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Introduction Investment Banking and Expected Utility

Investment Banking and Utility Theory

Some remarks on martingale theory and utility functions in Investment

Banking from M.Musiela, T.Zariphopoulo, C.Rogers +alii (2005-2009)

◦ No clear idea how to specify the utility function

◦ Classical or recursive utilities are defined in isolation to the investment

opportunities given to an agent.

◦ Explicit solutions to optimal investment problems can only be derived

under very restrictive model and utility assumptions, as Markovian

assumption which yields to HJB PDEs.

◦ In non-Markovian framework, theory is concentrated on the problem of

existence and uniqueness of an optimal solution, often via the dual

representation of utility.
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Introduction Investment Banking and Expected Utility

Shortcomings

Numéraire

The solution is strongly depending of choice of numéraire

Intertemporality

◦ The investor may want to use intertemporal diversification, i.e., implement

short, medium and long term strategies

◦ Can the same utility function be used for all time horizons ?

◦ No- in fact the investor gets more value (in terms of the value function)

from a longer term investment.

◦ At the optimum the investor should become indifferent to the investment

horizon.
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Introduction Investment Banking and Expected Utility

Consistent Dynamic Utility / Investment

Performance Process
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Consistent Dynamic Utility
Let X be a convex family of positive portfolios, called Test porfolios

Definition : An X-Consistent progressive utility U(t , x) process is a positive

adapted random field s.t.

∗ Concavity assumption : for t ≥ 0, x > 0 7→ U(t , x) is an increasing

concave function, (in short utility function) .

? Consistency with the class of test portfolios For any admissible

wealth process X ∈ X, E(U(t ,Xt )) < +∞ and

E(U(t ,Xt )/Fs) ≤ U(s,Xs), ∀s ≤ t .

• Existence of optimal For any initial wealth x > 0, there exists an optimal

wealth process (benchmark) X ∗ ∈ X(X ∗0 = x),

U(s,X ∗s ) = E(U(t ,X ∗t )/Fs) ∀s ≤ t .

� In short for any admissible wealth X ∈ X, U(t ,Xt ) is a supermartingale,

and a martingale for the optimal-benchmark wealth X ∗.



Consistent Progressive Utilities and Non linear Stochastic PDE Framework and Definition

Value Function of classical utility problem

Classical problem : Backward point of view
I Given a utility function u(T , x) at time horizon T, the problem at time r is

to maximize over all test portfolios starting from (r , x), the conditional

expected utility of the terminal wealth

V (r , x ,U,T )) = ess sup
X∈X (r ,x)

E(u(T ,XT )/Fr )

I DYNAMIC PROGRAMMING PRINCIPLE

V (t ,Xt , (u,T )) = V (t ,Xt , (V (t + h, .,U,T ), t + h)),a.s.

• If an optimal portfolio exists, the process (V (t ,X ∗t , (u,T )))t≤T is a

martingale .

• The value function (V (t , x , (u,T )))t≤T is a consistent utility process, with

concave initial value V(r,x, (u,T)).
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Consistent Progressive Utilities and Non linear Stochastic PDE Framework and Definition

Transformation by change of probability measure and

numéraire : U(t , x) def
= Zt u(x/Yt)

I Except the case where u is a power or exponential utility, the process U

defined by U(t , x) = Ztu(x/Yt ) is an X-consistent stochastic utility iff Z is

a martingale, ZX/Y , X ∈ X are positive local martingales and Y is an

admissible wealth process. Furthermore, Y is the optimal portfolio.

I If u is a power or exponential utility, then this condition is not a necessary

condition. For example, if Y ≡ 1, Z ≡ eµ, then if u is a power utility with

risk aversion a (resp. exponential utility with risk aversion c), it suffices to

take Z and Y such that the following equation is satisfied

1
a

dµt

dt
+ rt = − 1

2(1− a)
‖ηt‖2

(
resp. r = 0,

dµt

dt
= c2‖ηt‖2

)
, ∀t ≥ 0.

where η is proportional to the optimal strategy.
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Consistent Progressive Utilities and Non linear Stochastic PDE Framework and Definition

The General Market Model
I The security market consists of one riskless asset S0, dS0

t = S0
t rtdt , and

d continuous risky assets Si , i = 1..d defined on a filtred Brownian

space (Ω,Ft≥0,P)

dSi
t

Si
t

= bi
tdt + σi

tdWt , 1 ≤ i ≤ d

I volatility matrix σt is invertible, with bounded inverse

I Risk premium vector, η(t) with b(t)− r(t)1 = σtη(t)
Def A positive wealth process is defined as a pair (x , π)

x > 0 is the initial value of the portfolio

π = (πi)1≤i≤d is the (predictable) proportion of each asset held in the

portfolio, assumed to be S-integrable process

I Thanks to AOA in the market, wealth process with π-strategy is driven by
dXπ

t

Xπ
t

= rtdt + πtσt (dWt + ηtdt),
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Consistent Progressive Utilities and Non linear Stochastic PDE Framework and Definition

Test Portfolios and Convexity

I The Class of Test Portfolios The strategy π is required to lie at any time t

in some non empty adapted closed convex set Kt (Xt ) ⊆ Rd

I In general, for simplicity, we assume that

Kt(Xt) is a closed convex cone,

or more generally a translated of closed convex cone.

Often, Kt(Xt) is a vector (affine) space. (today for example)

⇒ Then the set of admissible portfolios is convex

Def The class of test wealth processes is denoted

X(K) := {(Xπ
t ) ∈ X+ such that πt ∈ Kt (,Xπ

t )} .
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Consistent Progressive Utilities and Non linear Stochastic PDE Framework and Definition

Utility Dynamics
Let U be a dynamic utility (concave, increasing) ,

dU(t , x) = β(t , x)dt + Γ(t , x)dWt

such that U(t ,Xπ
t ) is a supermartingale for Xπ ∈ X(K) and a martingale for

the optimal one

Open questions
I What about the drift β of the utility ?

I What about the volatility Γ of the utility ?

I Under which assumptions on (β, Γ) can one be sure that solutions are

concave and increasing,

I or verify Inada condition and asymptotic elasticity constraint ?

Main difficulties come from the forward definition
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Consistent Progressive Utilities and Non linear Stochastic PDE Framework and Definition

Stochastic calculus depending of a parameter
From Kunita Book, Carmona-Nualart

I Let φ be a semimartingale random field satisfying

dφ(t , x) = µ(t , x)dt + γ(t , x)dWt , (1)

I The pair (µ, γ) is called the local characteristic of φ, and γ is referred as

the volatility random field.

I A semimartingale random field φ is said to be Itô-Ventzel regular if

φ is a continuous C2+...-process in x

local characteristic (µ, γ) are C1 in x

additional assumptions as more regularity, uniform integrability are need to

guarantee smoothness of φ and its derivatives, and the existence of regular

version of these random fields
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Itô-Ventzel’s Formula (Kunita)
I Let φ and ψ be Itô-Ventzel’s regular one-dimensional stochastic flows

dφ(t , x) = µ(t , x)dt + γ(t , x)dWt , dψ(t , x) = α(t , x)dt + ν(t , x)dWt .

I The compound random field φoψ(t , x) = φ(t , ψ(t , x)) is a regular

semimartingale

Itô-Ventzel’s Formula

d(φoψ)(t , x) = µ(t , ψ(t , x))dt + γ(t , ψ(t , x))dWt

+ φ′x (t , ψ(t , x))dψ(t , x) +
1
2
φ”

xx (t , x)(t , ψ(t , x))||ν(t , x)||2dt

+ 〈γ′x (t , ψ(t , x)), ν(t , x)〉dt .

The volatility of φoψ is given by νφoψ(t , x) = γ(t , ψ(t , x)) + φ′x (t , ψ(t , x))ν(t , x).



Consistent Progressive Utilities and Non linear Stochastic PDE Utility Characteristic

Drift Constraint I
Let U be a Itô-Ventzel regular utility (concave, increasing) with drift and

volatility β(t , x), Γ(t , x),

dU(t , x) = β(t , x)dt + Γ(t , x)dWt

Same method as in HJM framework, or Implied Volatility dynamics.

Lemma : For any portfolio Xπ,

dU(t ,Xπ
t ) = dMt (x , π) +

(
β(t ,Xπ

t ) + U ′x (t ,Xπ
t )rtXπ

t + P(t ,Xπ
t , πt )

)
dt ,

P(t , x , π) =
[
< πσt ,U ′x (t , x)ηt + Γ′x (t , x) > +

1
2

U
′′

xx (t , x)‖πσt‖2]
=

1
2

x2 U
′′

xx (t , x)
[
‖πσt +

Ψ′x
xU ′′xx

(t , x)‖2 − ‖ Ψ′x
xU ′′xx

‖2(t , x)]

where Ψ′x (t , x) = U ′x (t , x)ηt + Γ′x (t , x)

dMt (x , π) = U ′x (t ,Xπ)Xπ πtσt + Γ(t ,Xπ)dWt
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Consistent Progressive Utilities and Non linear Stochastic PDE Utility Characteristic

Let P∗(t , x) = supπσt∈Kσt (x) P(t , x , π) := (− 1
2 x2 U

′′

xx (t , x))Q∗(t , x). Then,

Q∗(t , x) = −dist2Kσt (x)(−
Ψ′x

xU ′′xx
) + ‖ Ψ′x

xU ′′xx
‖2 = dist2

Kσ,⊥t
(− Ψ′x (t , x)

xU ′′xx (t , x)
)

where Kσ,⊥t (x) is the orthogonal set of the convex set Kσt (x)

Standard cases

I If Kσt (x) is a cone, −P∗(t , x) = 1
2U′′xx (t,x)

‖
∏
Kσt (x)−Ψ′x (t , x)‖2

I If Kσt (x) is a displaced cone Kσt (x) = Kσ,0t (x)− δt ,

−P∗(t , x) =
1

U ′′xx

(
‖
∏
Kσ,0t

(−Ψ′x + xU
′′

xxδt )‖2 + ‖Ψ′x‖2 − ‖ −Ψ′x + xU
′′

xxδt‖2
)

Remark Put Ψη = (ηtU + Γ)(t , x), and Ψη,δ = (ηt + δt )U + Γ)(t , x)− xU ′xδt , then

Ψ′x − xU
′′

xxδt = Ψη,δ,′

x
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Consistent Progressive Utilities and Non linear Stochastic PDE Utility Characteristic

Verification Theorem I

Let U be a Itô-Ventzel regular progressive utility (concave, increasing) with

decomposition dU(t , x) = β(t , x)dt + Γ(t , x)dWt . We assume that :

Hyp The drift β is related to the volatility :

β(t , x) = −U ′x (t , x)rtx +
1
2

x2 U
′′

xx (t , x)) dist2Kσ,⊥t

(
− U ′x (t , x)ηt + Γ′x (t , x))

xU ′′xx (t , x)

)
⇒ Then the optimal policy π∗(t , x)σt is

π∗(t , x)σt = projKσt (x)

(
− U ′x (t , x)ηt + Γ′x (t , x)

xU ′′xx (t , x)

)
⇒ The volatility Γ(t , x) verifies

U ′x (t , x)ηt +Γ′x (t , x) = −xU
′′

xx (t , x)π∗(t , x)σt−ν⊥],whereν⊥(t , x) ∈ Kσ,⊥t (x)
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Consistent Progressive Utilities and Non linear Stochastic PDE Utility Characteristic

Verification Theorem II

Theorem
Under previous hypothesis,

I Assume that π∗(t , x) is sufficiently smooth so that the equation

dX ∗t = X ∗t (rtdt + π∗(t ,X ∗t )σt (dWt + ηtdt)

has a (unique ? strong ?) positive solution for any initial wealth x>0.

⇒ Then, the progressive increasing utility U is a X (K)-consistent utility, with

optimal wealth X ∗t .
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Consistent Progressive Utilities and Non linear Stochastic PDE Utility Characteristic

Change of numéraire, and Martingale Market

Let Y > 0 be a new numéraire such that
dYt
Yt

= (rt − µt )dt + δ>t (dWt + ηtdt)

I In the new market, prices are given by X̂t :=
Xπt
Yt

,

I Portfolio dynamics is now constraint by

dX̂ πt
X̂π

t

= µtdt + (πtσt − δt )
>)(dWt + (ηt − δt )dt)

with π̂tσt = πtσt − δt ∈ K̂(X̂ π) = Kσ(Yt X̂ πt )− δt

I In the new market, r̂t = µt , η̂t = ηt − δt , K̂(x) = Kσ(Ytx)δt .
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Consistent Progressive Utilities and Non linear Stochastic PDE Utility Characteristic

Stability by change of numéraire

Theorem Let U(t , x) be a X-consistent Itô-Ventzel regular utility and let Y be a

positive numéraire. Denote by XY the class of processes defined by

XY = {X
Y , X ∈ X}, then

I V (t , x) = U(t , xYt ) is a XY -consistent utility in the market of numeraire Y ,

dV (t , x) = (Γ̂(t , x)dWt − xV ′x (t , x)µtdt

+
1

2V ′′xx

(
‖V ′x η̂t + Γ′x‖2 − ‖

∏
(Ktσt )⊥)

(
V ′x η̂t + Γ̂′x − xV ′′xxδt )‖2)dt

I When the market numéraire is used as numéraire, µ = 0, δ = η, the

market has no risk premium (martingale), and the ratio Γ′x
V ′x

has the same

impact than a risk premium, but depending on the level of the wealth x at

time t .
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Consistent Progressive Utilities and Non linear Stochastic PDE Duality

Inverse flows
Proposition
Let φ be a strictly monotone Itô-Ventzel regular flow with inverse process

ξ(t , y) = φ(t , .)−1(y). Assume dφ(t , x) = µ(t , x)dt + γ(t , x)dWt ,

i) The inverse flow ξ(t , y) has as dynamics in old variables

dξ(t , y) = −ξ′y (t , y)(µ(t , ξ)dt + γ(t , ξ)dWt ) +
1
2
∂y
‖γ(t , ξ)‖2

φ′x (t , ξ)
dt

ii) In terms of new variable, with νξ(t , y) = −ξ′yγ(t , ξ)

dξ(t , y) = νξ(t , y)dWt +
(1

2
∂y
(‖νξ(t , y)‖2

ξ′y

)
− µ(t , ξ)ξ′y (t , y)

)
dt

iii) If φ = Φ′x (t , x)with dΦ(t , x) = M(t , x)dt + C(t , x)dWt , then ξ = Ξ′y (t , y)

dΞ(t , y) = −C(t , ξ)dWt −M(t , ξ)dt +
1
2
‖C′x (t , ξ)‖2

Φ′′xx (t , ξ)
dt
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Consistent Progressive Utilities and Non linear Stochastic PDE Duality

Convex conjugate SPDE

Let Inada conditions U ′x (t ,0) = +∞, U ′x (t ,∞) = 0 hold true.

I (Ũ(t , y); y ≥ 0) is the convex decreasing Fenchel transform of U

Ũ(t , y) = sup
x>0,x∈Q+

(
U(t , x)− x y

)
I The optimum is achieved at U ′x (t , x∗) = y , and −Ũ ′y = (U ′x (t , .))−1

Dual SPDE
Let U be a X (K)-consistent utility, with Itô-Ventzel regularity, then

dŨ(t , y) = β1(t ,−Ũ ′y )dt + Γ(t ,−Ũ ′y )dWt where

β1(t , x) = β(t , x)− 1
2
‖Γ′x (t , x)‖2

U ′′xx (t , x)

= −rtxU ′x +
−1

2U ′′xx

(
‖Γ′x (t , x)‖2 − ‖

∏
Kσ

s − ηtU ′x − Γ′x‖2
)
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Consistent Progressive Utilities and Non linear Stochastic PDE Duality

Convex conjugate SPDE

I β1(t , x) is the solution of an optimization program achieved by the

projection of −ηtU ′x − Γ′y on (Kσ)⊥), defined before as ν⊥(t , x)

I Γ̃(t , y) = Γ(t ,−Ũ ′y ) and β̃(t , y) = β1(t ,−Ũ ′y ))

β̃(t , y) = −rtyŨ ′y +
−1

2Ũ ′′yy

(
‖
∏
Kσ

(−ηtyŨ ′′yy + Γ̃′y‖2 − ‖Γ̃′y‖2
)
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Consistent Progressive Utilities and Non linear Stochastic PDE Duality

Convex conjugate forward Utility I

Under previous assumption,

I The conjugate Utility Ũ(t , y) is a convex decreasing stochastic flows,

I consistent with the family Y of semimartingales Y ν , defined from

dYt

Yt
= (−rt + |ηt |2)dt + (νt − ηt )(dWt − ηtdt), νt ∈ (Kσ)⊥)(−Ũ ′y )

I There exists a dual optimal choice ν̃∗(t , y) = ν⊥(t ,−Ũ ′y )

From any y > 0, the optimal dual process Y ∗t = Y ν̃∗

t is given by

Y ∗(t , y) = U ′x (t ,X ∗(t ,−Ũ ′y )), Y(t , x) := U ′x (t ,X ∗(t , x))

Remark : If X ∗(t , x) is strictly monotone in x , by taking the inverse X (t , x), we

can obtain U ′x (t , x) in terms of Y(t , x) and ξ(t , x)
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X-Consistent Stochastic utilities with given optimal portfolio

X-Consistent Utilities with given optimal
portfolio

Approach by Stochastic Flows
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X-Consistent Stochastic utilities with given optimal portfolio Existence

Flows Assumption

Monotony assumption
Let X ∗t (x) be a wealth process assumed to be continuous and increasing in x

from 0 to +∞.

I true in a lot examples,

I may be a consequence of no arbitrage opportunity.

I from flows point of view, it is implied by coefficient regularity

Hyp Moreover, X ∗t (x) is assumed to be a Itô-Ventzel stochastic flow

dX ∗t (x) = X ∗t (x)(rt + π(t ,X ∗t (x))σtdWt = µ(t ,X ∗t (x))dt + δ(t ,X ∗t (x))dWt

Not Denote by X (t , z) the inverse of the flow X (t , z) = (X ∗t (.))−1(z).
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X-Consistent Stochastic utilities with given optimal portfolio Existence

Proposition (Basic example)
Let X (t , z) be the inverse flow of X∗(t , z), then for any utility function u such

that u′(X (t , z)) is locally integrable near z = 0, the stochastic process U

defined by

U(t , x) =

∫ x

0
u′(X (t , z))H r ,η

t dz, U(t ,0) = 0 (2)

is a X-Consistent utility constrained by K.

• The associated optimal wealth process is X∗

• and the optimal dual choice ν⊥ is 0.

• Γ′x = −ηtHt u′(X (t , z))− Htu′′(X (t , z))X ′zδ(t , x) = −U ′xη − U ′′xxδ(t , x)

Furthermore, the conjugate process of U denoted by Ũ, is given by

Ũ(t , y) =

∫ +∞

y
X ∗(t ,−ũ′0(z(H r ,η

t )−1)dz, (3)
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Stochastics flows and Stochastics PDE’s From Flows to Stochastic PDE’s

Hypothesis (C3)

Suppose that the optimal portfolio X∗ and the optimal dual process Y ∗ are

Ito-Ventzel regular processes

dX ∗t (x) = X ∗t (rt + π(t ,X ∗)σ(t ,X ∗)(dWt + ηtdt), π(t ,X ∗t (x)) ∈ Kt (Xt (x))

dY ∗(t , y) = Y ∗{(−rt + |η|2)dt + (ν(t ,Y ∗)− η)(dWt − ηdt)},

ν(t ,Y(t , x)) ∈ ((Kσ)⊥)(t , ũ′(X ∗t (x))

where u is a deterministe C2 concave function.
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Stochastics flows and Stochastics PDE’s From Flows to Stochastic PDE’s

Interpretation of SPDE Utility

Theorem

Let (X ∗t (x)), and Y∗(t , y) two regular stochastic flows as above.

Put Y(t , x) = Y ∗(t ,u′(x)) and X (t , z) = (X ∗(t , .))−1.

i) Then the process U defined by

U(t , x) =

∫ x

0
Y(t ,X (t , z))dz

is a X-Consistent stochastic utility satisfying the HJB type SPDE, with

volatility vector Γ′x

ηtY(t ,X (t , x)) + Γ′x (t , x) = −xU ′′xxπ(t , x)σt − ν(Y(t ,X (t , x))
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Stochastics flows and Stochastics PDE’s From Flows to Stochastic PDE’s

Converse point of view I

Martingale market is assumed for simplicity

Let (β, Γ) be the regular characteristic of Stochastic HJB PDE, where Γ′x has

the following decomposition

Γ′x (t , x) = ν(t ,U ′x (t , x))− U ′′xx (t , x)δ(t , x) (4)

with δ(t , x) ∈ Kσt (x)) and ν(t ,U ′x (t , x))(Kσt (x)))⊥
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Stochastics flows and Stochastics PDE’s From Flows to Stochastic PDE’s

Converse point of view II

If the solution of the system

dX ∗t (x) = δ(t ,X ∗t (x))dWt , γ(t ,X ∗t (x)) ∈ Kt (X ∗t (x))

dY(t , x) = ν(t ,Y(t , x))dWt , ν(t ,Y(t , x)) ∈ ((Kσ)∗ ∩ γ⊥)(t ,X ∗t (x))

exist, and is a regular flow, then same ideas may be used to show the

existence, uniqueness, regularity of solution of

dU(t , x) =
1
2
[‖(Γ′x )K(t , x)‖2

U ′′xx (t , x)

]
dt + Γ(t , x)dWt
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Conclusions

Conclusion

I All Consistent dynamic utilities with continuous strictly increasing optimal

portfolio may be generated as above

I Valid also for classical optimization problem.

I Work in progress

The main assumption is that the optimal portfolio is increasing in x , because

we have the same characterization in more abstract form, based on the

properties of the optimum.
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Conclusions

Thank you for your attention
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