consider new probability measure ĨP defined as

dĨP

dIP ⋆ = exp

{
−θW ∗

T − 1

2
θ2T

}

θ =
1

σm

(
r − σ2

m

2

)

Under this measure, ξt is a martingale with dynamics

dξt = σmdW̃t

dW̃t = dW ∗
t +

1

σm

(
r − σ2

m

2

)
dt
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Changing Measure: IP ⋆ → ĨP

Since W ∗ and Z∗ indep, Z∗ not affected by change of measure

Can replace Z∗ with Z̃

Under ĨP ,

XT = x + A1T + σmβW̃T

+ σZ̃T − A2

∫ T

0

I{ξt<log c}dt

+ σmδ

∫ T

0

I{ξt<log c}dW̃t

where constants A1, A2 defined as

A1 = r(1 − β) − σ2
m(β2 − β) + σ2

2

A2 = δ(δ + 2β − 1)
σ2

m

2
+ δr
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First Passage Time

Now that ξt is driftless, easier to work with occupation time

Run process until first time it hits level log c

Denote this first passage time

τ = inf {t ≥ 0 : ξt = log c} = inf
{

t ≥ 0 : W̃t = c̃
}

where

c̃ =
log c − ξ

σm

Density of first passage time of ξt = ξ to level log c is

p(u; c̃) =
|c̃|√
2πu3

exp

(
− c̃2

2u

)
, u > 0
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Including First Passage Time Information

First passage time τ may happen after T , so need to be careful

Can partition time horizon into two pieces:

[0, τ ∧ T ] and [τ ∧ T, T ]

If ξt < log c, τ ∧ T counts as occupation time
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Including First Passage Time Information

Incorporating this information into XT yields

XT = x + A1T + σmβ W̃T + σZ̃T

−A2(τ ∧ T ) I{c̃>0} − A2

∫ T

τ∧T

I{fWt<c̃}dt

+σmδ W̃τ∧T I{c̃>0} + σmδ

∫ T

τ∧T

I{fWt<c̃}dW̃t
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Working with the Stochastic Integral

Stochastic integral can be re-expressed in terms of local time L̃c̃ of

W̃ at level c̃.

Applying Tanaka’s formula to φ(w) = (w − c̃)I{w<c̃} between τ ∧ T

and T , we get:

∫ T

τ∧T

I{fWt<c̃}dW̃t = φ(W̃T ) − φ(W̃τ∧T ) + L̃c̃
T − L̃c̃

τ∧T .
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Starting Level of Market: Three Cases

Consider separately the three cases ξ = log c, ξ > log c, and

ξ < log c

(or equivalently c̃ = 0, c̃ < 0, c̃ > 0)

Notation for terminal log-stock price, given ξ

Case ξ = log c terminal log-stock price Ψ0

Case ξ > log c terminal log-stock price Ψ+

Case ξ < log c terminal log-stock price Ψ−
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Consider Case ξ < log c as Example

In this case, c̃ > 0 and we have

XT = x + A1T + σmβ W̃T + σZ̃T

−A2(τ ∧ T ) − A2

∫ T

τ∧T

I{fWt<c̃}dt + σmδW̃τ∧T

+σmδ
[(

W̃T − c̃
)

I{fWT <c̃} −
(
W̃τ∧T − c̃

)
I{fWτ∧T <c̃} + L̃c̃

T − L̃c̃
τ∧T

]

Treat separately cases {τ < T} and {τ > T}
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Case ξ < log c, contd.

• On {τ > T}, we have:

XT = x + (A1 − A2)T + σm(β + δ) W̃T + σZ̃T

=: Ψ−
T+(W̃T , Z̃T ),

where lower index T+ stands for τ > T

Distribution of XT is given by distn of independent Gaussian r.v.

Z̃T , and conditional distn of W̃T given {τ > T}.
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Case ξ < log c, contd.

Conditional distn of W̃T given {τ > T}:
From Karatzas and Shreve, one easily obtains:

IP
{
W̃T ∈ da, τ > T

}
=

1√
2πT

(
e−

a
2

2T − e−
(2c̃−a)2

2T

)
da, a < c̃,

=: qT (a; c̃) da
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Case ξ < log c, contd.

• On {τ = u} with u ≤ T , we have W̃u = c̃, and

XT = x + (A1 − A2)T + σm(β + δ)c̃ + σmβ(W̃T − W̃u) + σZ̃T

+A2

∫ T

u

I{fWt−fWu>0}dt

+σmδ
[(

W̃T − W̃u

)
I{fWT −fWu<0} + L̃c̃

T − L̃c̃
u

]

Distn of XT given by distn of Z̃T and indep triplet(
BT−u, L0

T−u, Γ+
T−u

)

Triplet comprised of value, local time at 0, and occupation time of

positive half-space, at time T − u, of standard Brownian motion B.
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Case ξ < log c, contd.

In distribution:

XT = x + (A1 − A2)T + σm(β + δ)c̃ + σmBT−u

(
β + δ I{BT−u<0}

)
+ σZ̃T

+A2 Γ+
T−u + σmδL0

T−u

=: Ψ−
T−(BT−u, L0

T−u, Γ+
T−u, Z̃T ).

Distn of triplet
(
BT−u, L0

T−u, Γ+
T−u

)
developed in paper by

Karatzas and Shreve.
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Karatzas-Shreve Triplet (1984)

IP
{

W̃T ∈ da, L̃0
T ∈ db, Γ̃+

T ∈ dγ
}

=





2p(T − γ; b) p(γ; a + b) if a > 0, b > 0, 0 < γ < T,

2p(γ; b) p(T − γ;−a + b) if a < 0, b > 0, 0 < γ < T,

where p(u; ·) is first passage time density
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Back to Option Pricing Formula

Given final expression for XT , option price at time t = 0 is

P0 = IE⋆
{
e−rT h(ST )

}

= ĨE

{
e−rT h(eXT )

dIP ⋆

dĨP

}

= ĨE
{
e−rT h(eXT )eθfWT − 1

2 θ2T
}

= e−rT e−
1
2 θ2T ĨE

{
h(eXT )eθfWT

}
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Option Pricing Formula, contd.

Decompose expectation on {τ ≤ T} and {τ > T},
Denote by nT (z) the N (0, T ) density,

Define the following convolution relation involving the K-S triplet:

∫ T−γ

0

g(a, b, γ; T − u)p(u; c̃)du

=





2p(γ; a + b) p(T − γ; b + |c̃|) if a > 0

2p(γ; b) p(T − γ;−a + b + |c̃|) if a < 0

=: G(a, b, γ; T )
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Option Pricing Formula, contd.

The option pricing formula becomes

P0 = e−(r+ 1
2 θ2)T

[
eθc̃

∫ ∞

−∞

∫ T

0

∫ ∞

0

∫ ∞

−∞
h(eΨ±

T−
(a,b,γ,z))eθa

×G(a, b, γ; T ) da db dγ nT (z)dz

+

(∫ ∞

−∞

∫

D±

h(eΨ±

T+ (a,z))eθaqT (a; c̃)da nT (z)dz

)]

where

D± =





(−∞, c̃) if c̃ > 0

(c̃,∞) if c̃ < 0
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Note About Market Stochastic Volatility (SV)

• Assumption of constant market volatility σm not realistic

• Let market volatility be driven by fast mean-reverting factor

• Introducing market SV in model has effect on asset price

dynamics

• To leading order, these prices are given by risk-neutral

dynamics with σm replaced by adjusted effective volatility σ∗

(see Fouque, Kollman (2009) for details)

• One could derive a formula for first-order correction, but

formula is quite complicated and numerically involved
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Market Implied Volatilities

Following Fouque, Papanicolaou, Sircar (2000) and Fouque,

Kollman (2009), introduce Log-Moneyness to Maturity Ratio

(LMMR)

LMMR =
log(K/x)

T

and for calibration purposes, we use affine LMMR formula

I ∼ b∗ + aǫ LMMR

with intercept b∗ and slope aǫ to be fitted to skew of options data

Then estimate adjusted effective volatility as

σ∗ ∼ b∗ + aǫ

(
r − b∗2

2

)

71



Numerical Results and Calibration
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Asset Skews of Implied Volatilities

Using Stressed-Beta model, price European call option

Use following parameter settings:

c S0 r β σm σ T

1000 100 0.01 1.0 0.30 0.01 1.0

K = 70, 71, . . . , 150 to build implied volatility curves
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Calibration to Data: Amgen

• Consider Amgen call options with October 2009 expiry

• Strikes: Take options with LMMR between −1 and 1, using

closing mid-prices as of May 26, 2009

• For simplicity, asset-specific volatility σ = 0

• Market volatility σ∗ estimated from call option data on S&P

500 Index (closest expiry Sep09)

From affine LMMR, σ∗ = 0.2549

76



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

LMMR

Im
pl

ie
d 

V
ol

at
ili

ty
 (

%
)

Affine LMMR Fit to S&P 500 Index Options

77



Calibration to Data: Amgen, contd.

• Need c, β, and δ

• Select params which min SSE between option model prices,

market prices

For context, closing level of S&P 500 Index as of May 26, 2009 was

910.33

Estimated parameters: ĉ = 925, β̂ = 1.17, and δ̂ = 0.65.

So market is below threshold
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